首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

2.
Global warming is associated with the continued increase in the atmospheric concentrations of greenhouse gases; carbon dioxide, methane (CH4) and nitrous oxide. Wetlands constitute the largest single natural source of atmospheric CH4 in the world contributing between 100 and 231 Tg year?1 to the total budget of 503–610 Tg year?1, approximately 60 % of which is emitted from tropical wetlands. We conducted diffusive CH4 emission measurements using static chambers in river channels, floodplains and lagoons in permanent and seasonal swamps in the Okavango Delta, Botswana. Diffusive CH4 emission rates varied between 0.24 and 293 mg CH4 m?2 h?1, with a mean (±SE) emission of 23.2 ± 2.2 mg CH4 m?2 h?1 or 558 ± 53 mg CH4 m?2 day?1. These emission rates lie within the range reported for other tropical wetlands. The emission rates were significantly higher (P < 0.007) in permanent than in seasonal swamps. River channels exhibited the highest average fluxes at 31.3 ± 5.4 mg CH4 m?2 h?1 than in floodplains (20.4 ± 2.5 mg CH4 m?2 h?1) and lagoons (16.9 ± 2.6 mg CH4 m?2 h?1). Diffusive CH4 emissions in the Delta were probably regulated by temperature since emissions were highest (20–300 mg CH4 m?2 h?1) and lowest (0.2–3.0 mg m?2 h?1) during the warmer-rainy and cooler winter seasons, respectively. Surface water temperatures between December 2010 and January 2012 varied from 15.3 °C in winter to 33 °C in summer. Assuming mean inundation of 9,000 km2, the Delta’s annual diffusive emission was estimated at 1.8 ± 0.2 Tg, accounting for 2.8 ± 0.3 % of the total CH4 emission from global tropical wetlands.  相似文献   

3.
Coastal forested wetlands provide important ecosystem services such as carbon sequestration, nutrient retention, and flood protection, but they are also important sources of greenhouse gas emissions. Human appropriation of surface water and extensive ditching and draining of coastal plain landscapes are interacting with rising sea levels to increase the frequency and magnitude of saltwater incursion into formerly freshwater coastal wetlands. Both hydrologic change and saltwater incursion are expected to alter carbon and nutrient cycling in coastal forested wetlands. We performed a full factorial experiment in which we exposed intact soil cores from a coastal forested wetland to experimental marine salt treatments and two hydrologic treatments. We measured the resulting treatment effects on the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) over 112 days. Salinity effects were compared across four treatments to isolate the effects of increases in ionic strength from the impact of adding a terminal electron acceptor (SO42?). We compared control treatments (DI addition), to artificial saltwater (ASW, target salinity of 5 parts per thousand) and to two treatments that added sulfate alone (SO42?, at the concentration found in 5 ppt saltwater) and saltwater with the sulfate removed (ASW-SO42?, with the 5 ppt target salinity maintained by adding additional NaCl). We found that all salt treatments suppressed CO2 production, in both drought and flooded treatments. Contrary to our expectations, CH4 fluxes from our flooded cores increased between 300 and 1200% relative to controls in the ASW and ASW-SO42? treatments respectively. In the drought treatments, we saw virtually no CH4 release from any core, while artificial seawater with sulfate increased N2O fluxes by 160% above DI control. In contrast, salt and sulfate decreased N2O fluxes by 72% in our flooded treatments. Our results indicate that salinization of forested wetlands of the coastal plain may have important climate feedbacks resulting from enhanced greenhouse gas emissions and that the magnitude and direction of these emissions are contingent upon wetland hydrology.  相似文献   

4.
The present research focused on enhancing the production of wedelolactone through cell suspension culture (CSC) in Eclipta alba (L.) Hassk. With an aim of attaining a sustainable CSC, various plant growth regulators, elicitors and agitation speed were examined. Nodal segments of in vitro propagated plantlets induced the maximum percentage (93.47?±?0.61%) of callus inoculated on Murashige and Skoog (MS) medium fortified with picloram (2 mg L?1). The growth kinetics of CSC exhibited a sigmoid pattern with a lag phase (0–6 days), a log phase (6–18 days), a stationary phase (18–24 days) and then death phase thereafter. The highest biomass accumulation in CSC with 7.09?±?0.06 g 50 mL?1 fresh weight, 1.52?±?0.02 g 50 mL?1 dry cell weight, 1.34?±?0.01?×?106 cell mL?1 total cell count and 57.00?±?0.58% packed cell volume was obtained in the liquid MS medium supplemented with 1.5 mg L?1 picloram plus 0.5 mg L?1 kinetin at 120 rpm. High performance thin layer chromatography confirmed that yeast extract (biotic elicitor) at 150 mg L?1 accumulated more CSC biomass with 1.22-fold increase in wedelolactone (288.97?±?1.94 µg g?1 dry weight) content in comparison to the non-elicited CSC (237.78?±?0.04 µg g?1 dry weight) after 120 h of incubation. Contrastingly, methyl jasmonate (abiotic elicitor) did not alter the biomass but increased the wedelolactone content (259.32?±?1.06 µg g?1 dry weight) to an extent of 1.09-fold at 100 µM. Complete plantlet regeneration from CSC was possible on MS medium containing N6-benzyladenine (0.75 mg L?1) and abscisic acid (0.5 mg L?1). Thus, the establishment of protocol for CSC constitutes the bases for future biotechnological improvement studies in this crop.  相似文献   

5.
Shallow fresh water bodies in peat areas are important contributors to greenhouse gas fluxes to the atmosphere. In this study we determined the magnitude of CH4 and CO2 fluxes from 12 water bodies in Dutch wetlands during the summer season and studied the factors that might regulate emissions of CH4 and CO2 from these lakes and ditches. The lakes and ditches acted as CO2 and CH4 sources of emissions to the atmosphere; the fluxes from the ditches were significantly larger than the fluxes from the lakes. The mean greenhouse gas flux from ditches and lakes amounted to 129.1 ± 8.2 (mean ± SE) and 61.5 ± 7.1 mg m?2 h?1 for CO2 and 33.7 ± 9.3 and 3.9 ± 1.6 mg m?2 h?1 for CH4, respectively. In most water bodies CH4 was the dominant greenhouse gas in terms of warming potential. Trophic status of the water and the sediment was an important factor regulating emissions. By using multiple linear regression 87% of the variation in CH4 could be explained by PO4 3? concentration in the sediment and Fe2+ concentration in the water, and 89% of the CO2 flux could be explained by depth, EC and pH of the water. Decreasing the nutrient loads and input of organic substrates to ditches and lakes by for example reducing application of fertilizers and manure within the catchments and decreasing upward seepage of nutrient rich water from the surrounding area will likely reduce summer emissions of CO2 and CH4 from these water bodies.  相似文献   

6.
The translocation of phosphorus (P) from terrestrial landscapes to aquatic bodies is of concern due to the impact of elevated P on aquatic system functioning and integrity. Due to their common location in depressions within landscapes, wetlands, including so-called geographically isolated wetlands (GIWs), receive and process entrained P. The ability of depressional wetlands, or GIWs, to sequester P may vary by wetland type or by land use modality. In this study we quantified three measures of P sorption capacities for two common GIW types (i.e., emergent marsh and forested wetlands) in two different land use modalities (i.e., agricultural and least impacted land uses) across 55 sites in Florida, USA. The equilibrium P concentration (EPC0) averaged 6.42 ± 5.18 mg P L?1 (standard deviation reported throughout); and ranged from 0.01–27.18 mg P L?1; there were no differences between GIW type or land use modality, nor interaction effects. Significant differences in phosphorus buffering capacity (PBC) were found between GIW types and land use, but no interaction effects. Forested GIWs [average 306.64 ± 229.63 (mg P kg?1) (µg P L?1)?1], and GIWs in agricultural settings [average 269.95 ± 236.87 (mg P kg?1) (µg P L?1)?1] had the highest PBC values. The maximum sorption capacity (Smax) was found to only differ by type, with forested wetlands (1274.5 ± 1315.7 mg P kg?1) having over three times the capacity of emergent GIWs (417.5 ± 534.6 mg P kg?1). Classification trees suggested GIW soil parameters of bulk density, organic content, and concentrations of total P, H2O-extractable P, and HCl-extractable P were important to classifying GIW P-sorption metrics. We conclude that GIWs have high potential to retain P, but that the entrained P may be remobilized to the wetland water column depending on storm and groundwater input P concentrations. The relative hydrologic dis-connectivity of GIWs from other aquatic systems may provide sufficient retention time to retain elevated P within these systems, thereby providing an ecosystem service to downstream waters.  相似文献   

7.
Indigenous broadleaf plantations are increasingly developing as a prospective silvicultural management approach for substituting in place of large pure conifer plantations in subtropical China. However, little information is known about the effects of tree species conversion on soil-atmosphere greenhouse gas (GHG) exchanges. Four adjacent monospecific plantations were selected in subtropical China to examine the effects of tree species on soil-atmosphere exchanges of N2O, CH4 and CO2. One coniferous plantation was composed of Pinus massoniana (PM), and the three broadleaf plantations were Castanopsis hystrix (CH), Michelia macclurei (MM) and Mytilaria laosensis (ML). We found that mean soil N2O and CO2 emissions in the PM plantation were 4.34 μg N m?2?h?1 and 43.25 mg C m?2?h?1, respectively, lower than those in the broadleaf plantations (>5.25 μg N m?2?h?1 and >56.38 mg C m?2?h?1). The PM plantation soil had higher mean CH4 uptake (39.03 μg C m?2?h?1) than the broadleaf plantation soils (<32.67 μg C m?2?h?1). Variations in soil N2O emissions among tree species could be primarily explained by the differences in litter C:N ratio and soil total N stock. Differences in soil CH4 uptake among tree species could be mostly attributed to the differences in mean soil CO2 flux and water filled pore space (WFPS). Litter C:N ratio could largely account for variations in soil CO2 emissions among tree species. This study confirms that there is no GHG benefit of converting PM plantation to broadleaf plantations in subtropical China. Therefore, the future strategy of tree species selection for substituting in place of large coniferous plantations in subtropical China needs to consider the potential effects of tree species on soil-atmosphere GHG exchanges.  相似文献   

8.
Currently, there is a lack of knowledge about GHG emissions, specifically N2O and CH4, in subtropical coastal freshwater wetland and mangroves in the southern hemisphere. In this study, we quantified the gas fluxes and substrate availability in a subtropical coastal wetland off the coast of southeast Queensland, Australia over a complete wet-dry seasonal cycle. Sites were selected along a salinity gradient ranging from marine (34 psu) in a mangrove forest to freshwater (0.05 psu) wetland, encompassing the range of tidal influence. Fluxes were quantified for CH4 (range ?0.4–483 mg C–CH4 h?1 m?2) and N2O (?5.5–126.4 μg N–N2O h?1 m?2), with the system acting as an overall source for CH4 and N2O (mean N2O and CH4 fluxes: 52.8 μg N–N2O h?1 m?2 and 48.7 mg C–CH4 h?1 m?2, respectively). Significantly higher N2O fluxes were measured during the summer months (summer mean 64.2 ± 22.2 μg N–N2O h?1 m?2; winter mean 33.1 ± 24.4 µg N–N2O h–1 m?2) but not CH4 fluxes (summer mean 30.2 ± 81.1 mg C–CH4 h?1 m?2; winter mean 37.4 ± 79.6 mg C–CH4 h?1 m?2). The changes with season are primarily driven by temperature and precipitation controls on the dissolved inorganic nitrogen (DIN) concentration. A significant spatial pattern was observed based on location within the study site, with highest fluxes observed in the freshwater tidal wetland and decreasing through the mangrove forest. The dissolved organic carbon (DOC) varied throughout the landscape and was correlated with higher CH4 fluxes, but this was a nonlinear trend. DIN availability was dominated by N–NH4 and correlated to changes in N2O fluxes throughout the landscape. Overall, we did not observe linear relationships between CH4 and N2O fluxes and salinity, oxygen or substrate availability along the fresh-marine continuum, suggesting that this ecosystem is a mosaic of processes and responses to environmental changes.  相似文献   

9.
Batch experiments were performed for the aerobic co-metabolism of 1,1-dichloroethylene (1,1-DCE) by Achromobacter sp., identified by gene sequencing of 16S rRNA and grown on benzene. Kinetic models were employed to simulate the co-metabolic degradation of 1,1-DCE, and relevant parameters were obtained by non-linear least squares regression. Benzene at 90 mg L?1 non-competitively inhibited degradation of 1,1-DCE (from 125 to 1,200 μg L?1). The maximum specific utilization (kc) rate and the half-saturation constant (Kc) for 1,1-DCE were 54 ± 0.85 μg h?1 and 220 ± 6.8 μg L?1, respectively; the kb and Kb for benzene were 13 ± 0.18 mg h?1 and 28 ± 0.42 mg L?1, respectively. This study provides a theoretical basis to predict the natural attenuation when benzene and 1,1-DCE occur as co-contaminants.  相似文献   

10.
The magnitude of greenhouse gas (GHG) flux rates may be important in wet and intermediate wet forest soils, but published estimates are scarce. We studied the surface exchange of methane (CH4) and nitrous oxide (N2O) from soil along toposequences in two temperate deciduous forest catchments: Strødam and Vestskoven. The soil water regime ranged from fully saturated to aerated within the catchments. At Strødam the largest mean flux rates of N2O (15 μg N2O-N m?2 h?1) were measured at volumetric soil water contents (SWC) between 40 and 60% and associated with low soil pH compared to smaller mean flux rates of 0-5 μg N2O-N m?2 h?1 for drier (SWC < 40%) and wet conditions (SWC > 80%). At Vestskoven the same response of N2O to soil water content was observed. Average CH4 flux rates were highly variable along the toposequences (?17 to 536 μg CH4-C m?2 h?1) but emissions were only observed above soil water content of 45%. Scaled flux rates of both GHGs to catchment level resulted in emission of 322 and 211 kg CO2-equivalents ha?1 year?1 for Strødam and Vestskoven, respectively, with N2O contributing the most at both sites. Although the wet and intermediate wet forest soils occupied less than half the catchment area at both sites, the global warming potential (GWP) derived from N2O and CH4 was more than doubled when accounting for these wet areas in the catchments. The results stress the importance of wet soils in assessments of forest soil global warming potentials, as even small proportions of wet soils contributes substantially to the emissions of N2O and CH4.  相似文献   

11.
During the last decades, various renaturation programmes have been initialized to recover nutrient sink and ecological functions of peatlands by rewetting. Rewetting, however, often results in the formation of hotspots for methane (CH4) emissions and in temporal dieback of local vegetation. The present study aimed at quantifying changes of CH4 and nitrous oxide (N2O) emissions in a peatland currently under continuous rewetting conditions. Emissions where studied at a permanently flooded site and a non-flooded peat site with fluctuating water tables by using common closed chamber method. The permanently flooded site revealed extremely high CH4 emissions (up to 1195 mg C m?2 d?1) which were positively correlated with temperature, nutrient content, dissolved organic carbon and nitrogen concentration of the peat soil water. In contrast, the non-flooded peat site, with lower and fluctuating water tables (WT), showed significantly lower CH4 emissions and an increasing trend of CH4 release associated with a generally increasing WT caused by the progressing rewetting process. Lower N2O emissions (<24 µg N m?2 d?1) were observed at the flooded site. By contrast, the non-flooded peat site with fluctuating WT showed significantly higher N2O emissions (up to 4178 µg N m?2 d?1), in particular at high temperatures during summer time. The present results indicate that permanently flooded conditions during rewetting processes might cause higher CH4 emissions compared to fluctuating WT which in contrast might enhance N2O emissions. In total, however, no decreasing trend for CH4 emissions throughout the five-year renaturation period could be found. At least for N2O we observed a decreasing trend during rewetting.  相似文献   

12.
In order to identify the effects of land-use/cover types, soil types and soil properties on the soil-atmosphere exchange of greenhouse gases (GHG) in semiarid grasslands as well as provide a reliable estimate of the midsummer GHG budget, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) fluxes of soil cores from 30 representative sites were determined in the upper Xilin River catchment in Inner Mongolia. The soil N2O emissions across all of the investigated sites ranged from 0.18 to 21.8 μg N m-2 h-1, with a mean of 3.4 μg N m-2 h-1 and a coefficient of variation (CV, which is given as a percentage ratio of one standard deviation to the mean) as large as 130%. CH4 fluxes ranged from -88.6 to 2,782.8 μg C m-2 h-1 (with a CV of 849%). Net CH4 emissions were only observed from cores taken from a marshland site, whereas all of the other 29 investigated sites showed net CH4 uptake (mean: -33.3 μg C m-2 h-1). CO2 emissions from all sites ranged from 3.6 to 109.3 mg C m-2 h-1, with a mean value of 37.4 mg C m-2 h-1 and a CV of 66%. Soil moisture primarily and positively regulated the spatial variability in N2O and CO2 emissions (R2?=?0.15–0.28, P?<?0.05). The spatial variation of N2O emissions was also influenced by soil inorganic N contents (P?<?0.05). By simply up-scaling the site measurements by the various land-use/cover types to the entire catchment area (3,900 km2), the fluxes of N2O, CH4 and CO2 at the time of sampling (mid-summer 2007) were estimated at 29 t CO2-C-eq d-1, -26 t CO2-C-eq d-1 and 3,223 t C d-1, respectively. This suggests that, in terms of assessing the spatial variability of total GHG fluxes from the soils at a semiarid catchment/region, intensive studies may focus on CO2 exchange, which is dominating the global warming potential of midsummer soil-atmosphere GHG fluxes. In addition, average GHG fluxes in midsummer, weighted by the areal extent of these land-use/cover types in the region, were approximately -30.0 μg C m-2 h-1 for CH4, 2.4 μg N m-2 h-1 for N2O and 34.5 mg C m-2 h-1 for CO2.  相似文献   

13.
Decomposing leaf litter is a large supply of energy and nutrients for soil microorganisms. How long decaying leaves continue to fuel anaerobic microbial activity in wetland ecosystems is poorly understood. Here, we compare leaf litter from 15 tree species with different growth forms (angiosperms and gymnosperms, deciduous, and longer life span), using litterbags positioned for up to 4 years in a forested peatland in New York State. Periodically, we incubated partially decayed residue per species with fresh soil to assess its ability to fuel microbial methane (CH4) production and concomitant anaerobic carbon dioxide (CO2) production. Decay rates varied by leaf type: deciduous angiosperm > evergreen gymnosperm > deciduous gymnosperm. Decay rates were slower in leaf litter with a large concentration of lignin. Soil with residue of leaves decomposed for 338 days had greater rates of CH4 production (5.8 µmol g?1 dry mass d?1) than less decomposed (<0.42 µmol g?1 dry mass d?1) or more decomposed (2.1 µmol g?1 dry mass d?1) leaf residue. Species-driven differences in their ability to fuel CH4 production were evident throughout the study, whereas concomitant rates of CO2 production were more similar among species and declined with degree of decomposition. Methane production rates exhibited a positive correlation with pectin and the rate of pectin decomposition. This link between leaf litter decay rates, biochemical components in leaves, and microorganisms producing greenhouse gases should improve predictions of CH4 production in wetlands.  相似文献   

14.
Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L?1 ethanol with a productivity of 0.17 ± 0.00 g L?1 h?1, while xylose plus 3 g L?1 CaCO3 resulted in the production of 24.68 ± 0.75 g L?1 ethanol with a productivity of 0.21 ± 0.01 g L?1 h?1. Use of xylose plus glucose in combination with 3 g L?1 CaCO3 resulted in the production of 47.37 ± 0.55 g L?1 ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L?1 h?1. These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L?1 CaCl2 resulted in the production of 44.84 ± 0.28 g L?1 ethanol with a productivity of 0.37 ± 0.02 g L?1 h?1. Use of glucose plus 3 g L?1 CaCO3 resulted in the production of 57.39 ± 1.41 g L?1 ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.  相似文献   

15.
Cotton is one of the major crops worldwide and delivers fibers to textile industries across the globe. Its cultivation requires high nitrogen (N) input and additionally irrigation, and the combination of both has the potential to trigger high emissions of nitrous oxide (N2O) and nitric oxide (NO), thereby contributing to rising levels of greenhouse gases in the atmosphere. Using an automated static chamber measuring system, we monitored in high temporal resolution N2O and NO fluxes in an irrigated cotton field in Northern China, between January 1st and December 31st 2008. Mean daily fluxes varied between 5.8 to 373.0 µg N2O-N m?2?h?1 and ?3.7 to 135.7 µg NO-N m?2?h?1, corresponding to an annual emission of 2.6 and 0.8 kg N ha?1?yr?1 for N2O and NO, respectively. The highest emissions of both gases were observed directly after the N fertilization and lasted approximately 1 month. During this time period, the emission was 0.85 and 0.22 kg N ha?1 for N2O and NO, respectively, and was responsible for 32.3% and 29.0% of the annual total N2O and NO loss. Soil temperature, moisture and mineral N content significantly affected the emissions of both gases (p?<?0.01). Direct emission factors were estimated to be 0.95% (N2O) and 0.24% (NO). We also analyzed the effects of sampling time and frequency on the estimations of annual cumulative N2O and NO emissions and found that low frequency measurements produced annual estimates which differed widely from those that were based on continuous measurements.  相似文献   

16.
Extensive interfluvial wetlands occur in the upper Negro River basin (Brazil) and contain a mosaic of vegetation dominated by emergent grasses and sedges with patches of shrubs and palms. To characterize the release of carbon dioxide and methane from these habitats, diffusive and ebullitive emissions and transport through plant aerenchyma were measured monthly during 2005 in permanently and seasonally flooded areas. CO2 emissions averaged 2193 mg C m?2 day?1. Methane was consumed in unflooded environments and emitted in flooded environments with average values of ?4.8 and 60 mg C m?2 day?1, respectively. Bubbles were emitted primarily during falling water periods when hydrostatic pressure at the sediment?Cwater interface declined. CO2 and CH4 emissions increased when dissolved O2 decreased and vegetation was more abundant. Total area and seasonally varying flooded areas for two wetlands, located north and south of the Negro River, were determined through analysis of synthetic aperture radar and optical remotely sensed data. The combined areas of these two wetlands (3000 km2) emitted 1147 Gg C year?1 as CO2 and 31 Gg C year?1 as CH4. If these rates are extrapolated to the area occupied by hydromorphic soils in the upper Negro basin, 63 Tg C year?1 of CO2 and 1.7 Tg C year?1 as CH4 are estimated as the regional evasion to the atmosphere.  相似文献   

17.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from concentrated lactose/whey permeate containing 211 g L?1 lactose. Fermentation of such a highly concentrated lactose solution was possible due to simultaneous product removal using a pervaporation membrane. In this system, a productivity of 0.43 g L?1 h?1 was obtained which is 307 % of that achieved in a non-product removal batch reactor (0.14 g L?1 h?1) where approximately 60 g L?1 whey permeate lactose was fermented. The productivity obtained in this system is much higher than that achieved in other product removal systems (perstraction 0.21 g L?1 h?1 and gas stripping 0.32 g L?1 h?1). This membrane was also used to concentrate butanol from approximately 2.50 g L?1 in the reactor to 755 g L?1. Using this membrane, ABE selectivities and fluxes of 24.4–44.3 and 0.57–4.05 g m?2 h?1 were obtained, respectively. Pervaporation restricts removal of water from the reaction mixture thus requiring significantly less energy for product recovery when compared to gas stripping.  相似文献   

18.
Wetlands are biogeochemical hotspots that have been identified as important sites for both nitrogen (N) removal from surface waters and greenhouse gas (GHG) production. Floating vegetation (FV) commonly occurs in natural and constructed wetlands, but the effects of such vegetation on denitrification, N retention, and GHG production are unknown. To address this knowledge gap, we used microcosm experiments to examine how FV affects N and GHG dynamics. Denitrification and N retention rates were significantly higher in microcosms with FV (302 μmol N m?2 h?1 and 203 μmol N m?2 h?1, respectively) than in those without (63 μmol N m?2 h?1 and 170 μmol N m?2 h?1, respectively). GHG production rates were not significantly different between the two treatments. Denitrification rates were likely elevated due to decreased dissolved oxygen (DO) in microcosms with FV. The balance of photosynthesis and respiration was more important in affecting DO concentrations than decreased surface gas exchange. The denitrification fraction (N2-N production: N retention) was higher in microcosms with FV (100 %) than those without (33 %) under increased (tripled) N loading. A 5 °C temperature increase resulted in significantly lower denitrification rates in the absence of FV and significantly lowered N2O production with FV, but did not significantly change CH4 production or N retention in either treatment. These results suggest that intentional introduction of FV in constructed wetlands could enhance N removal while leaving GHG production unchanged, an insight that should be further tested via in situ experiments.  相似文献   

19.

Background and aims

The rice production is experiencing a shift from conventionally seedling-transplanted (TPR) to direct-seeded (DSR) cropping systems in Southeast Asia. Besides the difference in rice crop establishment, water regime is typically characterized as water-saving moist irrigation for DSR and flooding-midseason drainage-reflooding and moist irrigation for TPR fields, respectively. A field experiment was conducted to quantify methane (CH4) and nitrous oxide (N2O) emissions from the DSR and TPR rice paddies in southeast China.

Methods

Seasonal measurements of CH4 and N2O fluxes from the DSR and TPR plots were simultaneously taken by static chamber-GC technique.

Results

Seasonal fluxes of CH4 averaged 1.58 mg m?2 h?1 and 1.02 mg m?2 h?1 across treatments in TPR and DSR rice paddies, respectively. Compared with TPR cropping systems, seasonal N2O emissions from DSR cropping systems were increased by 49 % and 46 % for the plots with or without N application, respectively. The emission factors of N2O were estimated to be 0.45 % and 0.69 % of N application, with a background emission of 0.65 and 0.95 kg N2O-N ha?1 under the TPR and DSR cropping regimes, respectively. Rice biomass and grain yield were significantly greater in the DSR than in the TPR cropping systems. The net global warming potential (GWP) of CH4 and N2O emissions were comparable between the two cropping systems, while the greenhouse gas intensity (GHGI) was significantly lower in the DSR than in the TPR cropping systems.

Conclusions

Higher grain yield, comparable GWP, and lower GHGI suggest that the DSR instead of conventional TPR rice cropping regime would weaken the radiative forcing of rice production in terms of per unit of rice grain yield in China, and DSR rice cropping regime could be a promising rice development alternative in mainland China.  相似文献   

20.
Tidal wetlands are productive ecosystems with the capacity to sequester large amounts of carbon (C), but we know relatively little about the impact of climate change on wetland C cycling in lower salinity (oligohaline and tidal freshwater) coastal marshes. In this study we assessed plant production, C cycling and sequestration, and microbial organic matter mineralization at tidal freshwater, oligohaline, and salt marsh sites along the salinity gradient in the Delaware River Estuary over four years. We measured aboveground plant biomass, carbon dioxide (CO2) and methane (CH4) exchange between the marsh and atmosphere, microbial sulfate reduction and methanogenesis in marsh soils, soil biogeochemistry, and C sequestration with radiodating of soils. A simple model was constructed to estimate monthly and annually integrated rates of gross ecosystem production (GEP), ecosystem respiration (ER) to carbon dioxide ( \( {\text{ER}}_{{{\text{CO}}_{2} }} \) ) or methane ( \( {\text{ER}}_{{{\text{CH}}_{4} }} \) ), net ecosystem production (NEP), the contribution of sulfate reduction and methanogenesis to ER, and the greenhouse gas (GHG) source or sink status of the wetland for 2 years (2007 and 2008). All three marsh types were highly productive but evidenced different patterns of C sequestration and GHG source/sink status. The contribution of sulfate reduction to total ER increased along the salinity gradient from tidal freshwater to salt marsh. The Spartina alterniflora dominated salt marsh was a C sink as indicated by both NEP (~140 g C m?2 year?1) and 210Pb radiodating (336 g C m?2 year?1), a minor sink for atmospheric CH4, and a GHG sink (~620 g CO2-eq m?2 year?1). The tidal freshwater marsh was a source of CH4 to the atmosphere (~22 g C–CH4 m?2 year?1). There were large interannual differences in plant production and therefore C and GHG source/sink status at the tidal freshwater marsh, though 210Pb radiodating indicated modest C accretion (110 g C m?2 year?1). The oligohaline marsh site experienced seasonal saltwater intrusion in the late summer and fall (up to 10 mS cm?1) and the Zizania aquatica monoculture at this site responded with sharp declines in biomass and GEP in late summer. Salinity intrusion was also linked to large effluxes of CH4 at the oligohaline site (>80 g C–CH4 m?2 year?1), making this site a significant GHG source (>2,000 g CO2-eq m?2 year?1). The oligohaline site did not accumulate C over the 2 year study period, though 210Pb dating indicated long term C accumulation (250 g C m?2 year?1), suggesting seasonal salt-water intrusion can significantly alter C cycling and GHG exchange dynamics in tidal marsh ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号