首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
O Nada  T Toyohara 《Histochemistry》1987,86(3):229-232
The localization of the serotonin-like immunoreactive nerves of the rat colon was investigated by means of immunohistochemistry, utilizing an antibody against serotonin. In non-treated colons, serotonin-positive neuropils were consistently detected around the myenteric plexus. In pargyline-treated colons, serotonin-like fibres were demonstrated in association with either the small intramural blood vessels of the submucosa or the extramural nerve bundles. Treatment with 5-hydroxytryptophan (5-HTP) permitted the visualization of additional serotonin-immunoreactive fibres around the large extramural blood vessels. Immunoreactive nerve cell bodies were demonstrated in the myenteric plexus of colons treated with 5-HTP or colchicine. From these observations, it is suggested that the serotoninergic nerves of the rat colon comprise both intrinsic and extrinsic elements.  相似文献   

2.
The immunocytochemical location of neuropeptide Y (NPY)-like immunoreactivity (LI) within the neuronal structures of the rat gastrointestinal (GI) tract was investigated with the indirect immunofluorescence method. NPY immunoreactive neurons were found throughout all regions of the GI tract with the largest number in the duodenum. NPY immunoreactive perikarya were mainly located in the submucosal ganglia. NPY labeled processes were extensively seen in the submucosal and myenteric plexuses, smooth muscles, muscularis mucosa, mucosa and surrounding blood vessels. Following 6-hydroxydopamine (6-OHDA) treatment, NPY immunoreactive nerve fibers around blood vessels disappeared completely and the reactive fibers in other regions were reduced in number. NPY immunoreactive nerve cell bodies in the ganglionic plexuses, however, were not affected by 6-OHDA treatment. Serial sections of the coeliac ganglion showed that NPY-LI was present in cell bodies which also displayed tyrosine hydroxylase (TH) immunoreactivity. Our results suggest that NPY is abundantly contained in both adrenergic and non-adrenergic neurons of the gut and may play an important role in the regulation of the GI tract.  相似文献   

3.
Like many other neuropeptides, vasopressin is not confined to the hypothalamic neurohypophysial system. Furthermore, vasopressin was found to be a potent vasoconstrictor in the rat jejunum, reducing myenteric artery flow. These associations were the basis of this investigation on the presence of vasopressin in the gastrointestinal (GI) tract by both RIA and immunohistochemistry. Portions of the gastrointestinal tract and pancreatic islets of the rat were extracted with 0.1 N HCl for RIA measurements of AVP content. Similar portions from the male cat GI tract were used for immunohistochemistry studies. Acid extracts of the GI tract were found to contain immunoreactive AVP with the highest concentration (pg/mg protein) in the fundus portion of the stomach (15.0 +/- 1.6) and slightly lower values down along the antrum-pylorus portion (6.7 +/- 0.6), proximal jejunum (8.6 +/- 0.2), distal ileum (9.7 +/- 0.3) and colon (11.9 +/- 0.5). In the pancreatic islets the concentration was much higher (72.0 pg/mg protein). The extract inhibition curves showed parallelism with the appropriate standard preparation of AVP in the specific RIA. Immunohistochemical localization showed IR-AVP in the nerve fibers around the myenteric plexus of the second portion of the duodenum. It was also found in fibers starting from where the myenteric plexus goes through the layer of muscle fibers, penetrating the submucosa and duodenal mucosa, ending near the capillaries situated along the basal side of the villous epithelium cells. Similar IR-AVP activity was found in cells located in the mucosal epithelium of the duodenum, jejunum, ileum, colon and rectum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary The localization of the serotonin-like immunoreactive nerves of the rat colon was investigated by means of immunohistochemistry, utilizing an antibody against serotonin. In non-treated colons, serotonin-positive neuropils were consistently detected around the myenteric plexus. In pargyline-treated colons, serotonin-like fibres were demonstrated in association with either the small intramural blood vessels of the submucosa or the extramural nerve bundles. Treatment with 5-hydroxytryptophan (5-HTP) permitted the visualization of additional serotonin-immunoreactive fibres around the large extramural blood vessels. Immunoreactive nerve cell bodies were demonstrated in the myenteric plexus of colons treated with 5-HTP or colchicine. From these observations, it is suggested that the serotoninergic nerves of the rat colon comprise both intrinsic and extrinsic elements.  相似文献   

5.
Summary The distribution of galanin-immunoreactive (GAL-IR) neurons was mapped in detail in the gastro-intestinal tract of the rat, mouse, guinea-pig and pig by use of the indirect immunofluorescence technique. GAL-IR cell bodies were found in both the submucous and the myenteric plexus, with considerably higher numbers in the former ganglia. The largest number of GAL-IR perikarya was seen in the duodenal submucous plexus of the pig. With some (single) exceptions, GAL-IR cell somata were not observed in the myenteric plexus of the pig and guinea-pig, and in the submucous plexus of the esophagus and the stomach of the guinea-pig.GAL-IR fibers ocurred in most parts of the gastro-intestinal tract. In the lamina propria a few non-varicose, weakly fluorescent fibers were noted in the mouse and rat, whereas in the pig and guinea-pig were large numbers of GAL-IR fibers with a varicose appearance was observed. These fibers were in all species most numerous in the distal portion of the intestinal tract. In the submucosa GAL-IR fibers were detected in all four species, and in the pig and guinea-pig some fibers surrounded blood vessels. A large number of GAL-IR fibers was generally seen in the circular smooth muscle layer, except in the guinea-pig, which only seemed to contain a few fibers. In the longitudinal muscle layer only single fibers could be detected. However, the gastric fundus region of the pig contained a moderate number of fibers in the longitudinally and obliquely oriented layers.In general, in the rat, mouse and pig, the submucous and myenteric plexus contained moderate or large numbers of GAL-IR fibers. In the guinea-pig, no or only single fibers were observed in the plexus of the upper gastro-intestinal tract and the rectum, while moderate numbers were seen in the ileum and colon.Thin adjacent sections stained for vasoactive intestinal polypeptide (VIP) and GAL revealed the coexistence of these two peptides in cell bodies of the myenteric plexus in the pig duodenum and guinea-pig colon. In these two species the GALand VIP-nerve fiber networks also exhibited marked similarities. However, in the rat and mouse VIPand GAL-distribution patterns were in general different.The present findings indicate the presence of yet another neuropeptide or peptide family in the gastro-intestinal tract of several rodents and the pig.  相似文献   

6.
Summary Like many other neuropeptides, vasopressin is not confined to the hypothalamic neurohypophysial system. Furthermore, vasopressin was found to be a potent vasoconstrictor in the rat jejunum, reducing myenteric artery flow. These associations were the basis of this investigation on the presence of vasopressin in the gastrointestinal (GI) tract by both RIA and immunohistochemistry.Portions of the gastrointestinal tract and pancreatic islets of the rat were extracted with 0.1N HCl for RIA measurements of AVP content. Similar portions from the male cat GI tract were used for immunohistochemistry studies.Acid extracts of the GI tract were found to contain immunoreactive AVP with the highest concentration (pg/mg protein) in the fundus portion of the stomach (15.0±1.6) and slightly lower values down along the antrum-pylorus portion (6.7±0.6), proximal jejunum (8.6±0.2), distal ileum (9.7±0.3) and colon (11.9±0.5). In the pancreatic islets the concentration was much higher (72.0 pg/mg protein). The extract inhibition curves showed parallelism with the appropriate standard preparation of AVP in the specific RIA.Immunohistochemical localization showed IR-AVP in the nerve fibers around the myenteric plexus of the second portion of the duodenum. It was also found in fibers starting from where the myenteric plexus goes through the layer of muscle fibers, penetrating the submucosa and duodenal mucosa, ending near the capillaries situated along the basal side of the villous epithelium cells. Similar IR-AVP activity was found in cells located in the mucosal epithelium of the duodenum, jejunum, ileum, colon and rectum.These results show that the gastrointestinal tract of different species and pancreatic islets of the rat are a rich source of immunoreactive neurohypophysial AVP. Because of its distribution, this peptide might have some physiological significance in intestinal circulatory regulation.  相似文献   

7.
It is becoming increasingly evident that the urocortins (Ucns) and their receptors are involved in the initiation and development of inflammation in the gastrointestinal (GI) tract. There has not been a systematic study of the basal expression of Ucns or their receptors in the GI tract. Here, we examined basal expression of Ucn 2 and its high-affinity receptor, CRF-R2 in the rat GI tract. Ucn 2 mRNA was expressed throughout the small and large intestine. Surprisingly, CRF-R2 mRNA expression was detected in only a subset of GI regions that expressed Ucn 2. Immunohistochemical study showed that both Ucn 2 immuno-reactivity (Ucn 2-IR) and CRF-R2-IR were consistently seen in the neurons of the myenteric plexus and the nerve fibers innervating the circular muscle. By and large, Ucn 2-IR was detected in all layers, including the mucosal and the submucosal layers throughout the GI regions. In contrast, CRF-R2-IR was very low or undetectable in the mucosal layers of all regions examined. The role of Ucn 2 and CRF-R2 was then examined in a rat model of chemically-induced colitis. In the early phase of colitis, Ucn 2 mRNA levels peaked, whereas, in striking contrast, CRF-R2 mRNA expression decreased approximately 2.5-fold below control levels. At the peptide level, Ucn 2-IR was specifically induced in a large population of immune cells that infiltrated the lamina propria and submucosa of the distal colon, whereas CRFR2-IR was detected in only a small fraction of infiltrated immune cells. CRF-R2-IR was dramatically reduced in the neurons of the myenteric plexus. Thus, we show, for the first time, that in the acute phase of inflammation, Ucn 2 levels are increased whereas expression levels of its only identified receptor, CRF-R2, are decreased. This suggests that Ucn 2 exerts its effects only in part via CRF-R2.  相似文献   

8.
One of the opioid precursor molecules, pre-pro-enkephalin A, contains within it, in addition to Leu-enkephalin (Leu-Enk) and Met-enkephalin (Met-Enk), Met-enkephalin-Arg6-Gly7-Leu8 (Met-Enk-8), which is specific to this precursor. This study deals with the localization of Met-Enk-8-like immunoreactivity in the gastrointestinal tract of rat and pig. Immunoreactivity was identified in intramural nerve elements of rat and pig, and in gut endocrine cells of pig. Immunoreactive (IR) nerve fibers were seen mainly in the myenteric plexus of rat and in both the myenteric and submucosal plexuses of pig. Some IR fibers were dispersed throughout the lamina propria mucosae of rat. Porcine IR endocrine cells were dispersed in the epithelium from the pyloric antrum to the ileum, existing concomitantly with enterochromaffin (EC) cells. Specificity tests revealed that immunoreactivity to Met-Enk-8 antiserum was not influenced by preincubation of the antiserum with Leu-Enk and Met-Enk. This suggests the possibility that pre-pro-enkephalin A is contained in the gastroenteric nerves of rat and pig and in a population of porcine EC cells.  相似文献   

9.
Using immunocytochemistry, NADPH-diaphorase (NADPHd) histochemistry and electron microscopy, the appearance of nitrergic enteric neurons in different digestive tract regions of the embryonic, neonatal and adult quail was studied in whole mounts and sections. NADPHd was first expressed by embryonic day 4–5 in two distinct locations, namely the mesenchyme of the gizzard primordium and at the caeco-colonic junction. At embryonic day 6, nitrergic neurons had already begun to form a myenteric nerve network in the wall of the proventriculus, gizzard and proximal part of the large intestine and by embryonic day 9, a myenteric network was visualized along the entire digestive tract of the quail. At the level of the stomach, this network was confined to the area covered by the intermediate muscles. By embryonic day 12–13, the NADPHd-positive myenteric neurons in the wall of the distal parts of the blind-ending paired caeca also became organized into ganglia. From this developmental stage on, a submucous nitrergic nerve network, sandwiched between the lamina muscularis mucosae and the luminal side of the outer muscle layer, became prominent in the proventriculus and intestinal walls. In the adult quail, only a minority of the NADPHd-positive neurons stained for vasoactive intestinal polypeptide (VIP) along the intestine. VIP-immunoreactive (IR) cell bodies were frequent in the myenteric plexus but not in the submucous plexus, whereas there were considerable numbers of NADPHd-positive neurons in both these plexuses. Nitrergic fibres were also observed in the outer muscle layer, but were almost absent from the lamina muscularis mucosa and lamina propria, in contrast to the dense VIP-ergic innervation encircling the bases of the intestinal crypts.  相似文献   

10.
11.
The distribution of 5-hydroxytryptamine (= serotonin = 5-HT) and noradrenalin (NA) in the enteric plexuses of the rat ileum was studied using immunocytochemical techniques. 5-HT-like immunoreactive fibers were observed only in the myenteric plexus, surrounding the ganglionic cells, which are all unreactive. NA-like immunoreactive fibers were present in all layers of the ileum: in the myenteric plexus, they were localized in the nodes, forming a network all round the neuronal perikarya; in the Meissner plexus, positive axons were arranged in a delicate network; submucosal blood vessels were often provided by NA-immunopositive nerve plexus. In the inner circular muscle layer the immunoreactive NA-positive fibers run within nerve bundles mainly parallel with the smooth muscle cells. The 5-HT immunoreactive material was depleted by treatment with reserpine; depletion of NA by 6-hydroxy-dopamine was also observed; on the contrary, no depletion of 5-HT by 5,7-dihydroxytryptamine was obtained. To confirm the validity of these results, specific antibodies to tyrosine hydroxylase (TH) and aromatic 1-aminoacid-decarboxylase (AADC), two enzymes involved in the synthesis of catecholamines, were used. In conclusion these experiments indicate that 5-HT is present, probably as a transmitter, in certain fibres of the rat myenteric plexus, distributed in a way similar to that of NA-containing fibers. However, at variance with NA fibers, 5-HT fibers are not present in other regions of the intestine wall.  相似文献   

12.
The intramural projections of nerve cells containing serotonin (5-HT), calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and nitric oxide synthase or reduced nicotinamide adenine dinucleotide phosphate diaphorase (NOS/NADPHd) were studied in the ascending colon of 5- to 6-week-old pigs by means of immunocytochemistry and histochemistry in combination with myectomy experiments. In control tissue of untreated animals, positive nerve cells and fibres were common in the myenteric and outer submucous plexus and, except for 5-HT-positive perikarya, immunoreactive cell bodies and fibres were also observed in the inner submucous plexus. VIP- and NOS/NADPHd-positive nerve fibres occurred in the ciruclar muscle layer while VIP was also abundant in nerve fibres of the mucosal layer. 5-HT- and CGRP-positive nerve fibres were virtually absent from the aganglionic nerve networks. In the submucosal layer, numerous paravascular CGRP-immunoreactive (IR) nerve fibres were encountered. Myectomy studies revealed that 5-HT-, CGRP-, VIP- and NOS/NADPHd-positive myenteric neurons all displayed anal projections within the myenteric plexus. In addition, some of the serotonergic myenteric neurons projected anally to the outer submucous plexus, whereas a great number of the VIP-ergic and nitrergic myenteric neurons send their axons towards the circular muscle layer. The possible function of these nerve cells in descending nerve pathways in the porcine colon is discussed in relation to the distribution pattern of their perikarya and processes and some of their morphological characteristics.  相似文献   

13.
We have investigated indirectly the presence of nitric oxide in the enteric nervous system of the digestive tract of human fetuses and newborns by nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. In the stomach, NOS immunoactivity was confined to the myenteric plexus and nerve fibres in the outer smooth musculature; few immunoreactive nerve cell bodies were found in ganglia of the outer submucous plexus. In the pyloric region, a few nitrergic perikarya were seen in the inner submucous plexus and some immunoreactive fibres were found in the muscularis mucosae. In the small intestine, nitrergic neurons clustered just underneath or above the topographical plane formed by the primary nerve strands of the myenteric plexus up to the 26th week of gestation, after which stage, they occurred throughout the ganglia. Many of their processes contributed to the dense fine-meshed tertiary nerve network of the myenteric plexus and the circular smooth muscle layer. NOS-immunoreactive fibres directed to the circular smooth muscle layer originated from a few NOS-containing perikarya located in the outer submucous plexus. In the colon, caecum and rectum, labelled nerve cells and fibres were numerous in the myenteric plexus; they were also found in the outer submucous plexus. The circular muscle layer had a much denser NOS-immunoreactive innervation than the longitudinally oriented taenia. The marked morphological differences observed between nitrergic neurons within the developing human gastrointestinal tract, together with the typical innervation pattern in the ganglionic and aganglionic nerve networks, support the existenc of distinct subpopulations of NOS-containing enterice neurons acting as interneurons or (inhibitory) motor neurons.  相似文献   

14.
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR·RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility.  相似文献   

15.
BACKGROUND/AIM: Several studies have described that oxytocin exerts stimulatory or inhibitory effects on gut functions. Recently, mRNA for oxytocin and its receptor was found throughout the entire human gastrointestinal (GI) tract. The aim of this study was to examine the cellular localization and distribution of the corresponding proteins. MATERIAL AND METHODS: Full-thickness biopsies from 24 patients, covering the entire GI tract, were collected during operations at the Department of Surgery in Malm? and Lund. The biopsies were taken from non_affected margins. The biopsies were fixed by immersion, rinsed in buffered sucrose, and kept frozen at 70 degrees C. Indirect immunofluorescence with primary antibodies to oxytocin and its receptor was used. RESULTS: Oxytocin was expressed in nerve cell bodies and nerve fibres in the myenteric and submucous ganglia all along the GI tract. Immunoreactive nerve cell bodies in myenteric ganglia predominated in the proximal (antrum and duodenum) and distal gut, while those in the submucous ganglia were more numerous in the ileum and colon. The oxytocin receptor was not detectable by two different antibodies in any tissue in the GI tract. CONCLUSION: Oxytocin is expressed in the myenteric and submucous ganglia and nerve fibres along the entire human GI tract. The role for oxytocin in the physiology and pathophysiology of the bowel remains to be settled.  相似文献   

16.
Calbindin D28k, previously demonstrated in the mammalian central nervous system, has been localized to discrete neurons in the enteric nervous system of the rat. Calbindin D28k is present in cell bodies in both the myenteric and submucous plexi and in interganglionic nerve fibers in all regions of the gastrointestinal tract. Immunoreactive nerve fibers were also detected in the mucosal region, although none were observed in the pyloric sphincter, circular or longitudinal muscle layers. The highest concentration of immunoreactivity was present in the submucosal plexus and mucosa of the colon. Western blot analysis of the protein detected by the antiserum confirmed that it comigrated with purified calbindin D28k and the single immunoreactive band seen in extracts from rat brain. The colocalization of calbindin D28k with components of the peptidergic innervation was also investigated. Of the peptides studied the neurons containing both vasoactive intestinal polypeptide and neuropeptide Y in the submucous plexus were seen to exhibit calbindin D28k immunoreactivity. The neurons containing somatostatin, galanin and substance P did not demonstrate co-localization. In the stomach, calbindin D28k was detected within a small number of epithelial cells which were found to correspond to a sub-population of the somatostatin-immunoreactive endocrine cells.  相似文献   

17.
The distribution of nerve cells and fibres with immunoreactivity for the calcium-binding protein, calretinin, was studied in the distal colon of the guinea-pig. The projections of the neurons were determined by examining the consequences of lesioning the myenteric plexus. Calretinin-immunoreactive neurons comprised 17% of myenteric nerve cells and 6% of submucous nerve cells. Numerous calretinin-immunoreactive nerve fibres were located in the longitudinal and circular muscle, and within the ganglia of the myenteric and submucous plexuses. Occasional fibres were found in the muscularis mucosae, but they were very rare in the lamina propria of the mucosa. Lesion studies revealed that myenteric neurons innervated the underlying circular muscle and provided both ascending and descending processes that gave rise to varicose branches in myenteric ganglia. Calretinin-immunoreactive fibres also projected to the tertiary component of the myenteric plexus, and are therefore likely to be motor neurons to the longitudinal muscle. Varicose fibres that supplied the submucous ganglia appear to arise from submucous nerve cells. Arterioles of the submucous plexus were sparsely innervated by calretinin-immunoreactive fibres. The submucous plexus was the principal source of immunoreactive nerve fibres in the muscularis mucosae. This work shows that calretinin-IR reveals different neuronal populations in the large intestine to those previously reported in the small intestine.  相似文献   

18.
Furness  J. B.  Keast  J. R.  Pompolo  S.  Bornstein  J. C.  Costa  M.  Emson  P. C.  Lawson  D. E. M. 《Cell and tissue research》1988,252(1):79-87
Summary Immunoreactivity for vitamin D-dependent calcium-binding protein (CaBP) has been localized in nerve cell bodies and nerve fibres in the gastrointestinal tracts of guinea-pig, rat and man. CaBP immunoreactivity was found in a high proportion of nerve cell bodies of the myenteric plexus, particularly in the small intestine. It was also found in submucous neurons of the small and large intestines. Immunoreactive nerve fibres were numerous in the myenteric ganglia, and were also common in the submucous ganglia and in the intestinal mucosa. Immunoreactive fibres were rare in the circular and longitudinal muscle coats. In the myenteric ganglia of the guinea-pig small intestine the immunoreactivity is restricted to one class of nerve cell bodies, type-II neurons of Dogiel, which display calcium action potentials in their cell bodies. These neurons were also immunoreactive with antibodies to spot 35 protein, a calcium-binding protein from the cerebellum. From the distribution of their terminals and the electrophysiological properties of these neurons it is suggested they might be sensory neurons, or perhaps interneurons. The discovery of CaBP in restricted sub-groups of enteric neurons may provide an important key for the analysis of their functions.  相似文献   

19.
The GABAergic innervation of the frog stomach was studied by means of an indirect immunohistochemical method. Whole mount preparations were obtained from frog stomachs after the animals had been perfused with a mixture of picric acid, glutaraldehyde and glacial acetic acid. Samples were incubated with an antiserum specific for GABA coupled to BSA with glutaraldehyde. Anti-rabbit IgG-HRP was processed by the two step method (Eckert and Ude 1983). GABA-positive varicose fibers and also nerve cell bodies were revealed within the myenteric plexus. The density of GABA-immunoreactive neurons was not higher than 4-8 cell/cm2, which is approximately 1% of the total nerve cell number in the myenteric plexus.  相似文献   

20.
The neurochemical composition of nerve fibres and cell bodies in the myenteric plexus of the proventriculus, stomach and small and large intestines of the golden hamster was investigated by using immunohistochemical and histochemical techniques. In addition, the procedures for localising nitric-oxide-utilising neurones by histochemical (NADPH-diaphorase) and immunohistochemical (nitric oxide synthase) methods were compared. The co-localisation of vasoactive intestinal polypeptide and nitric oxide synthase in the myenteric plexus of all regions of the gut was also assessed. The results demonstrated the presence of nerve fibres and nerve cell bodies immunoreactive to protein gene product, vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, tyrosine hydroxylase, 5-hydroxytryptamine and nitric oxide synthase in all regions of the gastrointestinal tract examined. The pattern of distribution of immunoreactive nerve fibres and nerve cell bodies containing the above markers was found to vary in different regions of the gut. Myenteric neurones and nerve fibres containing immunoreactivity to nitric oxide synthase and NADPH-diaphorase reactivity, however, were shown to have an identical distribution throughout the gut. In contrast to some studies on the guinea-pig and rat, the co-existence of vasoactive intestinal polypeptide and nitric oxide synthase was seen in only a small population of myenteric neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号