首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The development of human embryonic stem cell (hESC) lines for research and therapy is hampered by the need to improve the basic methodologies for cell culture expansion. In most current methods hESC lines are cultured on a mouse or human feeder cell layer which appears to be the most reliable way to maintain cells stably in the undifferentiated state. However, co-culture introduces complications for studying stem cell biology and the delivery of safe therapies for the future. This article reviews the specific risks associated with any proposed clinical use of feeder cells of mouse origin and compares these with the benefits and risks of using human feeder cells. The further work required to establish clinical grade feeder cell lines for hESC line culture is significant and costly. Much work is being done to find feeder-free culture systems but these are at an early stage of development and there may be consequences that affect the value of the hESCs for research and development. These challenges should be viewed in the context of the huge amount of work that will be required over many years to develop robust differentiation protocols and establish fully defined procedures and adequate safety data for embryonic stem cell products.  相似文献   

2.
To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1–5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.  相似文献   

3.
探讨体外共培养环境中小鼠胚胎干细胞对小鼠黑色素瘤B16细胞的影响。建立C57BL/6小鼠胚胎干细胞系,通过小鼠胚胎干细胞与肿瘤细胞体外共培养模型观察小鼠胚胎干细胞对肿瘤细胞的形态及生长行为的影响,MTT法与transwell小室法分别检测共培养后肿瘤细胞粘附性、迁移性及侵袭性的变化。共培养中小鼠胚胎干细胞能够侵入并推开小鼠黑色素瘤细胞形成自己的生长空间,与对照组比较共培养后肿瘤细胞的粘附性、迁移性及侵袭性均显著降低(P<0.05,P<0.01)。结果表明体外共培养体系中小鼠胚胎干细胞能够侵袭肿瘤细胞,并降低细胞粘附、迁移及侵袭相关恶性生物学行为。  相似文献   

4.
Mesenchymal stem cells (MSCs) are a multipotent cell population which has been described to exert renoprotective and regenerative effects in experimental models of kidney injury. Several lines of evidence indicate that MSCs also have the ability to contribute to nephrogenesis, suggesting that the cells can be employed in stem cell-based applications aimed at de novo renal tissue generation. In this study we re-evaluate the capacity of mouse and human bone marrow-derived MSCs to contribute to the development of renal tissue using a novel method of embryonic kidney culture. Although MSCs show expression of some genes involved in renal development, their contribution to nephrogenesis is very limited in comparison to other stem cell types tested. Furthermore, we found that both mouse and human MSCs have a detrimental effect on the ex vivo development of mouse embryonic kidney, this effect being mediated through a paracrine action. Stimulation with conditioned medium from a mouse renal progenitor population increases the ability of mouse MSCs to integrate into developing renal tissue and prevents the negative effects on kidney development, but does not appear to enhance their ability to undergo nephrogenesis.  相似文献   

5.
These studies provide evidence for the ability of a commercially available, defined, hyaluronan-gelatin hydrogel, HyStem-C?, to maintain both mouse embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs) in culture while retaining their growth and pluripotent characteristics. Growth curve and doubling time analysis show that mESCs and hiPSCs grow at similar rates on HyStem-C? hydrogels and mouse embryonic fibroblasts and Matrigel?, respectively. Immunocytochemistry, flow cytometry, gene expression and karyotyping reveal that both human and murine pluripotent cells retain a high level of pluripotency on the hydrogels after multiple passages. The addition of fibronectin to HyStem-C? enabled the attachment of hiPSCs in a xeno-free, fully defined medium.  相似文献   

6.
7.
Induced pluripotent stem cell technology, also termed iPS, is an emerging approach to reprogram cells into an embryonic stem cell-like state by viral transduction with defined combinations of factors. iPS cells share most characteristics of embryonic stem cells, counting pluripotency and self-renewal, and have so far been obtained from mouse and humans, including patients with genetic diseases. Remarkably, autologous transplantation of cell lineages derived from iPS cells will eliminate the possibility of immunological rejection, as well as current ethical issues surrounding human embryonic stem cell research. However, before iPS can be used for clinical purposes, technical problems must be overcome. Among other considerations, full and homogeneous iPS reprogramming is an important prerequisite. However, despite the fact that cells from several mouse tissues can be successfully induced to iPS, the overall efficiency of chimera formation of these clones remains low even if selection for Oct4 or Nanog expression is applied. In this report, we demonstrate that cells from the mouse meningeal membranes express elevated levels of the embryonic master regulator Sox2 and are highly amenable to iPS. Meningeal iPS clones, generated without selection, are fully and homogeneously reprogrammed based on DNA methylation analysis and 100% chimera competent. Our results define a population of somatic cells that are ready to undergo iPS, thus highlighting a very attractive cell type for iPS research and application.  相似文献   

8.
9.
Cancers are thought to originate in stem cells through the accumulation of multiple mutations. Some of these mutations result in a loss of heterozygosity (LOH). A recent report demonstrates that exposure of mouse embryonic stem cells to nontoxic amounts of mutagens triggers a marked increase in the frequency of LOH. Thus, mutagen induction of LOH in embryonic stem cells suggests a new pathway to account for the multiple homozygous mutations in human tumors. This induction could mimic early mutagenic events that generate cancers in human tissue stem cells.  相似文献   

10.
目的 体外建立人胚胎干细胞传代培养方法,研究人胚胎干细胞细胞化学染色特性.方法 以小鼠胚胎成纤维细胞作为饲养层传代培养人胚胎干细胞,检测人胚胎干细胞、自发分化克隆及拟胚体的细胞化学染色特性.结果 人胚胎干细胞在小鼠胚胎成纤维细胞饲养层上传30代以上其形态保持不变;人胚胎十细胞碱性磷酸酶、过碘酸-雪夫反应、α-醋酸萘酚酯酶染色阳性,自发分化克隆细胞阳性程度明显减弱;人胚胎干细胞形成的拟胚体碱性磷酸酶染色弱阳性,过碘酸-雪夫反应、α-醋酸萘酚酯酶染色阳性.结论 小鼠胚胎成纤维细胞能支持人胚胎干细胞传代培养,细胞化学染色结果能初步鉴别人胚胎干细胞未分化特性.  相似文献   

11.
Potential of embryonic and adult stem cells in vitro   总被引:3,自引:0,他引:3  
Recent developments in the field of stem cell research indicate their enormous potential as a source of tissue for regenerative therapies. The success of such applications will depend on the precise properties and potentials of stem cells isolated either from embryonic, fetal or adult tissues. Embryonic stem cells established from the inner cell mass of early mouse embryos are characterized by nearly unlimited proliferation, and the capacity to differentiate into derivatives of essentially all lineages. The recent isolation and culture of human embryonic stem cell lines presents new opportunities for reconstructive medicine. However, important problems remain; first, the derivation of human embryonic stem cells from in vitro fertilized blastocysts creates ethical problems, and second, the current techniques for the directed differentiation into somatic cell populations yield impure products with tumorigenic potential. Recent studies have also suggested an unexpectedly wide developmental potential of adult tissue-specific stem cells. Here too, many questions remain concerning the nature and status of adult stem cells both in vivo and in vitro and their proliferation and differentiation/transdifferentiation capacity. This review focuses on those issues of embryonic and adult stem cell biology most relevant to their in vitro propagation and differentiation. Questions and problems related to the use of human embryonic and adult stem cells in tissue regeneration and transplantation are discussed.  相似文献   

12.
The efficient and reversible control of transgene expression is a powerful tool for the correct manipulation of embryonic stem cells in both cell therapy and transgenesis. The aim of this work was to investigate the possibilities of recently developed reverse tetracycline-controlled transactivator rtTA2s-S2. We show that the rtTA2s-S2 is useful for transient inducible expression of genes in embryonic stem cells. However, we found that it was not possible to establish mouse embryonic stem cell lines stably expressing this transactivator. Using the viral IRES sequence which couples the expression of rtTA2s-S2 and neomycin phosphotransferase, we found that embryonic stem cells expressing rtTA2s-S2 are not capable of growing in the presence of G418. Our results indicate that this transactivator is toxic to ES cells and raise the need for the development of other strategies for stable and inducible expression of genes in ES cells.  相似文献   

13.
Feeder cells are commonly used to culture embryonic stem cells to maintain their undifferentiated and pluripotent status. Conventionally, mouse embryonic fibroblasts (MEFs), supplemented with leukemia inhibitory factor (LIF), are used as feeder cells to support the growth of mouse embryonic stem cells (mESCs) in culture. To prepare for fresh MEF feeder or for MEF-conditioned medium, sacrifice of mouse fetuses repeatedly is unavoidable in these tedious culture systems. Here we report the discovery of a human endothelial cell line (ECV-304 cell line) that efficiently supports growth of mESCs LIF-free conditions. mESCs that were successfully cultured for eight to 20 passages on ECV-304 feeders showed morphological characteristics similar to cells cultured in traditional feeder cell systems. These cells expressed the stem cell markers Oct3/4, Nanog, Sox2, and SSEA-1. Furthermore, cells cultured on the ECV-304 cell line were able to differentiate into three germ layers and were able to generate chimeric mice. Compared with traditional culture systems, there is no requirement for mouse fetuses and exogenous LIF does not need to be added to the culture system. As a stable cell line, the ECV-304 cell line efficiently replaces MEFs as an effective feeder system and allows the efficient expansion of mESCs.  相似文献   

14.
Retinoic acid (RA) is able to induce the differentiation of embryonic stem cells into neuronal lineages. The mechanism of this effect is unknown but it has been evidenced to be dependent on the formation of floating spheroids called embryoid bodies. Results presented here show that the inhibition of phosphoinositide 3-kinase signaling pre-determines mouse embryonic stem cells to RA induced neurogenesis in monolayer culture with no need of embryoid bodies formation.  相似文献   

15.
Stem cells have the ability for prolonged self‐renewal and differentiation into mature cells of various lineages, which makes them important cell sources for tissue engineering applications. Their remarkable ability to replenish and differentiate in vivo is regulated by both intrinsic and extrinsic cellular mechanisms. The anatomical location where the stem cells reside, known as the “stem cell niche or microenvironment,” provides signals conducive to the maintenance of definitive stem cell properties. Physiological condition including oxygen tension is an important component of the stem cell microenvironment and has been shown to play a role in regulating both embryonic and adult stem cells. This review focuses on oxygen as a signaling molecule and the way it regulates the stem cells' development into mesenchymal tissues in vitro. The physiological relevance of low oxygen tension as an environmental parameter that uniquely benefits stem cells' expansion and maintenance is described along with recent findings on the regulatory effects of oxygen on embryonic stem cells and adult mesenchymal stem cells. The relevance to tissue engineering is discussed in the context of the need to specifically regulate the oxygen content in the cellular microenvironment in order to optimize in vitro tissue development. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
17.
昆明小鼠胚胎干细胞滋养层制备条件的实验研究   总被引:1,自引:0,他引:1  
目的:建立小鼠胚胎成纤维细胞(MEFS)滋养层,用于昆明小鼠胚胎干细胞的培养。方法:取妊娠13.5的胎鼠,采用组织消化法分离培养出原代成纤维细胞,对MEFs的生长形态、生长曲线及分裂指数进行观察;MTT法筛选丝裂霉素C(MMC)作用的最佳浓度和时间;取妊娠3.5d的囊胚在经MMC处理的饲养层上培养,观察胚胎干细胞集落生成情况。结果:MEFS为一种贴壁生长且增殖速度较快的细胞,第三代细胞增殖旺盛,第5代以后细胞开始变形并趋于衰老;MMC能抑制胚胎成纤维细胞的增殖,最佳的作用浓度和时间是10ug/ml作用2.5~4h,20ug/ml作用1-2.5h。妊娠3.5d小鼠囊胚在饲养层上培养能形成典型的"鸟巢"状干细胞集落,并可维持胚胎干细胞的正常形态且不发生分化。结论:这种方法制备的滋养细胞层适用于胚胎干细胞的培养。  相似文献   

18.
Over the past decade, cell therapies have provided promising strategies for the treatment of ischaemic cardiomyopathy. Particularly, the beneficial effects of stem cells, including bone marrow stem cells (BMSCs), endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), have been demonstrated by substantial preclinical and clinical studies. Nevertheless stem cell therapy is not always safe and effective. Hence, there is an urgent need for alternative sources of cells to promote cardiac regeneration. Human villous trophoblasts (HVTs) play key roles in embryonic implantation and placentation. In this study, we show that HVTs can promote tube formation of human umbilical vein endothelial cells (HUVECs) on Matrigel and enhance the resistance of neonatal rat cardiomyocytes (NRCMs) to oxidative stress in vitro. Delivery of HVTs to ischaemic area of heart preserved cardiac function and reduced fibrosis in a mouse model of acute myocardial infarction (AMI). Histological analysis revealed that transplantation of HVTs promoted angiogenesis in AMI mouse hearts. In addition, our data indicate that HVTs exert their therapeutic benefit through paracrine mechanisms. Meanwhile, injection of HVTs to mouse hearts did not elicit severe immune response. Taken together, our study demonstrates HVT may be used as a source for cell therapy or a tool to study cell‐derived soluble factors for AMI treatment.  相似文献   

19.
Stem cells of the mouse testicular teratocarcinoma are capable of giving rise in vivo and in vitro to a wide variety of cell and tissue types representative of each embryonic germ layer. Multiangle light-scattering measurements in a flow system have been made on these stem cells and on a variety of their differentiated derivatives. This technique is capable of distinguishing the stem cells from parietal yolk sac cells, visceral yolk sac cells, neuronal cells and squamous cells. However, multipotential stem cells cannot be distinguished from stem cells that are restricted in their development to a single pathway.  相似文献   

20.
Pluripotent stem cells are able to proliferate indefinitely and differentiate in vitro into various cell types. However, in most cases in vitro differentiation of the pluripotent stem cells is asynchronous and incomplete, and the residual undifferentiated cells can initiate teratoma development after transplantation into recipients. These features of the pluripotent stem cells are the major issue for development of safe cell therapy technologies based on pluripotent stem cells. Considering significant resemblance of growth rates of pluripotent stem and cancer cells we investigated antiproliferative and cytotoxic effects of different type cytostatics (mitomycin C, etoposide, vinblastine and cycloheximide) on the undifferentiated and differentiating mouse embryonic stem cells, embryonic germ cells, blastocyst and on mouse embryonal teratocarcinoma cells and mouse embryonic fibroblasts. The findings showed that all cytostatics used induced both antiproliferative effects and acute toxic processes in undifferentiated pluripotent stem cells and embryonal teratocarcinoma cells whereas these effects were less in differentiating embryonic stem cells and embryonic fibroblast. Moreover, the trophoblast cells of mouse blastocysts were less sensitive to damaging effects of cytostatics than inner cell mass cells. The examination of deferred effects of cytostatics revealed that the effects of mitomycin C, etoposide and vinblastine, but not cycloheximide, were irreversible because survived cells were not able to proliferate. Nevertheless, the numbers of embryonic fibroblasts exposed to etoposide or vinblastine remained unchanged while vast majority of undifferentiated pluripotent cells treated underwent apoptosis. Thus, diverse effects of etoposide and vinblastine on the undifferentiated pluripotent stem cells and differentiated embryonic cells allow us to consider these cytostatics and their analogs as drug-candidates for selective elimination of the residual undifferentiated pluripotent stem cells from population of differentiating cells. These findings demonstrate for the first time the possibility of selective elimination of undifferentiated pluripotent stem cells using cytostatic drugs approved for clinic practice. However, to improve effectiveness and safety of this approach and to prevent mutagenic, carcinogenic and teratogenic effects on undifferentiated pluripotent stem cells and their differentiated cell derivatives large-scale studies of cytostatic effects using different experimental design and active doses must be performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号