首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
森林景观恢复过程中景观要素斑块规模的动态分析   总被引:24,自引:0,他引:24  
以1959年以来的4期航片为基础资料,通过对研究地区各类景观要素的斑块平均规模和粒级结构及其动态变化过程进行分析,揭示了研究地区森林景观恢复演替过程中景观要素斑块动态特点,阐明了植被演替和干扰格局控制下森林景观要素斑块恢复演替的过程和规律。研究地区森林景观自50年代以来在整体上始终属于细景观,但景观要素斑志规模和粒级结构发生了显著变化,在三个不同时期表现出不同的变化特点,而且不同景观要素的斑块规模  相似文献   

2.
西双版纳勐仑地区景观格局变化定量分析   总被引:11,自引:1,他引:10  
利用景观空间格局定量化分析软件FRAGSTATS和西双版纳勐仑地区1988、2003年两期Landsat影像解译结果,定量分析和比较了两时期景观格局的组成、各类型斑块特征、不同类型斑块间空间分布关系及其动态变化,并进一步分析了其生态效应.结果表明,15年来研究区内以经济林为主的人工景观组分剧烈增加,景观多样性上升;橡胶园等人工种植园地的扩张使得有林地破碎化:平均斑块面积由44km2减至21km2,斑块数由368增至441,同时边缘密度增加;导致其核心区缩小,斑块连接度下降;城镇建设用地的扩展也使得耕地(主要是水田)趋于破碎化.景观中不同斑块的交错分布格局也趋于简单.人工经济林的大面积发展和城市化使该区景观中人为影响显著增强,并产生了生物生境恶化及生态环境质量下降等不良生态效应.未来土地利用规划中应借鉴景观生态学原则,以尽量减少对生态环境的进一步破坏.  相似文献   

3.
关帝山林区景观要素沿环境梯度分布趋势的研究   总被引:25,自引:0,他引:25       下载免费PDF全文
 应用空间趋势面分析法研究森林景观空间格局,阐明其技术路线和工作步骤,并提出在ARC/INFO支持下的统一网格样点图上取样法。通过对不同景观要素生态潜力的定量化,对关帝山天然次生林区景观要素沿环境梯度的分布趋势进行了研究。试图从高度异质的复杂景观中,揭示景观要素的空间分布规律及其控制机制。结果表明:在研究地区30~50km的空间尺度上,水平地理位置对景观要素空间分布格局的影响极为有限,景观要素总体空间分布格局更多地受地形特征和干扰格局的综合控制,海拔、坡向和坡度是控制研究地区景观要素空间分布格局的基本因素,在不同海拔带上,坡向和坡度对景观要素空间分布格局的影响作用,在方向和强度上都有明显差别。本文应用空间趋势面分析法进一步对这些差别进行了详细分析,并得出了一些基本规律,这将有利于促进研究地区森林可持续经营和景观规划与管理水平的提高。  相似文献   

4.
景观异质性是景观的基本属性 ,是形成不同景观结构和功能的基础 ,直接影响资源、物种和干扰在景观中的分配与传播 ,影响景观的生物多样性和生产力 ,对景观整体功能及生态过程有重要控制作用[4 ,7,8] ,对景观要素斑块动态的影响尤需作具体而深入的研究[3,5,6 ] 。景观异质性可以理解为景观内景观要素属性的变异程度[1] 。景观异质性是由景观要素的多样性和景观要素的空间相互关系共同决定的。当景观要素类型一定时 ,同类景观要素以大斑块相对集中的分布格局 ,景观异质性较低 ;以异质小斑块分散分布的格局 ,异质性较高。因此 ,景观异质性可用…  相似文献   

5.
森林景观恢复过程中景观要素空间分布格局及其动态研究   总被引:14,自引:0,他引:14  
郭晋平  张芸香 《生态学报》2002,22(12):2021-2029
在ARC/INFO支持下,应用空间趋势面分析法,采用统一网络样点取样法,通过对关帝山天然次生林区从1959年到1992年4个时期景观要素空间分布趋势的定量化分析,从高度异质和变化的复杂景观中,揭示了一些不随时间发生根本变化的森林景观空间分布格局及其主要控制因素,研究结果表明,以海拔,坡向和坡度为主要因素形成的立地条件空间格局和人为干扰的空间格局,共同控制着森林景观恢复过程及其空间格局;高海拔带上的森林恢复过程主要受立地条件格局的控制,景观要素的生态潜力高,而较低海拔和沟谷地段的森林恢复过程受人为活动的影响较强,景观要素生态潜力较低;不同海拔带上,坡度和坡向的作用有明显差异;总的来说,研究范围内随着海拔的降低,坡向的作用增强,但在低海拔带上由于人为干扰的作用增强,植被类型分布格局的变化较复杂。坡度对植被类型空间分布的作用以中高海拔带上最强,高海拔带上的作用不明显,中海拔带上的作用也有所下降,而在低海拔带上,由于坡度对人为干扰格局的显著作用和坡度对坡向效应的加强,出现坡度大森林植被分布多的情况,控制人为干扰的强度和曼延是森林景观恢复和建设规划中不容忽视的重要内容。  相似文献   

6.
旅游景观生态系统格局:概念与空间单元   总被引:5,自引:0,他引:5  
旅游景观生态系统作为一个复杂的自然-人文生态系统,内部的人地关系区别于一般景观生态系统,但现有的格局研究难以反映.基于景观生态学与空间结构理论,在已有研究基础上,提出旅游景观生态系统格局的概念,并构建空间单元体系.首先,旅游景观生态系统格局可理解为旅游者的活动作用于系统地域范围所形成的空间分异与组织形式;其次,旅游景观生态系统格局的空间单元可划分为斑块、廊道和基质,其中斑块由节点与域面组成.旅游景观生态系统格局理论提出的目的是通过旅游者空间分布状况的分析,反映系统内部要素之间相互作用过程的空间差异.这一理论的提出有助于推动景观格局与生态过程研究的深入,并能为区域旅游业发展的空间协调管理提供理论支持.  相似文献   

7.
岷江上游典型时期景观格局变化及驱动力初步分析   总被引:24,自引:6,他引:18  
岷江上游地区是我国一个重要的大尺度、复合型生态过渡带,也是一个生态系统脆弱区,研究其景观格局的变化,对于构筑我国的生态格局安全具有十分重要的意义.本研究利用岷江上游地区1986、1995、2000年3个时期的TM影像,分析了3个时期的景观特征以及变化.结果表明,岷江上游整体景观水平以草地景观为基质、森林景观以及其他景观类型作为斑块镶嵌其中.森林景观面积经历了从1986~1995年的上升,而后到2000年的下降过程;草地景观高盖度草面积不断减少;同时,森林景观和草地景观斑块总数一直增加,破碎化趋势明显.岷江上游景观格局变化的驱动因子主要是日益增加的人口数量而导致的人为干扰,包括对土地利用方式与利用强度的改变、森林资源的掠夺性开采、草地资源的过度放牧以及气候、土壤等自然因素的变化.  相似文献   

8.
在北方森林中火干扰是森林景观变化的主导因素。林火烈度作为衡量林火动态的重要指标,较为直观地反映了火干扰对森林生态系统的破坏程度,其空间格局深刻地影响着森林景观中的多种生态过程(如树种组成、种子扩散以及植被的恢复)。解释林火烈度空间格局有助于揭示林火干扰后森林景观格局的形成机制,对预测未来林火烈度空间格局以及制定科学合理林火管理策略均有重要意义。基于LandsatTM/ETM遥感影像,将2000—2016年大兴安岭呼中林区的36场火的林火烈度划分为未过火、轻度、中度、重度4个等级。采用FRAGSTAT景观格局分析软件从类型水平上计算了斑块所占景观面积比、面积加权平均斑块面积、面积加权平均斑块分维数、面积加权边缘面积比、斑块密度5个景观指数,以对林火烈度空间格局进行了定量化描述。并且采用随机森林模型,分析了气候、地形、植被对林火烈度空间格局的影响及其边际效应。通过研究得出以下结果:(1)相对于未过火、轻度、以及中度火烧斑块,重度火烧斑块的面积更大、形状更简单;(2)海拔对重度火烧斑块的空间格局起着至关重要的作用,其次是坡向、坡度、植被覆盖度、相对湿度、温度等;(3)随着海拔的升高,面积加权平均斑块面积和面积加权平均斑块分维数的边际效应曲线呈上升趋势,而面积加权边缘面积比和斑块密度呈下降趋势;除了面积加权平均斑块面积外,都受到火前植被覆盖度的影响,且植被覆盖度为0.2—0.3范围内,重度火烧斑块在景观中所占比例最大。总的来看,2000—2016年大兴安岭呼中森林景观中重度火烧斑块与未过火、轻度以及中度火烧斑块存在显著差异性。相对于气候,地形和植被对于塑造重度火烧斑块空间格局具有重要作用。因此,应针对重度火烧区域进行可燃物处理,从景观层面上合理配置森林斑块,从而降低高烈度森林大火发生的风险。  相似文献   

9.
史芳宁  刘世梁  安毅  孙永秀  董世魁  武雪 《生态学报》2020,40(10):3303-3314
城市化不仅改变景观类型和组成,也导致空间形态变化与自然生境连接度的降低,刻画不同城市化过程中人工表面、耕地与自然生境的空间关系对于研究其景观生态效应,尤其是对不同景观之间的相互作用以及结构和功能的变化具有重要意义。以云南省昆明市为研究区,分析了1990—2015年城市扩张导致的破碎化与形态变化对景观连接度的影响。利用城市破碎指数(UFI)刻画景观破碎水平,进一步基于形态学空间格局分析(MSPA)得到耕地和自然生境的七类景观形态要素(核心、岛状斑块、桥接、环岛、孔隙、边缘和支线),选取了3种边缘宽度比较边缘宽度对景观形态的影响差异,然后通过概率连接度指数(PC)和斑块重要值(dPC)评估景观连接度的变化。在4 km×4 km的网格基础上计算平均UFI和dPC,利用三维曲面分析不同变量之间的相关性。结果表明:过去25年间,昆明市人工表面不断扩大,占用大量耕地并导致景观破碎度的增加,速率呈逐年增加的趋势;MSPA结果显示,耕地表现出持续稳定的消减,自然生境景观形态类型前期变化不大,2010年后有较大幅度改变,表现出从稳定、波动到破碎的过程,不同边缘宽度下存在显著差别,边缘宽度越大则连接度变化越为明显,表明城市化对小型绿色斑块影响较大;斑块重要值与UFI的变化表现出一致性,变化集中于东部地区,随着UFI的增加景观连接度逐年降低;相关性分析显示,随着破碎度的增加,景观连接度经历了从波动到稳定下降的过程。总体上,昆明市城市化造成耕地的持续减少,虽未造成大面积自然生境丧失,但在一定程度上降低了连接度,需要从空间格局上加以管控,避免对整体景观连接度产生负面影响。  相似文献   

10.
庐山森林景观格局变化的长期动态模拟   总被引:1,自引:0,他引:1  
梁艳艳  周年兴  谢慧玮  蒋铭萍 《生态学报》2013,33(24):7807-7818
在以植被格局为基础的森林景观动态分析中,可通过森林演替推断景观格局的动态变化以及相应的景观生态过程。运用空间直观景观模型LANDIS,以庐山风景区为案例地,模拟森林植被在未来300 a的自然演替动态,在此基础上选取斑块面积比、聚集度、分维数、多样性指数和均匀度指数等景观格局指数,分析森林景观格局随森林演替的动态变化。结果表明:(1)阔叶林树种的绝对优势地位保证其斑块面积比呈现持续增长的稳定趋势,森林植被将朝着地带性常绿阔叶林方向演替;(2)景观聚集度特征方面,阔叶林树种在前150 a缓慢增长,而后150 a保持相对稳定,杉木林一直保持平稳,毛竹林在整个模拟阶段一直在不断下降直至演替结束;(3)各优势树种植被斑块的分维数都保持在1-1.1之间,说明各景观斑块的边缘相对较规则且变化较小;(4)景观多样性指数呈现出先上升后缓慢下降的趋势,而均匀度指数则呈现出先下降后上升再缓慢下降的变化态势。景观格局指数的变化特征与植被向顶极群落演替的趋势相吻合,该模拟结果可运用到庐山森林景观的管理实践中。从长远来看,应该继续实行严格的封山育林政策。  相似文献   

11.
Few data exist on seed dispersal by frugivorous birds in fragmented landscapes, originating from tropical dry forests, in contrast to more abundant data from tropical rain forests. In this study, we assessed the effect of frugivorous birds in a fragmented landscape of Veracruz, Mexico, now occupied by remnant fragments of tropical semi‐deciduous forest and dry deciduous forest, grassland, and shrubby patches on sand dunes. We determined four characteristics related to seed dispersal by birds: the interacting species of plants and birds, the characteristics of these species, spatio‐temporal variation in the dispersal system, and the outcome of the process. During one year, we recorded 54 frugivorous bird species and 33 ornithochorous plant species, which engaged in 176 different bird‐plant species interactions. Similarity (Sorensen index) of frugivorous bird communities using different vegetation types was high (>70%), suggesting that many bird species used all of the vegetation types. In contrast, the similarity of ornithochorous plant communities among vegetation types commonly was low (<37%), suggesting that most plant species were restricted to particular sites in this landscape. At the landscape level, as well as for tropical deciduous forest, we detected a significant positive relationship (Spearman's correlation of rank coefficient >0.65, P <0.05) among richness per month of frugivorous birds and plant species bearing fleshy fruits. Seeds of many plant species previously detected in studies of seed rain at the site were eaten by birds during this study. Most seeds of zoochorous species, which are deposited in the dry and decidous tropical forests patches, are produced within these vegetation types (i.e., they are autochthonous species), whereas bird‐dispersed seeds arriving in grassland and shrubby patches are produced outside (i.e., allochthonous) and are mostly woody species. Birds are important seed dispersers among vegetation types in this landscape but they have different effects in each one. The four characteristics studied, as well as the landscape approach of this research, allowed us to detect spatial and temporal patterns that otherwise would have remained undetected.  相似文献   

12.
Old‐growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human‐modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio‐economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land‐use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio‐temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well‐preserved biodiversity‐rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales.  相似文献   

13.
Tropical deforestation is the major contemporary threat to global biodiversity, because a diminishing extent of tropical forests supports the majority of the Earth's biodiversity. Forest clearing is often spatially concentrated in regions where human land use pressures, either planned or unplanned, increase the likelihood of deforestation. However, it is not a random process, but often moves in waves originating from settled areas. We investigate the spatial dynamics of land cover change in a tropical deforestation hotspot in the Colombian Amazon. We apply a forest cover zoning approach which permitted: calculation of colonization speed; comparative spatial analysis of patterns of deforestation and regeneration; analysis of spatial patterns of mature and recently regenerated forests; and the identification of local‐level hotspots experiencing the fastest deforestation or regeneration. The colonization frontline moved at an average of 0.84 km yr?1 from 1989 to 2002, resulting in the clearing of 3400 ha yr?1 of forests beyond the 90% forest cover line. The dynamics of forest clearing varied across the colonization front according to the amount of forest in the landscape, but was spatially concentrated in well‐defined ‘local hotspots’ of deforestation and forest regeneration. Behind the deforestation front, the transformed landscape mosaic is composed of cropping and grazing lands interspersed with mature forest fragments and patches of recently regenerated forests. We discuss the implications of the patterns of forest loss and fragmentation for biodiversity conservation within a framework of dynamic conservation planning.  相似文献   

14.
热带森林植物功能群及其动态研究进展   总被引:6,自引:0,他引:6  
臧润国  张志东 《生态学报》2010,30(12):3289-3296
热带森林极高的物种多样性和结构复杂性给生态学研究带来了很多挑战。植物功能群是对特定环境响应相似或对主要的生态过程具有相似作用的物种组合。应用植物功能群的方法是有效减少热带森林群落复杂性,并揭示其格局和过程的良好途径。在介绍植物功能群概念和划分途径的基础上,分析了热带森林植物功能群的时空动态规律。一般来讲,划分植物功能群通常有3种途径,并可通过5个步骤来完成。热带森林植物功能群的空间分布常受景观格局的制约,而环境异质性往往是影响不同植物功能群组配比例变化的直接原因。不同类型的植物功能群随演替过程发生显著的替代,而干扰体系和全球气候变化对功能群的动态过程具有重要的驱动作用。以功能群为基础的动态模型在模拟热带林群落动态和预测植被潜在分布等方面具有广阔的发展前景。探索有效的植物功能分类方法、构建完善的植物功能性状数据库、开发更为精确的功能群动态模型以及加强基于景观水平的植物功能群动态机制的认识等是未来热带森林植物功能群及其动态研究的重要方向。  相似文献   

15.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

16.
Rates of tree growth in tropical forests reflect variation in life history strategies, contribute to the determination of species' distributional limits, set limits to timber harvesting and control the carbon balance of the stands. Here, we review the resources that limit tree growth at different temporal and spatial scales, and the different growth rates and responses of functional groups defined on the basis of regeneration strategy, maximum size, and species' associations with particular edaphic and climatic conditions.Variation in soil water availability determines intra- and inter-annual patterns of growth within seasonal forests, whereas irradiance may have a more important role in aseasonal forests. Nutrient supply limits growth rates in montane forests and may determine spatial variation in growth of individual species in lowland forests. However, its role in determining spatial variation in stand-level growth rates is unclear. In terms of growth rate, we propose a functional classification of tropical tree species which contrasts inherently fast-growing, responsive species (pioneer, large-statured species), from slow-growing species that are less responsive to increasing resource availability (shade-bearers, small-statured species). In a semi-deciduous forest in Ghana, pioneers associated with high-rainfall forests with less fertile soils, had significantly lower growth rates than pioneers that are more abundant in low-rainfall forests with more fertile soils. These results match patterns found in seedling trials and suggest for pioneers that species' associations with particular environmental conditions are useful indicators of maximum growth rate.The effects of variation in resource availability and of inherent differences between species on stand-level patterns of growth will not be independent if the functional group composition of tropical forests varies along resource gradients. We find that there is increasing evidence of such spatial shifts at both small and large scales in tropical forests. Quantifying these gradients is important for understanding spatial patterns in forest growth rates.  相似文献   

17.
Tropical forests are among the most species-diverse ecosystems on Earth. Their structures and ecological functions are complex to understand. Functional group is defined as a group of species that play similar roles in an ecosystem. The functional group approach has been regarded as an effective way of linking the compositions of complex ecosystems with their ecological functions. To understand the variation of functional groups in species-rich ecosystems after disturbance, the present study investigated the spatial pattern and temporal dynamics of woody plants in a typically fragmented natural forest landscape of Hainan Island in South China. The study area was classified into eight landscape types based on vegetation type, disturbance manner and the time of recovery. The woody plant species were aggregated into seven functional groups based on the growth form, successional status and plant size. The results gained from the present study showed that all functional groups, except for the emergent and canopy tree species, were present in all eight landscape types. Each landscape type had different numbers of dominant functional groups. There are similar species richness and stem abundance structure among functional groups between mid-successional clear cut lowland rainforest and old growth tropical coniferous forest. This similarity exists in selective logged lowland rainforest and old-growth lowland rainforest, as well as among landscape types of montane rainforest. The functional groups with the same successional status had similar patterns of species richness and stem abundance ratios among different landscape types. The variation patterns of functional groups along the successional stages in terms of species richness and stem abundance among the tropical lowland rainforest landscape types were more similar to each other than those in the tropical montane reinforest landscape types. This study provides further support for the competition-colonization tradeoff and successional niche theory as opposed to models of neutrality and ecological equivalence.  相似文献   

18.
Large areas of tropical moist forests have been converted to cattle pastures, generating complex landscapes where different habitats are represented by small patches with an uneven spatial distribution. Here, we describe how bird communities respond to the different elements present in a livestock landscape that was originally dominated by tropical moist forest. We surveyed six habitats: open pastures, pastures with shrubs, early‐ and middle‐secondary forests, mature forest, and pastures invaded by bracken ferns (Pteridium aquilinum). Bird diversity was high in secondary and mature forests, and low in fern‐invaded sites and open pastures. Fern‐dominated sites had the lowest bird species richness, and trophic guild diversity of all habitats. Habitat structure affected both bird species richness and densities in similar ways. Tree species richness was the habitat attribute that had a bigger positive effect on bird species richness. Bird community structure varied among sampled habitats, separating habitats in two major groups (forests and pastures). Our data indicate that bracken fern‐invaded pastures were the worst habitat condition for avian communities. To increase bird diversity, we recommend to eliminate or manage bracken fern and to increase shrub and tree cover in open pastures to provide food resources and shelter for birds. Finally, we encourage the maintenance of secondary and mature forest remnants as a strategy to conserve resident birds within a landscape dominated by livestock activities.  相似文献   

19.
The rapid loss and degradation of tropical forests threatens the maintenance of biodiversity across different spatial scales. Nevertheless, the extirpation and population decline of some disturbance-sensitive species may be compensated for by colonization and proliferation of disturbance-adapted species, thus allowing distributions of community-level attributes (e.g., abundance and diversity) to be preserved in human-modified tropical landscapes. To test this poorly assessed hypothesis we evaluated species- and community-level responses of amphibians and reptiles to differences in forest patch (patch size, shape, and distance to water bodies) and landscape metrics (old-growth forest cover, degree of fragmentation, and matrix composition) in the fragmented Lacandona rainforest, Mexico. We found that the abundance of several amphibian and reptile species was strongly associated with forest patch and landscape attributes, being particularly higher in larger patches surrounded by a greater forest cover. Such changes at the species level generated notable changes in reptile communities. In particular, the abundance, diversity, and evenness of reptile communities were strongly related to patch size, patch shape, and matrix composition. Yet, because of compensatory dynamics in amphibians, this group showed weak responses at the community level. Despite such compensatory dynamics, our results indicate that forest loss at the patch and landscape levels represents the main threat to both amphibians and reptiles, thus indicating that to preserve herpetological communities in this biodiversity hotspot, conservation initiatives should be focused on preventing further deforestation.  相似文献   

20.
不同强度火干扰下盘古林场天然落叶松林的空间结构   总被引:4,自引:0,他引:4  
倪宝龙  刘兆刚 《生态学报》2013,33(16):4975-4984
基于2011年7月大兴安岭外业调查数据以林隙为主要研究对象,选取景观生态学中斑块类型指数分析样地内林隙状况,并结合林木分布状态,分析不同强度林火干扰对天然落叶松林空间结构的影响。结果表明:在受中度林火干扰的林分内,只保留了少量的落叶松中径木、大径木,先锋树种在林分内呈现聚集分布;在未受林火干扰的林分和受林火轻微干扰的林分内,天然落叶松均呈现显著聚集分布;由于受到不同强度的林火干扰,林下区域与林隙区域出现不同程度的相互转化,林分空间结构发生了改变。林分按照所受林火干扰强度的递减,在同一时间不同空间上表现出了森林循环过程中所经历的林隙阶段状态、建立阶段状态、成熟阶段状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号