首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
Summary The GABAergic innervation of the frog stomach was studied by means of an indirect immunohistochemical method. Whole mount preparations were obtained from frog stomachs after the animals had been perfused with a mixture of picric acid, glutaraldehyde and glacial acetic acid. Samples were incubated with an antiserum specific for GABA coupled to BSA with glutaraldehyde. Anti-rabbit IgG-HRP was processed by the two step method (Eckert and Ude 1983).GABA-positive varicose fibers and also nerve cell bodies were revealed within the myenteric plexus. The density of GABA-immunoreactive neurons was not higher than 4–8 cell/cm2, which is approximately 1% of the total nerve cell number in the myenteric plexus.  相似文献   

2.
The myenteric plexus of the domestic fowl (Gallus domesticus) small intestine was studied by means of silver staining, glyoxylic acid-induced fluorescence, the modified Koelle-Friedenwald method for the detection of acetylcholinesterase, NADH-diaphorase techniques and the unlabelled antibody method involving the use of an antiserum raised against GABA conjugated by glutaraldehyde to bovine serum albumin. The majority of the perikarya were in the ganglia, with an average density of 3370 +/- 942 nerve cells/cm2. Cholinesterase-positive and a few GABA-immunoreactive nerve cell bodies were seen in the myenteric ganglia, while fluorescent ganglion cells were not observed. In addition to AChE and GABA-positive nerve fibres, a rich fluorescent network of varicose and nonvaricose nerve fibres was detected, pointing to the presence of an extrinsic aminergic system in the domestic fowl myenteric plexus. Electron microscopic observations on nerve cells, axon profiles and varicosites with various vesicle populations were in good agreement with the histochemical findings.  相似文献   

3.
Summary Substance P-like immunoreactivity in the alimentary canal of the frogRana esculenta L. was studied by means of the indirect immunoperoxidase method. In all segments of the gastrointestinal tract, immunoreactivity was revealed in both the myenteric and the submucosa plexus. Stained nerve cells were observed in the myenteric plexus but not in the submucous plexus. The proximal part of the oesophagus and hindgut were free of immunoreactive perkarya. The stained nerve cells were of the Dogiel type I category in the foregut, and type II in the midgut. Both the musculature and gastrointestinal glands were supplied with immune-positive fibres. These results indicate that substance P may play similar roles in the frog gut, as described previously in mammals and fish.  相似文献   

4.
The distribution of GABA-like immunoreactivity was studied by means of indirect immunocytochemical methods in some lower vertebrate species (carp, frog, chicken). An immunoreactive network was revealed in the myenteric plexus of the alimentary canal of carp. GABA-positive nerve cells were attached closely to the fibres in the stomach. In other gut regions immunostained neurons were less frequent. Immunoreactive fibres often formed baskets on the surfaces of immunonegative neurons along the whole length of the alimentary canal. The number of immunopositive nerve fibres and pericellular baskets seemed to be lower in the mid- and hingut than in the foregut region. A similar distribution of GABA-immunoreactivity was revealed in the frog myenteric plexus. The ganglionated foregut region possessed a relatively dense GABAergic innervation. This part of the gut contained immunostained nerve cells and fibres, while the mid- and hindgut possessed only a scanty fibre system. Chicken exhibited an extensive immunoreactive plexus for GABA, although the GABA-stained perikarya were restricted mainly to the duodenum. Further regions of the small intestine were poor in immunoreactive cell bodies, which suggests a segmental origin and arrangement of GABAergic innervation within the plexus. In all three species studied, GABA-positive fibres run into the circular muscle layer. The varicosity suggests their influence on the movement of the smooth muscles through modifying the transmitter release of neighbouring terminals.  相似文献   

5.
Summary The distribution of GABA-like immunoreactivity was studied by means of indirect immunocytochemical methods in some lower vertebrate species (carp, frog, chicken). An immunoreactive network was revealed in the myenteric plexus of the alimentary canal of carp. GABA-positive nerve cells were attached closely to the fibres in the stomach. In other gut regions immunostained neurons were less frequent. Immunoreactive fibres often formed baskets on the surfaces of immunonegative neurons along the whole length of the alimentary canal. The number of immunopositive nerve fibres and pericellular baskets seemed to be lower in the mid- and hindgut than in the foregut region. A similar distribution of GABA-immunoreactivity was revealed in the frog myenteric plexus. The ganglionated foregut region possessed a relatively dense GABAergic innervation. This part of the gut contained immunostained nerve cells and fibres, while the mid- and hindgut possessed only a scanty fibre system. Chicken exhibited an extensive immunoreactive plexus for GABA, although the GABA-stained perikarya were restricted mainly to the duodenum. Further regions of the small intestine were poor in immunoreactive cell bodies, which suggests a segmental origin and arrangement of GABAergic innervation within the plexus. In all three species studied, GABA-positive fibres run into the circular muscle layer. The varicosity suggests their influence on the movement of the smooth muscles through modifying the transmitter release of neighbouring terminals.  相似文献   

6.
A technique for performing correlated light and electron microscopic immunocytochemical studies on whole mount preparations has been developed using myenteric plexus from guinea pig small intestine as a model. With this method a structure containing a particular antigen can first be located by light microscopy and then examined with the electron microscope. Pieces of intestine pinned on balsa were incubated in oxygenated Krebs solution at 37 degrees C for 90-120 min and then fixed for 1 hr at room temperature in 4% formaldehyde, 0.05% glutaraldehyde, and 0.2% picric acid in 0.1 M sodium phosphate buffer, pH 7.4. The tissue was washed vigorously in several changes of 50% ethanol until the picric acid had been removed, stored overnight in phosphate buffer, and then exposed to 0.1% sodium cyanoborohydride in buffer for 30 min. Vasoactive intestinal peptide (VIP) was localized in separated layers containing myenteric plexus and longitudinal muscle using the peroxidase-antiperoxidase technique with imidazole intensification of the diaminobenzidine reaction product. At the light microscope level, tissue stained by this technique showed VIP-immunoreactive nerve cell bodies and processes throughout the thickness of the myenteric ganglia in numbers approximately equivalent to those seen in whole mounts processed by an established technique for the light microscopic demonstration of VIP, which does not involve exposure of tissue to glutaraldehyde. VIP-immunoreactive structures that were first identified at the light microscope level were subsequently examined at the electron microscope level. VIP-immunoreactive axon profiles were found to form synapses on both immunoreactive and nonimmunoreactive myenteric neurons. The fine structural appearance of the different cell types present in whole mount preparations prepared by this method was similar to that seen in conventionally fixed tissue, except that free and bound ribosomes were absent from the tissue processed for immunocytochemistry. The method described here is reliable and no more difficult than presently available methods for preembedding electron microscopic immunocytochemistry on sections. Its main advantage is that immunoreactive structures for ultrastructural study can be selected from the entire population of chemically identified nerves within a whole mount rather than from a smaller sample present within a section. This technique is applicable to other tissues that can be stained immunohistochemically in whole mounts. The fixation and penetration enhancement procedures can also be adapted for immunocytochemical studies on vibratome or frozen sections.  相似文献   

7.
Summary The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500±100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.  相似文献   

8.
9.
Whole-mounts of 1-day-old chicken midgut were incubated with an antiserum against GABA-glutaraldehyde-BSA conjugate. The immunoreaction was visualized by using the peroxidase-antiperoxidase method, and processed for consecutive light and electronmicroscopic observation. GABA was selectively localized in some of the varicose and nonvaricose nerve fibres of the myenteric plexus. The varicose fibres formed dense networks within the myenteric ganglia, some of which--mainly in duodenum--also contained immunopositive nerve cell bodies. Some of the varicose fibres projected out from the myenteric plexus into the circular muscle layer. At the electronmicroscopic level, labelled axon terminals formed synaptic contact with unlabelled perikarya and vica versa. At the same time, no labelled terminals were found on immunostained cells. In a few cases, axon terminals with GABA positivity were situated close to the smooth muscle cells in the circular muscle layer, suggesting a prejunctional GABA effect on the neighbouring nerve terminals on the release of their transmitters.  相似文献   

10.
Summary Whole-mounts of 1-day-old chicken midgut were incubated with an antiserum against GABA-glutaraldehyde-BSA conjugate. The immunoreaction was visualized by using the peroxidase-antiperoxidase method, and processed for consecutive light and electronmicroscopic observation. GABA was selectively localized in some of the varicose and nonvaricose nerve fibres of the myenteric plexus. The varicose fibres formed dense networks within the myenteric ganglia, some of which — mainly in duodenum — also contained immunopositive nerve cell bodies. Some of the varicose fibres projected out from the myenteric plexus into the circular muscle layer. At the electronmicroscopic level, labelled axon terminals formed synaptic contact with unlabelled perikarya and vica versa. At the same time, no labelled terminals were found on immunostained cells. In a few cases, axon terminals with GABA positivity were situated close to the smooth muscle cells in the circular muscle layer, suggesting a prejunctional GABA effect on the neighbouring nerve terminals on the release of their transmitters.  相似文献   

11.
Four monoclonal antibodies to VIP have been generated and shown to be N-terminal specific with high affinity for VIP. VIP-containing nerve fibers and cell bodies were visible in the upper small intestine from day 1 of neonatal life. Initially the immunoreactivity was mostly in the myenteric plexus but extended into the sub-mucous plexus by day 7. From day 1 to day 7 the VIP-innervation developed both orally and caudally at a similar rate. In the stomach, the antrum showed sub-mucosal cell bodies by day 14, while in the corpus the cell bodies remained confined to the myenteric plexus. The colon showed positive fibers in the myenteric plexus at day 7 and cell bodies and fibers in the sub-mucous plexus by day 14. The size (cross-sectional area) of the individual VIP-immunoreactive cell bodies increased significantly between day 1 and day 14 with no further increase with age. At no time were immunoreactive cell bodies shown to migrate from the myenteric to the sub-mucous plexus. VIP-immunoreactive epithelial cells were not detected in the present study.  相似文献   

12.
The small and large intestine of adult horses were histochemically and immunohistochemically investigated in order to evidence components of the intramural nervous system. The general structural organization of the intramural nervous system was examined by using Nissl-thionin staining as well as the anti-neurofilament 200 (NF200) immunoreaction, which demonstrated the presence of neurons in the submucous as well as myenteric plexuses. The additional presence of subserosal ganglia was shown in the large intestine. Acetylcholinesterase (AChEase) activity was observed in both the submucous and myenteric plexuses. Localization of acetylcholine-utilizing neurons was also evidenced by immunohistochemical reactions for choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). With both histochemistry and immunohistochemistry possible cholinergic nerve fibres were detected in the inner musculature. The two possible cholinergic co-mediators Calcitonin Gene-Related Peptide (CGRP) and Substance P (SP) have been investigated by an immunohistochemical approach. CGRP immunoreactivity was detected in roundish nerve cell bodies as well as in nerve fibres of the submucous plexus, whereas SP immunoreactivity was evidenced in nerve fibres of the tunica mucosa, in nerve cell bodies and fibres of the submucous plexus and in nerve fibres of the myenteric plexus. NADPH-diaphorase reactivity, which is linked to the synthesis and release of nitric oxide, was detected in nerve cell bodies and nerve fibres of both the submucous and myenteric plexuses as well as in a subserosal localization of the large intestine. The nitrergic components were confirmed by the anti-NOS (nitric oxide synthase) immunoreaction. Results are compared with those of other mammals and related to the complex intestinal horse physiology and pathophysiology.  相似文献   

13.
14.
The intramural projections of nerve cells containing serotonin (5-HT), calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and nitric oxide synthase or reduced nicotinamide adenine dinucleotide phosphate diaphorase (NOS/NADPHd) were studied in the ascending colon of 5- to 6-week-old pigs by means of immunocytochemistry and histochemistry in combination with myectomy experiments. In control tissue of untreated animals, positive nerve cells and fibres were common in the myenteric and outer submucous plexus and, except for 5-HT-positive perikarya, immunoreactive cell bodies and fibres were also observed in the inner submucous plexus. VIP- and NOS/NADPHd-positive nerve fibres occurred in the ciruclar muscle layer while VIP was also abundant in nerve fibres of the mucosal layer. 5-HT- and CGRP-positive nerve fibres were virtually absent from the aganglionic nerve networks. In the submucosal layer, numerous paravascular CGRP-immunoreactive (IR) nerve fibres were encountered. Myectomy studies revealed that 5-HT-, CGRP-, VIP- and NOS/NADPHd-positive myenteric neurons all displayed anal projections within the myenteric plexus. In addition, some of the serotonergic myenteric neurons projected anally to the outer submucous plexus, whereas a great number of the VIP-ergic and nitrergic myenteric neurons send their axons towards the circular muscle layer. The possible function of these nerve cells in descending nerve pathways in the porcine colon is discussed in relation to the distribution pattern of their perikarya and processes and some of their morphological characteristics.  相似文献   

15.
Summary A quantitative ultrastructural study was made of the neuntes forming the deep muscular and circular muscle plexuses of the guinea-pig small intestine following microsurgical lesions designed to interrupt intrinsic and extrinsic nerve pathways within the intestinal wall. Removal of a collar of longitudinal muscle with attached myenteric plexus from the circumference of a segment of small intestine resulted in the subsequent disappearance of 99.3% of neurites in the underlying circular muscle. The few surviving neurites in the deep muscular plexus and circular muscle disappeared completely from lesioned segments that were, in addition, extrinsically denervated surgically. These results indicate that the majority of nerve fibres in the deep muscular and circular muscle plexuses of the guinea-pig small intestine is intrinsic to the intestine and originates from nerve cell bodies located in the overlying myenteric plexus. At the light-microscopic level, nerve bundles were traced from the myenteric plexus to the circular muscle.  相似文献   

16.
We have investigated indirectly the presence of nitric oxide in the enteric nervous system of the digestive tract of human fetuses and newborns by nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. In the stomach, NOS immunoactivity was confined to the myenteric plexus and nerve fibres in the outer smooth musculature; few immunoreactive nerve cell bodies were found in ganglia of the outer submucous plexus. In the pyloric region, a few nitrergic perikarya were seen in the inner submucous plexus and some immunoreactive fibres were found in the muscularis mucosae. In the small intestine, nitrergic neurons clustered just underneath or above the topographical plane formed by the primary nerve strands of the myenteric plexus up to the 26th week of gestation, after which stage, they occurred throughout the ganglia. Many of their processes contributed to the dense fine-meshed tertiary nerve network of the myenteric plexus and the circular smooth muscle layer. NOS-immunoreactive fibres directed to the circular smooth muscle layer originated from a few NOS-containing perikarya located in the outer submucous plexus. In the colon, caecum and rectum, labelled nerve cells and fibres were numerous in the myenteric plexus; they were also found in the outer submucous plexus. The circular muscle layer had a much denser NOS-immunoreactive innervation than the longitudinally oriented taenia. The marked morphological differences observed between nitrergic neurons within the developing human gastrointestinal tract, together with the typical innervation pattern in the ganglionic and aganglionic nerve networks, support the existenc of distinct subpopulations of NOS-containing enterice neurons acting as interneurons or (inhibitory) motor neurons.  相似文献   

17.
Resident macrophages are distributed in the network of interstitial cells of Cajal (ICC) and the myenteric nerve within the myenteric plexus. We evaluated changes in chemoattractant protein mRNA expression in macrophages and neutrophils, the ICC, nerve and macrophages in the myenteric plexus of model rats with TNBS-induced colitis. Chemoattractant proteins, MCP-1, GRO, MIP-2 and CINC-2α were upregulated in the colonic muscle layer after inflammation. Leukocyte infiltration and MPO activity were increased in the muscle layer. Electron microscopy indicated an irregular contour of the myenteric ganglia into which numerous macrophages had penetrated. Macrophages were also distributed near the ICC in the inflamed myenteric plexus. Immunohistochemistry showed that the ICC network and myenteric nerve system had disappeared from the inflamed region, whereas the number of resident macrophages was increased. TTX-insensitive, possibly ICC-mediated, rhythmic contractions of circular smooth muscle strips and enteric neuron-mediated TTX-sensitive peristalsis in the whole proximal colon tissue were significantly inhibited in the inflamed colon, indicating that the ICC-myenteric nerve system was dysfunctional in the inflamed muscle layer. Their accumulation around the myenteric nerve plexus and the ICC network suggests that macrophages play an important role in inducing intestinal dysmotility in gut inflammation.  相似文献   

18.
Summary Nerve elements in the small intestine of the bullfrog. Rana catesbeiana, were studied by immunohistochemistry with anti-methionine enkephalin antisera and by nerve lesion experiments, using laser irradiation. Methionine-enkephalin immunopositive nerve fibers occur in the myenteric plexus, circular muscle layer, submucosa, and mucosa. Immunopositive nerve cell bodies in the myenteric plexus have dendrite-like and a long axon-like processes. In the froglet (3 months after metamorphosis), these axon-like processes lead posteriorly in the nerve strand of the myenteric plexus. Some bifurcate, one branch continuing posteriorly, the other doubling back to lead anteriorly; both form terminal varicose fibers in the circular muscle layer. Nerve lesion experiments, in the adult bullfrog, resulted in accumulations of methionine-enkephalin immunoreactivity at the oral and hinder edges of the laser-irradiated necrotic area; there were sprouting and nonsprouting immunopositive stumps. It is suggested that bidirectional flow of methionine-enkephalin in the myenteric plexus is mediated via the anterior and posterior branches of the axon-like process. The difference in sprouting behavior of immunopositive nerve fiber stumps, after nerve lesion, is discussed with reference to regional differences of the axon-like process.  相似文献   

19.
The architecture and neurochemistry of the enteric nervous system was studied by use of whole-mount preparations obtained by microdissection of the horse jejunum. A myenteric plexus and two plexuses within the submucosa were identified. The external submucosal plexus lying in the outermost region of the submucosa had both neural and vascular connections with the inner submucosal plexus situated closer to the mucosa. Counts of neurones stained for NADH-diaphorase demonstrated the wide variation in size, shape and neurone content of individual ganglia in both the external and internal submucosal plexuses. The average number of cells/ganglion was similar in each plexus (about 25 cells). Immunoreactivities for galanin, vasoactive intestinal peptide and neuropeptide Y were observed in nerve cell bodies and fibres of each of the plexuses. Immunoreactivity for substance P was extensive and strong in nerve fibres of all plexuses but was weaker in cell bodies of the submucosal neurones and absent in the cell bodies of the myenteric plexus. Comparative quantitative analysis of immunoreactive cell populations with total cell numbers (enzyme staining) was indicative of neuropeptide colocalization in the external submucosal plexus.  相似文献   

20.
O Nada  T Toyohara 《Histochemistry》1987,86(3):229-232
The localization of the serotonin-like immunoreactive nerves of the rat colon was investigated by means of immunohistochemistry, utilizing an antibody against serotonin. In non-treated colons, serotonin-positive neuropils were consistently detected around the myenteric plexus. In pargyline-treated colons, serotonin-like fibres were demonstrated in association with either the small intramural blood vessels of the submucosa or the extramural nerve bundles. Treatment with 5-hydroxytryptophan (5-HTP) permitted the visualization of additional serotonin-immunoreactive fibres around the large extramural blood vessels. Immunoreactive nerve cell bodies were demonstrated in the myenteric plexus of colons treated with 5-HTP or colchicine. From these observations, it is suggested that the serotoninergic nerves of the rat colon comprise both intrinsic and extrinsic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号