首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A single nicotine exposure increases dopamine levels in the mesolimbic reward system for hours, but nicotine concentrations experienced by smokers desensitize nAChRs on dopamine neurons in seconds to minutes. Here, we show that persistent modulation of both GABAergic and glutamatergic synaptic transmission by nicotine can contribute to the sustained increase in dopamine neuron excitability. Nicotine enhances GABAergic transmission transiently, which is followed by a persistent depression of these inhibitory inputs due to nAChR desensitization. Simultaneously, nicotine enhances glutamatergic transmission through nAChRs that desensitize less than those on GABA neurons. The net effect is a shift toward excitation of the dopamine reward system. These results suggest that spatial and temporal differences in nicotinic receptor activity on both excitatory and inhibitory neurons in reward areas coordinate to reinforce nicotine self-administration.  相似文献   

2.
Function of GABAergic and glutamatergic neurons in the stomach   总被引:1,自引:1,他引:0  
-Aminobutyric acid (GABA) and L-glutamic acid (L-Glu) are transmitters of GABAergic and glutamatergic neurons in the enteric interneurons, targeting excitatory or inhibitory GABA receptors or glutamate receptors that modulate gastric motility and mucosal function. GABAergic and glutamatergic neuron immunoreactivity have been found in cholinergic enteric neurons in the stomach. GABA and L-Glu may also subserve hormonal and paracrine signaling. Disruption in gastrointestinal function following perturbation of enteric GABA receptors and glutamate receptors presents potential new target sites for drug development.  相似文献   

3.
Caillard O 《PloS one》2011,6(7):e22322
Frequency and timing of action potential discharge are key elements for coding and transfer of information between neurons. The nature and location of the synaptic contacts, the biophysical parameters of the receptor-operated channels and their kinetics of activation are major determinants of the firing behaviour of each individual neuron. Ultimately the intrinsic excitability of each neuron determines the input-output function. Here we evaluate the influence of spontaneous GABAergic synaptic activity on the timing of action potentials in Layer 2/3 pyramidal neurones in acute brain slices from the somatosensory cortex of young rats. Somatic dynamic current injection to mimic synaptic input events was employed, together with a simple computational model that reproduce subthreshold membrane properties. Besides the well-documented control of neuronal excitability, spontaneous background GABAergic activity has a major detrimental effect on spike timing. In fact, GABA(A) receptors tune the relationship between the excitability and fidelity of pyramidal neurons via a postsynaptic (the reversal potential for GABA(A) activity) and a presynaptic (the frequency of spontaneous activity) mechanism. GABAergic activity can decrease or increase the excitability of pyramidal neurones, depending on the difference between the reversal potential for GABA(A) receptors and the threshold for action potential. In contrast, spike time jitter can only be increased proportionally to the difference between these two membrane potentials. Changes in excitability by background GABAergic activity can therefore only be associated with deterioration of the reliability of spike timing.  相似文献   

4.
Sodium-dependent neurotransmitter transporters participate in the clearance and/or recycling of neurotransmitters from synaptic clefts. The snf-11 gene in Caenorhabditis elegans encodes a protein of high similarity to mammalian GABA transporters (GATs). We show here that snf-11 encodes a functional GABA transporter; SNF-11-mediated GABA transport is Na+ and Cl- dependent, has an EC50 value of 168 microM, and is blocked by the GAT1 inhibitor SKF89976A. The SNF-11 protein is expressed in seven GABAergic neurons, several additional neurons in the head and retrovesicular ganglion, and three groups of muscle cells. Therefore, all GABAergic synapses are associated with either presynaptic or postsynaptic (or both) expression of SNF-11. Although a snf-11 null mutation has no obvious effects on GABAergic behaviors, it leads to resistance to inhibitors of acetylcholinesterase. In vivo, a snf-11 null mutation blocks GABA uptake in at least a subset of GABAergic cells; in a cell culture system, all GABA uptake is abolished by the snf-11 mutation. We conclude that GABA transport activity is not essential for normal GABAergic function in C. elegans and that the localization of SNF-11 is consistent with a GABA clearance function rather than recycling.  相似文献   

5.
Adolescent smokers report enhanced positive responses to tobacco and fewer negative effects of withdrawal from this drug than adults, and this is believed to propel higher tobacco use during adolescence. Differential dopaminergic responses to nicotine are thought to underlie these age‐related effects, as adolescent rats experience lower withdrawal‐related deficits in nucleus accumbens (NAcc) dopamine versus adults. This study examined whether age differences in NAcc dopamine during withdrawal are mediated by excitatory or inhibitory transmission in the ventral tegmental area (VTA) dopamine cell body region. In vivo microdialysis was used to monitor extracellular levels of glutamate and gamma‐aminobutyric acid (GABA) in the VTA of adolescent and adult rats experiencing nicotine withdrawal. In adults, nicotine withdrawal produced decreases in VTA glutamate levels (44% decrease) and increases in VTA GABA levels (38% increase). In contrast, adolescents did not exhibit changes in either of these measures. Naïve controls of both ages did not display changes in NAcc dopamine, VTA glutamate, or VTA GABA following mecamylamine. These results indicate that adolescents display resistance to withdrawal‐related neurochemical processes that inhibit mesolimbic dopamine function in adults experiencing nicotine withdrawal. Our findings provide a potential mechanism involving VTA amino acid neurotransmission that modulates age differences during withdrawal.  相似文献   

6.
Studies have shown a greater preference for the self-administration of drugs such as nicotine and cocaine in the Lewis rat strain than in the Fischer 344 strain. We examined some factors that could contribute to such a difference. The baseline level of extracellular dopamine in nucleus accumbens shell was about 3-times higher in Fischer rats than in Lewis rats (3.18 ± 0.26 vs. 1.09 ± 0.14 pg/sample). Nicotine (50-100 g/kg)-induced release of dopamine, expressed in absolute terms, was similar in the two strains. Dopamine release expressed in relative terms (as percent of baseline), however, was significantly greater in Lewis rats than in Fischer rats at 30 min after the first nicotine injection. We suggest that the relative increase is of more influence than the absolute level for determining preference; a lower physiological extracellular dopamine level thus represent a risk factor for increased preference. Amphetamine-induced dopamine release expressed in relative terms was not greater in the Lewis strain. In the initial time period of the microdialysis experiments, a sharper peak in nicotine-induced accumbal dopamine release in Lewis and a less but more sustained release in Fischer rats was observed. This release pattern paralleled the faster clearance of nicotine from blood of Lewis compared to Fischer rats. In tissue slices the electrically induced dopamine release was highest in the nucleus accumbens and lowest in the ventral tegmentum. A significant effect of nicotine was lowering the electrically induced release of dopamine in frontal cortex slices from Fischer brain and increasing this dopamine release in the ventral tegmentum of Lewis brain slices indicating that the ventral tegmentum, an area controlling dopamine release in the accumbens, is more responsive to nicotine in the Lewis rat. Nicotine levels tended to be more sustained in Fischer rats in different brain regions, although the difference in nicotine levels between the strains was not significant at any time period. Several factors contribute to nicotine preference, including the endogenous dopamine level, and the sensitivity of ventral tegmentum neurons to nicotine-induced dopamine release. Strain differences in pharmacokinetics of nicotine may also play a role.  相似文献   

7.
8.
Summary The GABAergic innervation of vasopressin-containing cells in the magnocellular part of the paraventricular nucleus was studied at the electron-microscope level using antibodies against GABA and vasopressin. The detection of both GABA and vasopressin on the same ultrathin section, performed with a double-labeling immunogold method, revealed GABAergic terminals in symmetrical synaptic contact with vasopressin-containing neurons. These GABAergic terminals displayed mitochondria, clear synaptic vesicles and varying numbers of electron-dense vesicles. Vasopressin-immunoreactivity was associated with neurosecretory granules, whereas GABA-immunoreactivity was found above mitochondria, clear synaptic vesicles and some electron-dense vesicles. This study, demonstrating the extensive participation of GABA in the innervation of magnocellular vasopressin-secreting neurons, suggests that this inhibitory neurotransmitter regulates vasopressin secretion at the level of the paraventricular nucleus.  相似文献   

9.
In previous work, we showed a robust γ-aminobutyric acid (GABAergic) synaptic input onto embryonic luteinizing hormone-releasing hormone (LHRH) neurons maintained in olfactory explants. In this study, we identify GABAergic neurons in olfactory pit (OP) of embryonic micein vivoand study, using patch-pipet whole-cell current and voltage clamp techniques, synaptic interactions of these neurons in explant cultures.In vivo,glutamate decarboxylase (GAD, the enzyme which synthesizes GABA) mRNA was first detected in nasal regions on Embryonic Day (E) 11.5. From E12.5 to E13.5, robust GAD expression was localized to cells primarily in the ventral aspect of the OP. GAD mRNA was not detected over dorsally located cells in olfactory sensory or respiratory epithelium. In addition, GAD mRNA was not observed in cells along olfactory axons. GAD mRNA was dramatically reduced in the OP/vomeronasal organ by E16.5. Using antibodies against both GABA and GAD, immunopositive axonal-like tracts were detected in the nasal septum on E12.5. GABAergic staining decreased by E13.5. To examine synaptic interactions of these GABAergic cells, embryonic olfactory explants were generated and maintained in serum-free media. As explants spread, neuron-like cells migrated into the periphery, sometimes forming ganglion-like clusters. Cells were recorded, marked intracellularly with Lucifer Yellow and post-fixation, immunocytochemically examined. Forty-six cells, typically multipolar, were GABAergic, had resting potentials around −50 mV, and exhibited spontaneous action potentials which were generated by spontaneous depolarizing GABAergic (GABAA) synaptic activity. OP neurons depolarized in response to GABA by increasing Clconductance. The biophysical properties of OP-derived GABAergic neurons were distinct from those reported for olfactory receptor neurons but similar to embryonic LHRH neurons. However, unlike LHRH neurons, GABAergic neurons did not migrate large distances in olfactory explants or appear to leave the olfactory pitin vivo.  相似文献   

10.
To study modulatory actions of nitric oxide (NO) on GABAergic synaptic activity in hypothalamic magnocellular neurons in the supraoptic nucleus (SON), in vitro and in vivo electrophysiological recordings were obtained from identified oxytocin and vasopressin neurons. Whole cell patch-clamp recordings were obtained in vitro from immunochemically identified oxytocin and vasopressin neurons. GABAergic synaptic activity was assessed in vitro by measuring GABA(A) miniature inhibitory postsynaptic currents (mIPSCs). The NO donor and precursor sodium nitroprusside (SNP) and L-arginine, respectively, increased the frequency and amplitude of GABA(A) mIPSCs in both cell types (P < or = 0.001). Retrodialysis of SNP (50 mM) onto the SON in vivo inhibited the activity of both neuronal types (P < or = 0.002), an effect that was reduced by retrodialysis of the GABA(A)-receptor antagonist bicuculline (2 mM, P < or = 0.001). Neurons activated by intravenous infusion of 2 M NaCl were still strongly inhibited by SNP. These results suggest that NO inhibition of neuronal excitability in oxytocin and vasopressin neurons involves pre- and postsynaptic potentiation of GABAergic synaptic activity in the SON.  相似文献   

11.

Background

Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury.

Results

Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons.

Conclusion

Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously.  相似文献   

12.
The canonical two neuron model of opioid reward posits that mu opioid receptor (MOR) activation produces reward by disinhibiting midbrain ventral tegmental area (VTA) dopamine neurons through inhibition of local GABAergic interneurons. Although indirect evidence supports the neural circuit postulated by this model, its validity has been called into question by growing evidence for VTA neuronal heterogeneity and the recent demonstration that MOR agonists inhibit GABAergic terminals in the VTA arising from extrinsic neurons. In addition, VTA MOR reward can be dopamine-independent. To directly test the assumption that MOR activation directly inhibits local GABAergic neurons, we investigated the properties of rat VTA GABA neurons directly identified with either immunocytochemistry for GABA or GAD65/67, or in situ hybridization for GAD65/67 mRNA. Utilizing co-labeling with an antibody for the neural marker NeuN and in situ hybridization against GAD65/67, we found that 23±3% of VTA neurons are GAD65/67(+). In contrast to the assumptions of the two neuron model, VTA GABAergic neurons are heterogeneous, both physiologically and pharmacologically. Importantly, only 7/13 confirmed VTA GABA neurons were inhibited by the MOR selective agonist DAMGO. Interestingly, all confirmed VTA GABA neurons were insensitive to the GABA(B) receptor agonist baclofen (0/6 inhibited), while all confirmed dopamine neurons were inhibited (19/19). The heterogeneity of opioid responses we found in VTA GABAergic neurons, and the fact that GABA terminals arising from neurons outside the VTA are inhibited by MOR agonists, make further studies essential to determine the local circuit mechanisms underlying VTA MOR reward.  相似文献   

13.
Two methods are described for the immunocytochemical demonstration of immunoreactive gamma-aminobutyric acid (GABA) in the visual cortex of the cat, an area that contains several types of GABAergic neurons and requires combined methods for their characterization. The first method is illustrated by a representative example of a Golgi-impregnated and gold-toned interneuron of the "bitufted" type situated in layer VI and having an ascending axon. After recording the three-dimensional features of the cell, semithin (0.5 micron) sections of the perikaryon were cut and GABA was demonstrated in the cell body by the unlabeled antibody enzyme method. While immunocytochemistry was used to determine the probable transmitter of the neuron, Golgi-impregnation of the same cell was used to identify its neuronal type. Since aldehyde-osmium fixation was used, further electron microscopic (EM) analysis of the neuron's synaptic connections was possible. The second procedure demonstrated GABA in EM sections of aldehyde-osmium-fixed cortex using protein A-gold as an immunocytochemical marker. Immunoreactivity was found in certain neurons, dendrites, axons, and boutons forming type II synaptic contacts that from previous studies have been thought to be GABAergic. Thus ultrastructural analysis using optimal conditions can now be supplemented with the identification of the transmitter in the same section.  相似文献   

14.
Adult cigarette smokers usually become dependent on cigarettes during adolescence. Despite recent advances in addiction genetics, little data delineates the genetic factors that account for the vulnerability of humans to smoke tobacco. We studied the operant nicotine self-administration (SA) behavior of six inbred strains of adolescent male rats (Fisher 344, Brown Norway, Dark Agouti, Spontaneous Hypertensive Rat, Wistar Kyoto and Lewis) and six selected F1 hybrids. All rats were trained to press a lever to obtain food starting on postnatal day (PN) 32, and then nicotine (0.03 mg/kg/infusion, i.v.) reinforcement was made available on PN41-42 (10 consecutive daily 2 h sessions). Of the 12 isogenic strains, Fisher rats self-administered the fewest nicotine infusions (1.45±0.36/d) during the last 3 d, while Lewis rats took the most nicotine (13.0±1.4/d). These strains sorted into high, intermediate and low self-administration groups in 2, 2, and 8 strains, respectively. The influence of heredity on nicotine SA (0.64) is similar to that reported for humans. Therefore, this panel of isogenic rat strains effectively models the overall impact of genetics on the vulnerability to acquire nicotine-reinforced behavior during adolescence. Separate groups of rats responded for food starting on PN41. The correlation between nicotine and food reward was not significant. Hence, the genetic control of the motivation to obtain nicotine is distinctly different from food reward, indicating the specificity of the underlying genetic mechanisms. Lastly, the behavior of F1 hybrids was not predicted from the additive behavior of the parental strains, indicating the impact of significant gene-gene interactions on the susceptibility to nicotine reward. Taken together, the behavioral characteristics of this model indicate its strong potential to identify specific genes mediating the human vulnerability to smoke cigarettes.  相似文献   

15.
The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+ -Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes.  相似文献   

16.
Nicotine enhances attention and working memory by activating nicotinic acetylcholine receptors (nAChRs). The prefrontal cortex (PFC) is critical for these cognitive functions and is also rich in nAChR expression. Specific cellular and synaptic mechanisms underlying nicotine's effects on cognition remain elusive. Here we show that nicotine exposure increases the threshold for synaptic spike-timing-dependent potentiation (STDP) in layer V pyramidal neurons of the mouse PFC. During coincident presynaptic and postsynaptic activity, nicotine reduces dendritic calcium signals associated with action potential propagation by enhancing GABAergic transmission. This results from a series of presynaptic actions involving different PFC interneurons and multiple nAChR subtypes. Pharmacological block of nAChRs or GABA(A) receptors prevented nicotine's actions and restored STDP, as did increasing dendritic calcium signals with stronger postsynaptic activity. Thus, by activating nAChRs distributed throughout the PFC neuronal network, nicotine affects PFC information processing and storage by increasing the amount of postsynaptic activity necessary to induce STDP.  相似文献   

17.
Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses.  相似文献   

18.
Chromatin remodelling is integral to the formation of long-term memories. Recent evidence suggests that histone modification may play a role in the persistence of memories associated with drug use. The present series of experiments aimed to examine the effect of histone deacetylase (HDAC) inhibition on the extinction and reinstatement of nicotine self-administration. Rats were trained to intravenously self-administer nicotine for 12 days on a fixed-ratio 1 schedule. In Experiment 1, responding was then extinguished through removal of nicotine and response-contingent cues. After each extinction session, the HDAC inhibitor, sodium butyrate (NaB), was administered immediately, or six hours after each session. In Experiment 2, response-contingent cues remained available across extinction to increase rates of responding during this phase, and NaB was administered immediately after the session. Finally, in Experiment 3, the effect of NaB treatment on extinction of responding for sucrose pellets was assessed. Across all experiments reinstatement to the cue and/or the reward itself was then tested. In the first experiment, treatment with NaB significantly attenuated nicotine and nicotine + cue reinstatement when administered immediately, but not six hours after each extinction session. When administered after cue-extinction (Expt. 2), NaB treatment specifically facilitated the rate of extinction across sessions, indicating that HDAC inhibition enhanced consolidation of the extinction memory. In contrast, there was no effect of NaB on the extinction and reinstatement of sucrose-seeking (Expt. 3), indicating that the observed effects are specific to a drug context. These results provide the first demonstration that HDAC inhibition facilitates the extinction of responding for an intravenously self-administered drug of abuse and further highlight the potential of HDAC inhibitors in the treatment of drug addiction.  相似文献   

19.
Nicotine intake affects CNS responses to stressors. We reported that nicotine self-administration (SA) augmented the hypothalamo-pituitary-adrenal (HPA) stress response, in part because of the altered neurotransmission and neuropeptide expression within hypothalamic paraventricular nucleus (PVN). Limbic-PVN interactions involving medial prefrontal cortex, amygdala, and bed nucleus of the stria terminalis (BST) greatly impact the HPA stress response. Therefore, we investigated the effects of nicotine SA on stress-induced neuronal activation in limbic-PVN network, using c-Fos protein immunohistochemistry and retrograde tracing. Nicotine decreased stress-induced c-Fos in prelimbic cortex (PrL), anteroventral BST (avBST), and peri-PVN, but increased c-Fos induction in medial amygdala (MeA), locus coeruleus, and PVN. Fluoro-gold (FG) was injected into avBST or PVN, as GABAergic neurons in avBST projecting to PVN corticotrophin-releasing factor neurons relay information from both PrL glutamatergic and MeA GABAergic neurons. The stress-induced c-Fos expression in retrograde-labeled FG+ neurons was decreased in PrL by nicotine, but increased in MeA, and also reduced in avBST. Therefore, within limbic-PVN network, nicotine SA exerts selective regional effects on neuronal activation by stress. These findings expand the mechanistic framework by demonstrating altered limbic-BST-PVN interactions underlying the disinhibition of PVN corticotrophin-releasing factor neurons, an essential component of the amplified HPA response to stress by nicotine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号