首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to identify the effects of land-use/cover types, soil types and soil properties on the soil-atmosphere exchange of greenhouse gases (GHG) in semiarid grasslands as well as provide a reliable estimate of the midsummer GHG budget, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) fluxes of soil cores from 30 representative sites were determined in the upper Xilin River catchment in Inner Mongolia. The soil N2O emissions across all of the investigated sites ranged from 0.18 to 21.8 μg N m-2 h-1, with a mean of 3.4 μg N m-2 h-1 and a coefficient of variation (CV, which is given as a percentage ratio of one standard deviation to the mean) as large as 130%. CH4 fluxes ranged from -88.6 to 2,782.8 μg C m-2 h-1 (with a CV of 849%). Net CH4 emissions were only observed from cores taken from a marshland site, whereas all of the other 29 investigated sites showed net CH4 uptake (mean: -33.3 μg C m-2 h-1). CO2 emissions from all sites ranged from 3.6 to 109.3 mg C m-2 h-1, with a mean value of 37.4 mg C m-2 h-1 and a CV of 66%. Soil moisture primarily and positively regulated the spatial variability in N2O and CO2 emissions (R2?=?0.15–0.28, P?<?0.05). The spatial variation of N2O emissions was also influenced by soil inorganic N contents (P?<?0.05). By simply up-scaling the site measurements by the various land-use/cover types to the entire catchment area (3,900 km2), the fluxes of N2O, CH4 and CO2 at the time of sampling (mid-summer 2007) were estimated at 29 t CO2-C-eq d-1, -26 t CO2-C-eq d-1 and 3,223 t C d-1, respectively. This suggests that, in terms of assessing the spatial variability of total GHG fluxes from the soils at a semiarid catchment/region, intensive studies may focus on CO2 exchange, which is dominating the global warming potential of midsummer soil-atmosphere GHG fluxes. In addition, average GHG fluxes in midsummer, weighted by the areal extent of these land-use/cover types in the region, were approximately -30.0 μg C m-2 h-1 for CH4, 2.4 μg N m-2 h-1 for N2O and 34.5 mg C m-2 h-1 for CO2.  相似文献   

2.

Background and aims

The impact of understory vegetation control or replacement with selected plant species, which are common forest plantation management practices, on soil C pool and greenhouse gas (GHG, including CO2, CH4 and N2O) emissions are poorly understood. The objective of this paper was to investigate the effects of understory vegetation management on the dynamics of soil GHG emissions and labile C pools in an intensively managed Chinese chestnut (Castanea mollissima Blume) plantation in subtropical China.

Methods

A 12-month field experiment was conducted to study the dynamics of soil labile C pools and GHG emissions in a Chinese chestnut plantation under four different understory management practices: control (Control), understory removal (UR), replacement of understory vegetation with Medicago sativa L. (MS), and replacement with Lolium perenne L. (LP). Soil GHG emissions were determined using the static chamber/GC technique.

Results

Understory management did not change the seasonal pattern of soil GHG emissions; however, as compared with the Control, the UR treatment increased soil CO2 and N2O emissions and CH4 uptake, and the MS and LP treatments increased CO2 and N2O emissions and reduced CH4 uptake (P?<?0.05 for all treatment effects, same below). The total global warming potential (GWP) of GHG emissions in the Control, UR, MS, and LP treatments were 36.56, 39.40, 42.36, and 42.99 Mg CO2 equivalent (CO2-e) ha?1 year?1, respectively, with CO2 emission accounting for more than 95 % of total GWP regardless of the understory management treatment. The MS and LP treatments increased soil organic C (SOC), total N (TN), soil water soluble organic C (WSOC) and microbial biomass C (MBC), while the UR treatment decreased SOC, TN and NO3 ?-N but had no effect on WSOC and MBC. Soil GHG emissions were correlated with soil temperature and WSOC across the treatments, but had no relationship with soil moisture content and MBC.

Conclusions

Although replacing competitive understory vegetation with legume or less competitive non-legume species increased soil GHG emissions and total GWP, such treatments also increased soil C and N pools and are therefore beneficial for increasing soil C storage, maintaining soil fertility, and enhancing the productivity of Chinese chestnut plantations.  相似文献   

3.
Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m?2 h?1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m?2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage.  相似文献   

4.
We assessed the effect of biochar incorporation into the soil on the soil-atmosphere exchange of the greenhouse gases (GHG) from an intensive subtropical pasture. For this, we measured N2O, CH4 and CO2 emissions with high temporal resolution from April to June 2009 in an existing factorial experiment where cattle feedlot biochar had been applied at 10 t ha?1 in November 2006. Over the whole measurement period, significant emissions of N2O and CO2 were observed, whereas a net uptake of CH4 was measured. N2O emissions were found to be highly episodic with one major emission pulse (up to 502 ??g N2O-N m?2 h?1) following heavy rainfall. There was no significant difference in the net flux of GHGs from the biochar amended vs. the control plots. Our results demonstrate that intensively managed subtropical pastures on ferrosols in northern New South Wales of Australia can be a significant source of GHG. Our hypothesis that the application of biochar would lead to a reduction in emissions of GHG from soils was not supported in this field assessment. Additional studies with longer observation periods are needed to clarify the long term effect of biochar amendment on soil microbial processes and the emission of GHGs under field conditions.  相似文献   

5.
Effect of water table on greenhouse gas emissions from peatland mesocosms   总被引:2,自引:0,他引:2  
Peatland landscapes typically exhibit large variations in greenhouse gas (GHG) emissions due to microtopographic and vegetation heterogeneity. As many peatland budgets are extrapolated from small-scale chamber measurements it is important to both quantify and understand the processes underlying this spatial variability. Here we carried out a mesocosm study which allowed a comparison to be made between different microtopographic features and vegetation communities, in response to conditions of both static and changing water table. Three mesocosm types (hummocks?+?Juncus effusus, hummocks?+?Eriophorum vaginatum, and hollows dominated by moss) were subjected to two water table treatments (0–5 cm and 30–35 cm depth). Measurements were made of soil-atmosphere GHG exchange, GHG concentration within the peat profile and soil water solute concentrations. After 14 weeks the high water table group was drained and the low water table group flooded. Measurement intensity was then increased to examine the immediate response to change in water table position. Mean CO2, CH4 and N2O exchange across all chambers was 39.8 μg m?2 s?1, 54.7 μg m?2 h?1 and ?2.9 μg m?2 h?1, respectively. Hence the GHG budget was dominated in this case by CO2 exchange. CO2 and N2O emissions were highest in the low water table treatment group; CH4 emissions were highest in the saturated mesocosms. We observed a strong interaction between mesocosm type and water table for CH4 emissions. In contrast to many previous studies, we found that the presence of aerenchyma-containing vegetation reduced CH4 emissions. A significant pulse in both CH4 and N2O emissions occurred within 1–2 days of switching the water table treatments. This pulsing could potentially lead to significant underestimation of landscape annual GHG budgets when widely spaced chamber measurements are upscaled.  相似文献   

6.

Key message

Mixed tree plantations are potential silvicultural systems to increase soil carbon storage through altering litter and root inputs and soil physiochemical properties.

Abstract

Afforestation and reforestation are major strategies for global climate change mitigation. Different tree species composition can induce diverse changes in soil CO2 emission and soil carbon sequestration in tree plantation. This study employed three plantations of monoculture and mixed Pinus yunnanensis and Eucalyptus globulus to estimate the effect of tree species composition on soil CO2 emission and soil organic carbon storage in subtropical China. We found that tree species composition had a significant effect on the soil CO2 emission and soil organic carbon storage. Soil CO2 emission was lower in the mixed plantation than in the P. yunnanensis plantation, whereas it was higher than in the E. globulus plantation. Differences in soil CO2 emission among the three plantations were determined by leaf litterfall mass, fine root biomass, soil available nitrogen, pH, soil bulk density, and soil C:N ratio. Soil organic carbon storage was 34.5 and 23.2 % higher in the mixed plantation than in the P. yunnanensis and E. globulus plantations, respectively. Higher soil organic carbon stock in the mixed plantation was attributed to lower C/N ratio of leaf litter and soil, greater fine root biomass and soil organic carbon content, and lower soil CO2 emission. We conclude that mixed tree plantation can enhance soil carbon sequestration, but can decrease or increase soil CO2 emission through altering litter and root inputs and soil physiochemical properties.
  相似文献   

7.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

8.
Rapid increases in human population and land transformation in arid and semi-arid regions are altering water, carbon (C) and nitrogen (N) cycles, yet little is known about how urban ephemeral stream channels in these regions affect biogeochemistry and trace gas fluxes. To address these knowledge gaps, we measured carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) before and after soil wetting in 16 ephemeral stream channels that vary in soil texture and organic matter in Tucson, AZ. Fluxes of CO2 and N2O immediately following wetting were among the highest ever published (up to 1,588 mg C m?2 h?1 and 3,121 μg N m?2 h?1). Mean post-wetting CO2 and N2O fluxes were significantly higher in the loam and sandy loam channels (286 and 194 mg C m?2 h?1; 168 and 187 μg N m?2 h?1) than in the sand channels (45 mg C m?2 h?1 and 7 μg N m?2 h?1). Factor analyses show that the effect of soil moisture, soil C and soil N on trace gas fluxes varied with soil texture. In the coarser sandy sites, trace gas fluxes were primarily controlled by soil moisture via physical displacement of soil gases and by organic soil C and N limitations on biotic processes. In the finer sandy loam sites trace gas fluxes and N-processing were primarily limited by soil moisture, soil organic C and soil N resources. In the loam sites, finer soil texture and higher soil organic C and N enhance soil moisture retention allowing for more biologically favorable antecedent conditions. Variable redox states appeared to develop in the finer textured soils resulting in wide ranging trace gas flux rates following wetting. These findings indicate that urban ephemeral channels are biogeochemical hotspots that can have a profound impact on urban C and N biogeochemical cycling pathways and subsequently alter the quality of localized water resources.  相似文献   

9.

Aims

This study aimed to determine the influence of different harvest residue management strategies on tree growth, soil carbon (C) concentrations, soil nitrogen (N) availability and ecosystem C stocks 15 years after replanting second rotation Chinese fir (Cunninghamia lanceolata), an important plantation species in subtropical China. Such information is needed for designing improved management strategies for reforestation programmes in subtropical environments aimed at mitigating CO2 emissions.

Methods

Four harvest residue management treatments including slash burning, whole tree, stem-only and double residue retention were applied to sixteen 20 m?×?30 m plots in a randomized complete block design with four replicates. Tree growth was measured annually and soil properties were measured at 3 year intervals over a 15 year period after re-planting.

Results

Cumulative diameter growth at age 15 years was significantly smaller in the slash burning than the whole tree and double residue harvest treatments. Hot water extractable N concentrations increased with the increased organic residue retention levels and significant differences were observed between double residue and slash burning treatments. Harvest residue management had no significant effect on the soil C concentrations to 40 cm depth. ANOVA showed that harvest residue management had no significant effect on total biomass carbon at age 15, but the plantation ecosystem (soil C at 0–40 cm depth plus forest biomass C) had significantly lower C mass in the slash burning treatment compared with whole tree, stem only harvest and double residue harvest treatments.

Conclusions

These observations suggest that organic residue retention during the harvesting could improve the growth and ecosystem C stocks of Chinese fir in second rotation forest plantations in subtropical China and highlight the importance of viewing the ecosystem as a whole when evaluating the impact of harvest residue management on C stocks.  相似文献   

10.
Subtropical China has more than 60% of the total plantation area in China and over 70% of these subtropical plantations are composed of pure coniferous species. In view of low ecosystem services and ecological instability of pure coniferous plantations, indigenous broadleaf plantations are being advocated as a prospective silvicultural management for substituting in place of large coniferous plantations in subtropical China. However, little information is known about the effects of tree species conversion on stock and stability of soil organic carbon (SOC). The four adjacent monospecific plantations were selected to examine the effects of tree species on the stock and chemical composition of SOC using elemental analysis and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. One coniferous plantation was composed of Pinus massoniana (PM), and the three broadleaf plantations were Castanopsis hystrix (CH), Michelia macclurei (MM), and Mytilaria laosensis (ML). We found that SOC stock differed significantly among the four plantations in the upper (0–10 cm) layer, but not in the underneath (10–30 cm) layer. SOC stocks in the upper (0–10 cm) layer were 11, 19, and 18% higher in the CH, MM, and ML plantations than in the PM plantation. The differences in SOC stock among the four plantations were largely attributed to fine root rather than aboveground litterfall input. However, the soils in the broadleaf plantations contained more decomposable C proportion, indicated by lower percentage of alkyl C, higher percentage of O-alkyl C and lower alkyl C/O-alkyl C ratio compared to those in the PM plantation. Our findings highlight that future strategy of tree species selection for substituting in place of large coniferous plantations in subtropical China needs to consider the potential effects of tree species on the chemical composition in addition to the quantity of SOC stock.  相似文献   

11.
Wetlands are biogeochemical hotspots that have been identified as important sites for both nitrogen (N) removal from surface waters and greenhouse gas (GHG) production. Floating vegetation (FV) commonly occurs in natural and constructed wetlands, but the effects of such vegetation on denitrification, N retention, and GHG production are unknown. To address this knowledge gap, we used microcosm experiments to examine how FV affects N and GHG dynamics. Denitrification and N retention rates were significantly higher in microcosms with FV (302 μmol N m?2 h?1 and 203 μmol N m?2 h?1, respectively) than in those without (63 μmol N m?2 h?1 and 170 μmol N m?2 h?1, respectively). GHG production rates were not significantly different between the two treatments. Denitrification rates were likely elevated due to decreased dissolved oxygen (DO) in microcosms with FV. The balance of photosynthesis and respiration was more important in affecting DO concentrations than decreased surface gas exchange. The denitrification fraction (N2-N production: N retention) was higher in microcosms with FV (100 %) than those without (33 %) under increased (tripled) N loading. A 5 °C temperature increase resulted in significantly lower denitrification rates in the absence of FV and significantly lowered N2O production with FV, but did not significantly change CH4 production or N retention in either treatment. These results suggest that intentional introduction of FV in constructed wetlands could enhance N removal while leaving GHG production unchanged, an insight that should be further tested via in situ experiments.  相似文献   

12.
In order to understand the influence of nitrogen (N) deposition on the key processes relevant to the carbon (C) balance in a bamboo plantation, a two-year field experiment involving the simulated deposition of N in a Pleioblastus amarus plantation was conducted in the rainy region of SW China. Four levels of N treatments: control (no N added), low-N (50 kg N ha?1 year?1), medium-N (150 kg N ha?1 year?1), and high-N (300 kg N ha?1 year?1) were set in the present study. The results showed that soil respiration followed a clear seasonal pattern, with the maximum rates in mid-summer and the minimum in late winter. The annual cumulative soil respiration was 585?±?43 g CO2-C m?2 year?1 in the control plots. Simulated N deposition significantly increased the mean annual soil respiration rate, fine root biomass, soil microbial biomass C (MBC), and N concentration in fine roots and fresh leaf litter. Soil respirations exhibited a positive exponential relationship with soil temperature, and a linear relationship with MBC. The net primary production (NPP) ranged from 10.95 to 15.01 Mg C ha?1 year?1 and was higher than the annual soil respiration (5.85 to 7.62 Mg C ha?1 year?1) in all treatments. Simulated N deposition increased the net ecosystem production (NEP), and there was a significant difference between the control and high N treatment NEP, whereas, the difference of NEP among control, low-N, and medium-N was not significant. Results suggest that N controlled the primary production in this bamboo plantation ecosystem. Simulated N deposition increased the C sequestration of the P. amarus plantation ecosystem through increasing the plant C pool, though CO2 emission through soil respiration was also enhanced.  相似文献   

13.
Conversion, drainage, and cultivation of tropical peatlands can change soil conditions, shifting the C balance of these systems, which is important for the global C cycle. We examined the effect of soil organic matter (SOM) quality and nutrients on CO2 production from peat decomposition using laboratory incubations of Indonesian peat soils from undrained forest in Kalimantan and drained oil palm plantations in Kalimantan and Sumatra. We found that oil palm soils had higher C/N and lower SOM quality than forest soils. Higher substrate quality and nutrient availability, particularly lower ratios of aromatic/aliphatic carbon and C/N, rather than total SOM or carbon, explained the higher rate of CO2 production by forest soils (10.80 ± 0.23 µg CO2–C g C h?1) compared to oil palm soils (5.34 ± 0.26 µg CO2–C g C h?1) from Kalimantan. These factors also explained lower rates in Sumatran oil palm (3.90 ± 0.25 µg CO2–C g C h?1). We amended peat with nitrogen (N), phosphorus (P), and glucose to further investigate observed substrate and nutrient constraints across the range of observed peat quality. Available N limited CO2 production, in unamended and amended soils. P addition raised CO2 production when substrate quality was high and initial P state was low. Glucose addition raised CO2 production in the presence of added N and P. Our results suggest that decline in SOM quality and nutrients associated with conversion may decrease substrate-driven rates of CO2 production from peat decomposition over time.  相似文献   

14.

Background and aims

The influences of succession and species diversity on fine root production are not well known in forests. This study aimed to investigate: (i) whether fine root biomass and production increased with successional stage and increasing tree species diversity; (ii) how forest type affected seasonal variation and regrowth of fine roots.

Methods

Sequential coring and ingrowth core methods were used to measure fine root production in four Chinese subtropical forests differing in successional stages and species diversity.

Results

Fine root biomass increased from 262 g·m?2 to 626 g·m?2 with increasing successional stage and species diversity. A similar trend was also found for fine root production, which increased from 86 to 114 g·m?2 yr ?1 for Cunninghamia lanceolata plantation to 211–240 g·m?2 yr ?1 for Choerospondias axillaries forest when estimated with sequential coring data. Fine root production calculated using the ingrowth core data ranged from 186 g·m?2 yr ?1 for C. lanceolata plantation to 513 g·m?2 yr ?1 for Lithocarpus glaber – Cyclobalanopsis glauca forest.

Conclusions

Fine root biomass and production increased along a successional gradient and increasing tree species diversity in subtropical forests. Fine roots in forests with higher species diversity exhibited higher seasonal variation and regrowth rate.  相似文献   

15.

Background and Aims

Tree species composition shifts can alter soil CO2 and N2O effluxes. We quantified the soil CO2 and N2O efflux rates and temperature sensitivity from Pyrenean oak, Scots pine and mixed stands in Central Spain to assess the effects of a potential expansion of oak forests.

Methods

Soil CO2 and N2O effluxes were measured from topsoil samples by lab incubation from 5 to 25 °C. Soil microbial biomass and community composition were assessed.

Results

Pine stands showed highest soil CO2 efflux, followed by mixed and oak forests (up to 277, 245 and 145 mg CO2-C m?2 h?1, respectively). Despite contrasting soil microbial community composition (more fungi and less actinomycetes in pine plots), carbon decomposability and temperature sensitivity of the soil CO2 efflux remain constant among tree species. Soil N2O efflux rates and its temperature sensitivity was markedly higher in oak stands than in pine stands (70 vs. 27 μg N2O-N m?2 h?1, Q10, 4.5 vs. 2.5).

Conclusions

Conversion of pine to oak forests in the region will likely decrease soil CO2 effluxes due to decreasing SOC contents on the long run and will likely enhance soil N2O effluxes. Our results present only a seasonal snapshot and need to be confirmed in the field.  相似文献   

16.
Natural rubber is a valuable source of income in many tropical countries and rubber trees are increasingly planted in tropical areas, where they contribute to land-use changes that impact the global carbon cycle. However, little is known about the carbon balance of these plantations. We studied the soil carbon balance of a 15-year-old rubber plantation in Thailand and we specifically explored the seasonal dynamic of soil CO2 efflux (F S) in relation to seasonal changes in soil water content (W S) and soil temperature (T S), assessed the partitioning of F S between autotrophic (R A) and heterotrophic (R H) sources in a root trenching experiment and estimated the contribution of aboveground and belowground carbon inputs to the soil carbon budget. A multiplicative model combining both T S and W S explained 58 % of the seasonal variation of F S. Annual soil CO2 efflux averaged 1.88 kg C m?2 year?1 between May 2009 and April 2011 and R A and R H accounted for respectively 63 and 37 % of F S, after corrections of F S measured on trenched plots for root decomposition and for difference in soil water content. The 4-year average annual aboveground litterfall was 0.53 kg C m?2 year?1 while a conservative estimate of belowground carbon input into the soil was much lower (0.17 kg C m?2 year?1). Our results highlighted that belowground processes (root and rhizomicrobial respiration and the heterotrophic respiration related to belowground carbon input into the soil) have a larger contribution to soil CO2 efflux (72 %) than aboveground litter decomposition.  相似文献   

17.
Tidal wetlands are productive ecosystems with the capacity to sequester large amounts of carbon (C), but we know relatively little about the impact of climate change on wetland C cycling in lower salinity (oligohaline and tidal freshwater) coastal marshes. In this study we assessed plant production, C cycling and sequestration, and microbial organic matter mineralization at tidal freshwater, oligohaline, and salt marsh sites along the salinity gradient in the Delaware River Estuary over four years. We measured aboveground plant biomass, carbon dioxide (CO2) and methane (CH4) exchange between the marsh and atmosphere, microbial sulfate reduction and methanogenesis in marsh soils, soil biogeochemistry, and C sequestration with radiodating of soils. A simple model was constructed to estimate monthly and annually integrated rates of gross ecosystem production (GEP), ecosystem respiration (ER) to carbon dioxide ( \( {\text{ER}}_{{{\text{CO}}_{2} }} \) ) or methane ( \( {\text{ER}}_{{{\text{CH}}_{4} }} \) ), net ecosystem production (NEP), the contribution of sulfate reduction and methanogenesis to ER, and the greenhouse gas (GHG) source or sink status of the wetland for 2 years (2007 and 2008). All three marsh types were highly productive but evidenced different patterns of C sequestration and GHG source/sink status. The contribution of sulfate reduction to total ER increased along the salinity gradient from tidal freshwater to salt marsh. The Spartina alterniflora dominated salt marsh was a C sink as indicated by both NEP (~140 g C m?2 year?1) and 210Pb radiodating (336 g C m?2 year?1), a minor sink for atmospheric CH4, and a GHG sink (~620 g CO2-eq m?2 year?1). The tidal freshwater marsh was a source of CH4 to the atmosphere (~22 g C–CH4 m?2 year?1). There were large interannual differences in plant production and therefore C and GHG source/sink status at the tidal freshwater marsh, though 210Pb radiodating indicated modest C accretion (110 g C m?2 year?1). The oligohaline marsh site experienced seasonal saltwater intrusion in the late summer and fall (up to 10 mS cm?1) and the Zizania aquatica monoculture at this site responded with sharp declines in biomass and GEP in late summer. Salinity intrusion was also linked to large effluxes of CH4 at the oligohaline site (>80 g C–CH4 m?2 year?1), making this site a significant GHG source (>2,000 g CO2-eq m?2 year?1). The oligohaline site did not accumulate C over the 2 year study period, though 210Pb dating indicated long term C accumulation (250 g C m?2 year?1), suggesting seasonal salt-water intrusion can significantly alter C cycling and GHG exchange dynamics in tidal marsh ecosystems.  相似文献   

18.
There is little information available regarding seasonal and annual variations in soil CO2 efflux from Korean Larch plantations, which are an important component of forests’ carbon balance in temperate China. In this study, the soil respiration rate (R s), soil temperature (T 10) and soil moisture (SM10) at 10 cm depth were observed in a Korean Larch (Larix olgensis Herry.) plantation in Northeast China from 2008 to 2012. Mean R s in growing season (GS) varied greatly, ranged from 2.32 ± 0.08 to 3.88 ± 0.09 μmol CO2 m?2 s?1 (mean ± SE) over the period of 2008–2012. In comparison with T-model, the increase of explained variability by applying both T 10 and SM10 to the T-M model is very small. It is indicated that R s was controlled largely by T 10 in the present study. By accounting for 22.2 and 17.7 % of the total soil CO2 emissions in 2010/2011 and 2011/2012, respectively, the soil CO2 efflux in dormant season (DS) was an essential component of the total soil CO2 efflux. The Q 10 value in the study period was always smaller for GS than DS, suggesting that soil carbon cycling may be more sensitive to the temperature changes at low than at high temperature range. These results indicated that climate changes may have great potential impacts on temperate Larch plantations in Northeast China, owing to soil carbon emissions of Larch plantation during the long period of DS being more sensitive to T 10 than in GS, and played a significant role in the annual forest ecosystems carbon budget.  相似文献   

19.
Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3–1.3 kg N2O–N ha?1 a?1 and 1.5–5.2 kg NO–N ha?1 a?1. Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O–N ha?1 a?1 and 4.3 kg NO–N ha?1 a?1) than smallholder tea plantations (0.1 kg N2O–N ha?1 a?1 and 2.1 kg NO–N ha?1 a?1) or grazing land (0.1 kg N2O–N ha?1 a?1 and 1.1 kg NO–N ha?1 a?1). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils.  相似文献   

20.
Currently, there is a lack of knowledge about GHG emissions, specifically N2O and CH4, in subtropical coastal freshwater wetland and mangroves in the southern hemisphere. In this study, we quantified the gas fluxes and substrate availability in a subtropical coastal wetland off the coast of southeast Queensland, Australia over a complete wet-dry seasonal cycle. Sites were selected along a salinity gradient ranging from marine (34 psu) in a mangrove forest to freshwater (0.05 psu) wetland, encompassing the range of tidal influence. Fluxes were quantified for CH4 (range ?0.4–483 mg C–CH4 h?1 m?2) and N2O (?5.5–126.4 μg N–N2O h?1 m?2), with the system acting as an overall source for CH4 and N2O (mean N2O and CH4 fluxes: 52.8 μg N–N2O h?1 m?2 and 48.7 mg C–CH4 h?1 m?2, respectively). Significantly higher N2O fluxes were measured during the summer months (summer mean 64.2 ± 22.2 μg N–N2O h?1 m?2; winter mean 33.1 ± 24.4 µg N–N2O h–1 m?2) but not CH4 fluxes (summer mean 30.2 ± 81.1 mg C–CH4 h?1 m?2; winter mean 37.4 ± 79.6 mg C–CH4 h?1 m?2). The changes with season are primarily driven by temperature and precipitation controls on the dissolved inorganic nitrogen (DIN) concentration. A significant spatial pattern was observed based on location within the study site, with highest fluxes observed in the freshwater tidal wetland and decreasing through the mangrove forest. The dissolved organic carbon (DOC) varied throughout the landscape and was correlated with higher CH4 fluxes, but this was a nonlinear trend. DIN availability was dominated by N–NH4 and correlated to changes in N2O fluxes throughout the landscape. Overall, we did not observe linear relationships between CH4 and N2O fluxes and salinity, oxygen or substrate availability along the fresh-marine continuum, suggesting that this ecosystem is a mosaic of processes and responses to environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号