首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The Malpighiaceae are a family of ~1250 species of predominantly New World tropical flowering plants. Infrafamilial classification has long been based on fruit characters. Phylogenetic analyses of chloroplast DNA nucleotide sequences were analyzed to help resolve the phylogeny of Malpighiaceae. A total of 79 species, representing 58 of the 65 currently recognized genera, were studied. The 3' region of the gene ndhF was sequenced for 77 species and the noncoding intergenic spacer region trnL-F was sequenced for 65 species; both sequences were obtained for the outgroup, Humiria (Humiriaceae). Phylogenetic relationships inferred from these data sets are largely congruent with one another and with results from combined analyses. The family is divided into two major clades, recognized here as the subfamilies Byrsonimoideae (New World only) and Malpighioideae (New World and Old World). Niedenzu's tribes are all polyphyletic, suggesting extensive convergence on similar fruit types; only de Jussieu's tribe Gaudichaudieae and Anderson's tribes Acmanthereae and Galphimieae are monophyletic. Fleshy fruits evolved three times in the family and bristly fruits at least three times. Among the wing-fruited vines, which constitute more than half the diversity in the family, genera with dorsal-winged samaras are fairly well resolved, while the resolution of taxa with lateral-winged samaras is poor. The trees suggest a shift from radially symmetrical pollen arrangement to globally symmetrical pollen at the base of one of the clades within the Malpighioideae. The Old World taxa fall into at least six and as many as nine clades.  相似文献   

2.
Valerianaceae is a relatively small (ca. 350 species), but morphologically diverse angiosperm clade. Sequence data from the entire ndhF gene, the trnL-F intergenic spacer region, the trnL intron, the matK region, the rbcL-atpB intergenic spacer region and internal transcribed spacer (ITS) region of nuclear ribosomal DNA were collected for 21 taxa within Dipsacaceae and Valerianaceae (1 and 20, respectively). These data were included in several phylogenetic analyses with previously published sequences from Dipsacales. Results from these analyses (maximum parsimony, maximum likelihood, and Bayesian analysis) are in strong agreement with many of the conclusions from previous studies, most importantly: (1) Valerianaceae is sister to Dipsacaceae; (2) Triplostegia is more closely related to species of Dipsacaceae than to Valerianaceae; and (3) Valeriana appears not to be monophyletic, with Valeriana celtica falling outside the remainder of the species of Valeriana sampled here (with very strong support). With the exception of V. celtica, these data support two major clades within Valeriana; one that is exclusively New World and another that is distributed in both the Old and New World. Although the species of Valerianaceae and its sister group Dipsacaceae plus Triplostegia, are widely distributed in the Northern Hemisphere, and the data imply that Valerianaceae diversified initially in Asia (the Himalayan Patrinia and Nardostachys falling at the base of the clade), the center of modern species diversity for the group is in the Andes of South America with as many as 175 species restricted to that region. Although the exclusively South American taxa form a clade in the chloroplast and combined ITS and chloroplast analyses, support values tend to be low. Future studies will need to include additional data, in the form of both characters and taxa, before any strong conclusions about the character evolution, diversification, and biogeography of the South American valerians can be made.  相似文献   

3.
Parsimony, likelihood, and Bayesian analyses of nuclear ITS and plastid trnL-F DNA sequence data are presented for the giant genus Croton (Euphorbiaceae s.s.) and related taxa. Sampling comprises 88 taxa, including 78 of the estimated 1223 species and 29 of the 40 sections previously recognized of Croton. It also includes the satellite genus Moacroton and genera formerly placed in tribe Crotoneae. Croton and all sampled segregate genera form a monophyletic group sister to Brasiliocroton, with the exception of Croton sect. Astraea, which is reinstated to the genus Astraea. A small clade including Moacroton, Croton alabamensis, and C. olivaceus is sister to all other Croton species sampled. The remaining Croton species fall into three major clades. One of these is entirely New World, corresponding to sections Cyclostigma, Cascarilla, and Velamea sensu Webster. The second is entirely Old World and is sister to a third, also entirely New World clade, which is composed of at least 13 of Webster's sections of Croton. This study establishes a phylogenetic framework for future studies in the hyper-diverse genus Croton, indicates a New World origin for the genus, and will soon be used to evaluate wood anatomical, cytological, and morphological data in the Crotoneae tribe.  相似文献   

4.
This study presented the first molecular phylogenetic analysis of the major clades of woody bamboos of the Old World tropics based on nuclear and chloroplast sequences (ITS, GBSSI and trnL-F). Sequence data from 53 species, representing 17 paleotropical woody bamboo genera, were analyzed using the maximum parsimony and Bayesian inference methods. All examined ingroup taxa were clustered into two clades, i.e., the Bambusinae+Dinochloa clade and the Melocanninae clade. The former clade included Bambusa, Bonia, Dendrocalamus, Dendrocalamopsis, Dinochloa, Gigantochloa, Molecalamus, Neomicrocalamus, Neosinocalamus, Oxytenanthera s. str. (sensu stricto), Racemobambos and Thyrsostachys. The Melocanninae clade consisted of Cephalostachyum, Leptocanna (better treated as part of Cephalostachyum), Melocanna, Pseudostachyum and Schizostachyum s. str. The subtribe Racemobambosinae and tribes Dendrocalameae and Oxytenanthereae were not supported and may be better placed in subtribe Bambusinae. The ovary characters seemed to be good criteria to distinguish these two clades. The reconstruction of ancestral fruit characters indicated that the bacoid caryopsis, namely, fleshy or berry-like fruits, was found to be scattered in three lineages of the examined paleotropical woody bamboos. Fruit characters are thus not reliable indicators of phylogeny and bacoid caryopsis likely represents a specialization for particular ecological conditions.  相似文献   

5.
Analyses of ribosomal ITS and chloroplast trnL-F sequences provide phylogenetic reconstruction for the festucoids (Poeae: Loliinae), a group of temperate grasses with morphological and molecular affinities to the large genus Festuca. Parsimony and Bayesian analyses of the combined ITS/trnL-F dataset show Loliinae to be monophyletic but unresolved for a weakly supported clade of 'broad-leaved Festuca,' a well-supported clade of 'fine-leaved Festuca,' and Castellia. The first group includes subgenera Schenodorus, Drymanthele, Leucopoa, and Subulatae, and sections Subbulbosae, Scariosa, and Pseudoscariosa of Festuca, plus Lolium and Micropyropsis. The second group includes sections Festuca, Aulaxyper, Eskia, and Amphigenes of Festuca, plus Vulpia, Ctenopsis, Psilurus, Wangenheimia, Cutandia, Narduroides, and Micropyrum. Subtribes Dactylidinae and Cynosurinae/Parapholiinae are sister clades and are the closest relatives of Loliinae. Vulpia is polyphyletic within the 'fine-leaved' fescues as revealed by the two genome analyses. Lolium is resolved as monophyletic in the ITS and combined analyses, but unresolved in the trnL-F based tree. Conflict between the ITS and the trnL-F trees in the placement of several taxa suggests the possibility of past reticulation events, although lineage sorting and possible ITS paralogy cannot be ruled out.  相似文献   

6.
The parrotbills (Paradoxornithidae, meaning "birds of paradox," Aves) are a group of Old World passerines with perplexing taxonomic histories due to substantial morphological and ecological variation at various levels. In this study, phylogenetic relationships of the parrotbills were reconstructed based on sequences of two mitochondrial segments and three nuclear coding regions. Three major clades with characteristic body size and plumage coloration were found in both mtDNA and nuclear gene trees. However, mtDNA phylogeny suggested that the Paradoxornithidae is paraphyletic and relationships among three major parrotbill clades were poorly resolved. On the contrary, apparent and well-supported monophyletic relationships among the three major clades of Paradoxornithidae were revealed by concatenated nuclear dataset. Since paraphyly based on mtDNA data has commonly been found within avian taxa, the conflicting phylogenetic signal between mtDNA and nuclear loci revealed in this study indicates that results obtained from mtDNA dataset alone need to be evaluated with caution. Taxonomic implications of our phylogenetic findings are discussed. These phylogenies also point out areas for future investigation regarding the rapid diversification, morphological evolution and environmental adaptation of various parrotbill species or species complexes.  相似文献   

7.
Meve U  Liede S 《Annals of botany》2004,93(4):407-414
BACKGROUND AND AIMS: The number of genera included in Apocynaceae subfamily Periplocoideae is a matter of debate. DNA sequences are used here as an independent dataset to clarify generic relationships and classification of the tuberous periplocoid genera and to address the question of the phylogenetic interpretation of pollinia formation in Schlechterella. METHODS: Representatives of nearly all African and Malagasy genera of Periplocoideae possessing root tubers were analysed using ITS and plastid DNA sequence characters. RESULTS: Sequence data from non-coding molecular markers (ITS of nrDNA and the trnT-L and trnL-F spacers as well as the trnL intron of plastid DNA) give support for a broad taxonomic concept of Raphionacme including Pentagonanthus. Together with Schlechterella, which is sister to Raphionacme, all Raphionacme-like taxa form a derived monophyletic group of somewhat diverse species. Sister to the Schlechterella/Raphionacme clade is a clade comprising Stomatostemma and the not truly tuberous vine Mondia. In the combined analysis, sister to these two clades combined is a clade formed by Petopentia natalensis and Periploca. CONCLUSIONS: The recent inclusion of the monotypic South African Petopentia in the monotypic Malagasy endemic Ischnolepis is to be rejected. The Malagasy Camptocarpus is sister to the remainder of Periplocoideae in the ITS and combined analyses, and a Malagasy origin for the subfamily is discussed.  相似文献   

8.
The tropical Asian taxa of the species‐rich genus Solanum (Solanaceae) have been less well studied than their highly diverse New World relatives. Most of these tropical Asian species, including the cultivated brinjal eggplant/aubergine and its wild progenitor, are part of the largest monophyletic Solanum lineage, the ‘spiny solanums’ (subgenus Leptostemonum or the Leptostemonum clade). Here we present the first phylogenetic analysis of spiny solanums that includes broad sampling of the tropical Asian species, with 42 of the 56 currently recognized species represented. Two nuclear and three plastid regions [internal transcribed spacer (ITS), waxy, ndhF‐rpL32, trnS‐trnG and trnT‐trnF] were amplified and used to reconstruct phylogenetic relationships using maximum likelihood and Bayesian methods. Our analyses show that Old World spiny solanums do not resolve in a single clade, but are part of three unrelated lineages, suggesting at least three independent introductions from the New World. We identify and describe several monophyletic groups in Old World solanums that have not been previously recognized. Some of these lineages are coherent in terms of morphology and geography, whereas others show considerable morphological variation and enigmatic distribution patterns. Tropical Asia occupies a key position in the biogeography of Old World spiny solanums, with tropical Asian taxa resolved as the closest relatives of diverse groups of species from Australia and Africa.  相似文献   

9.
Scrophulariaceae is one of the families that has been divided extensively due to the results of DNA sequence studies. One of its segregates is a vastly enlarged Plantaginaceae. In a phylogenetic study of 47 members of Plantaginaceae and seven outgroups based on 3561 aligned characters from four DNA regions (the nuclear ribosomal ITS region and the plastid trnL-F, rps16 intron, and matK-trnK intron regions), the relationships within this clade were analyzed. The results from parsimony and Bayesian analyses support the removal of the Lindernieae from Gratioleae to a position outside Plantaginaceae. A group of mainly New World genera is paraphyletic with respect to a clade of Old World genera. Among the New World taxa, those offering oil as a pollinator reward cluster together. Ourisia is sister to this clade. Gratioleae consist of Gratiola, Otacanthus, Bacopa, Stemodia, Scoparia, and Mecardonia. Cheloneae plus Russelia and Tetranema together constitute the sister group to a clade predominantly composed of Old World taxa. Among the Old World clade, Ellisiophyllum and Lafuentea have been analyzed for the first time in a molecular phylogenetic analysis. The former genus is sister to Sibthorpia and the latter is surprisingly the sister to Antirrhineae.  相似文献   

10.
Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA (nrDNA) were used to examine the phylogeny of East Asian aconites. Individual aconites were discovered to contain as many as eight different ITS sequences after cloning and PCR-SSCP (single-stranded conformational polymorphisms) analysis. We identified eight putative ITS pseudogenes from four taxa with low predicted secondary structure stability and high substitution rates. Maximum likelihood (ML) and neighbor-joining (NJ) methods were used for phylogenetic reconstruction. The ITS trees agree with the previous chloroplast DNA (cpDNA) tree for the vast majority of the taxa. We found two East Asian clades in the ITS trees: 1) a clade with the Chinese diploid,Aconitum volubile and East Asian tetraploids, and 2) a clade of East Asian diploids and Siberian tetraploids. In the former clade, most tetraploid taxa appear to be polyphyletic; sequences from individual plants did not correspond to recognized taxonomic units. This indicates a recent divergence of the East Asian tetraploids.  相似文献   

11.
Bignoniaceae are woody, trees, shrubs, and lianas found in all tropical floras of the world with lesser representation in temperate regions. Phylogenetic analyses of chloroplast sequences (rbcL, ndhF, trnL-F) were undertaken to infer evolutionary relationships in Bignoniaceae and to revise its classification. Eight clades are recognized as tribes (Bignonieae, Catalpeae, Coleeae, Crescentieae, Jacarandeae, Oroxyleae, Tecomeae, Tourrettieae); additional inclusive clades are named informally. Jacarandeae and Catalpeae are resurrected; the former is sister to the rest of the family, and the latter occupies an unresolved position within the "core" Bignoniaceae. Tribe Eccremocarpeae is included in Tourrettieae. Past classifications recognized a large Tecomeae, but this tribe is paraphyletic with respect to all other tribes. Here Tecomeae are reduced to a clade of approximately 12 genera with a worldwide distribution in both temperate and tropical ecosystems. Two large clades, Bignonieae and Crescentiina, account for over 80% of the species in the family. Coleeae and Crescentieae are each included in larger clades, the Paleotropical alliance and Tabebuia alliance, respectively; each alliance includes a grade of taxa assigned to the traditional Tecomeae. Parsimony inference suggests that the family originated in the neotropics, with at least five dispersal events leading to the Old World representatives.  相似文献   

12.
The Vernonieae is one of the major tribes of the largest family of flowering plants, the sunflower family (Compositae or Asteraceae), with ca. 25,000 species. While the family's basal members (the Barnadesioideae) are found in South America, the tribe Vernonieae originated in the area of southern Africa/Madagascar. Its sister tribe, the Liabeae, is New World, however. This is the only such New/Old World sister tribe pairing anywhere in the family. The Vernonieae is now found on islands and continents worldwide and includes more than 1500 taxa. The Vernonieae has been called the "evil tribe" because overlapping character states make taxonomic delimitations difficult at all levels from the species to the subtribe for the majority of taxa. Juxtaposed with these difficult-to-separate entities are monotypic genera with highly distinctive morphologies and no obvious affinities to any other members of the tribe. The taxonomic frustration generated by these contrary circumstances has resulted in a lack of any phylogeny for the tribe until now. A combined approach using DNA sequence data from two chloroplast regions, the ndhF gene and the noncoding spacer trnL-F, and from the nuclear rDNA ITS region for 90 taxa from throughout the world was used to reconstruct the evolutionary history of the tribe. The data were analyzed separately and in combination using maximum parsimony (MP), minimum evolution neighbor-joining (NJ), and Bayesian analysis, the latter producing the best resolved and most strongly supported tree. In general, the phylogeny shows Old World taxa to be basal and New World taxa to be derived, but this is not always the case. Old and New World species are found together in two separate and only distantly related clades. This is best explained by long-distance dispersal with a minimum of two trans-oceanic exchanges. Meso/Central America has had an important role in ancient dispersals between the Old and New World and more recent movements from South to North America in the New World.  相似文献   

13.
The nasute termite genus Nasutitermes is widely distributed over all tropical regions. The phylogenetic relationships among 17 Nasutitermes species from the Pacific tropics were inferred from sequences of mitochondrial cytochrome oxidase II and 16S ribosomal RNA genes. Several methods of analysis yielded phylogenetic trees showing almost the same topology and in good agreement with reconstructions based on morphological or behavioral characters. Neotropical and Australian species came out as separate, apical clades. Asian species split between an apical branch, appearing as sister group to the neotropical clade, and basal taxa. New Guinean species were spread among several clades, suggesting a derivation from multiple origins. A well-supported clade includes the neotropical, Australian, and New Guinean species, with the southeast Asian N. takasagoensis and N. matangensis. It excludes the Asian species N. regularis, N. parvonasutus, and N. longinasus, which might deserve to be removed from Nasutitermes, as well as the long-legged Asian genera Hospitalitermes and Longipeditermes. A Gondwanan origin is proposed for the former clade, although an Old World origin of Nasutitermes followed by dispersal to Australia and South America cannot be excluded.  相似文献   

14.
The delimitation of the invasive moss species Campylopus introflexus from its closest relative, Campylopus pilifer, has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that C. pilifer is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and C. introflexus. Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2. ITS1 separates the New World clade of C. pilifer from a clade comprising C. introflexus and the Old World C. pilifer. Ancestral state reconstruction showed that this topology is morphologically supported by differences in the height of the dorsal costal lamellae in leaf cross‐section (despite some overlap). ITS2, in contrast, supports the current morphological species concept, i.e., separating C. introflexus from C. pilifer, which is morphologically supported by the orientation of the hyaline hair point at leaf apex as well as costal lamellae height. Re‐analysis of published and newly generated plastid atpB‐rbcL spacer sequences supported the three ITS lineages. Ecological niche modeling proved a useful approach and showed that all three molecular lineages occupy distinct environmental spaces that are similar, but undoubtedly not equivalent. In line with the ITS1 topology, the C. pilifer lineage from the New World occupies the most distinct environmental niche, whereas the niches of Old World C. pilifer and C. introflexus are very similar. Taking the inferences from ecological niche comparisons, phylogenetics, and morphology together, we conclude that all three molecular lineages represent different taxa that should be recognized as independent species, viz. C. introflexus, C. pilifer (Old World clade), and the reinstated C. lamellatus Mont. (New World clade).  相似文献   

15.
Nucleotide sequences of the plastidmatK gene and nuclear rDNA internal transcribed spacer region were sampled fromAstragalus L. (Fabaceae), and its closest relatives within tribe Galegeae, to infer phylogenetic relationships and estimate ages of diversification. Consistent with previous studies that emphasized sampling for nrDNA ITS primarily within either New World or Old World species groups,Astragalus, with the exception of a few morphologically distinct species, is strongly supported as monophyletic based on maximum parsimony and Bayesian analyses ofmatK sequences as well as a combined sequence dataset. ThematK data provides better resolution and stronger clade support for relationships amongAstragalus and traditionally related genera than nrDNA ITS.Astragalus sensu stricto plus the genusOxytropis are strongly supported as sister to a clade composed of strictly Old World (African, Australasian) genera such asColutea. Sutherlandia, Lessertia, Swainsona, andCarmichaelia, plus several morphologically distinct segregates of EurasianAstragalus. Ages of these clades and rates of nucleotide substitution estimated from a fossil-constrained, rate-smoothed, Bayesian analysis ofmatK sequences sampled from Hologalegina indicateAstragalus diverged from its sister group,Oxtropis, 12–16 Ma, with divergence of Neo-Astragalus beginning ca 4.4. Ma. Estimates of absolute rates of nucleotide substitution forAstragalus and sister groups, which range from 8.9 to 10.2×10−10 substitutions per site per year, are not unusual when compared to those estimated for other, mainly temperate groups of papilionoid legumes. The results of previously published work and other recent developments on the phylogenetic relationships and diversification ofAstragalus are reviewed.  相似文献   

16.
Phylogeny reconstruction is challenging when branch lengths vary and when different genetic loci show conflicting signals. The number of DNA sequence characters required to obtain robust support for all the nodes in a phylogeny becomes greater with denser taxon sampling. We test the usefulness of an approach mixing densely sampled, variable non-coding sequences (trnL-F; rpl16; atpB-rbcL; ITS) with sparsely sampled, more conservative protein coding and ribosomal sequences (matK; ndhF; rbcL; 26S), for the grass subfamily Danthonioideae. Previous phylogenetic studies of Danthonioideae revealed extensive generic paraphyly, but were often impeded by insufficient character and taxon sampling and apparent inter-gene conflict. Our variably-sampled supermatrix approach allowed us to represent 79% of the species with up to c. 9900 base pairs for taxa representing the major clades. A 'taxon duplication' approach for taxa with conflicting phylogenetic signals allowed us to combine the data whilst representing the differences between chloroplast and nuclear encoded gene trees. This approach efficiently improves resolution and support whilst maximising representation of taxa and their sometimes composite evolutionary histories, resulting in a phylogeny of the Danthonioideae that will be useful both for a wide range of evolutionary studies and to inform forthcoming realignment of generic delimitations in the subfamily.  相似文献   

17.
This study uses phylogenetic relationships of New World representatives of the species-rich genus Astragalus (Leguminosae; Papilionoideae) to follow up on recent evidence pointing to rapid and recent plant diversification patterns in the Andes. Bayesian and maximum likelihood phylogenetic analyses were done using nuclear rDNA ITS and chloroplast spacers trnD-trnT and trnfM-trnS1, either separately or in combination. The effect of using partitioned vs. nonpartitioned analyses in a Bayesian approach was evaluated. Highest resolution was obtained when the data were combined in partitioned or nonpartitioned Bayesian analyses. All phylogenies support two clades of South American species nested within the North American species, implying two separate invasions from North to South America. These two clades correspond to the original morphological classification of Johnston (1947 Journal of the Arnold Arboretum 28: 336-409). The mean ages of the South American clades were very recent but still significantly different (1.89 and 0.98 Ma). Upper and lower bounds on rates of diversification varied between 2.01 and 0.65 species/Ma for the older clade and 2.06 and 1.24 species/Ma for the younger clade. Even the lower bounds are still very high, reasserting Neo-Astragalus in the growing list of recent rapid radiations of plants, especially in areas with a high physiographic diversity, such as the Andes.  相似文献   

18.
Peintner U  Moncalvo JM  Vilgalys R 《Mycologia》2004,96(5):1042-1058
Research on the molecular systematics of Cortinarius, a species-rich mushroom genus with nearly global distribution, is just beginning. The present study explores infrageneric relationships using rDNA ITS and LSU sequence data. One large dataset of 132 rDNA ITS sequences and one combined da-taset with 54 rDNA ITS and LSU sequences were generated. Hebeloma was used as outgroup. Bayesian analyses and maximum-likelihood (ML) analyses were carried out. Bayesian phylogenetic inference performed equally well or better than ML, especially in large datasets. The phylogenetic analysis of the combined dataset with species representing all currently recognized subgenera recovered seven well-supported clades (Bayesian posterior probabilities BPP > 90%). These major clades are: /Myxacium s.l., /subg. Cortinarius, the /phlegmacioid clade (including the subclades /Phlegmacium and /Delibuti), the /calochroid clade (/Calochroi, /Ochroleuci and /Allutus), the /telamonioid clade (/Telamonia, /Orellani, /Anomali), /Dermocybe s.l. and /Myxotelamonia. Our results show that Cortinarius consists of many lineages, but the relationships among these clades could not be elucidated. On one hand, the low divergence in rDNA sequences can be held responsible for this; on the other hand, taxon sampling is problematic in Cortinarius phylogeny. Because of the incredibly high diversity (~2000 Cortinarius species), our sampling included <5% of the known species. By choosing type species of subgenera and sections, our sampling is strongly biased toward Northern Hemisphere taxa. More extensive taxon sampling, especially of species from the Southern Hemisphere, is essential to resolve the phylogeny of this important genus of ectomycorrhizal fungi.  相似文献   

19.
The genus Crinum L. is the only pantropical genus of the Amaryllidaceae. Phylogenetic and biogeographical analyses of nrDNA ITS and plastid trnL-F sequences for all continental groups of the genus Crinum and related African genera are presented, with the genus Amaryllis used as outgroup. ITS indicates that C. baumii is more closely related to Ammocharis and Cybistetes than to Crinum sensu stricto . Three clades are resolved in Crinum s.s. One unites a monophyletic American group with tropical and North African species. The second includes all southern African species and the Australian endemic C. flaccidum . The third includes monophyletic Madagascar, Australasian and Sino-Himalayan clades, with southern African species. The trnL-F phylogeny resolves an American and an Asian/Madagscar clade, and confirms the relationship of C. flaccidum with species endemic to southern Africa. The salverform, actinomorphic perianths of subg. Crinum appear to have evolved several times in the genus from ancestors with zygomorphic perianths (subg. Codonocrinum ), thus neither subgenus is monophyletic. Biogeographical analyses place the origin of Crinum in southern Africa, as the region is optimized at all ancestral nodes in the tree topology, and in basal interior nodes of all but one of the major clades. The genus underwent three major waves of radiation corresponding to the three main clades resolved in our trees. Two entries into Australia for the genus are indicated, as are separate Sino-Himalayan and Australasian dispersal events.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 141 , 349–363.  相似文献   

20.
Individual plants of several Amelanchier taxa contain many polymorphic nucleotide sites in the internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA). This polymorphism is unusual because it is not recent in origin and thus has resisted homogenization by concerted evolution. Amelanchier ITS sequence polymorphism is hypothesized to be the result of gene flow between two major North American clades resolved by phylogenetic analysis of ITS sequences. Western North American species plus A. humilis and A. sanguinea of eastern North America form one clade (A), and the remaining eastern North American Amelanchier make up clade B. Five eastern North American taxa are polymorphic at many of the nucleotide sites where clades A and B have diverged and are thought to be of hybrid origin, with A. humilis or A. sanguinea as one parent and various members of clade B as the other parent. Morphological evidence suggests that A. humilis is one of the parents of one of the polymorphic taxa, a microspecies that we refer to informally as A. "erecta." Sequences of 21 cloned copies of the ITS1- 5.8S gene-ITS2 region from one A. "erecta" individual are identical to A. humilis sequence or to the clade B consensus sequence, or they are apparent recombinants of A. humilis and clade B ITS repeats. Amelanchier "erecta" and another polymorphic taxon are suspected to be relatively old because both grow several hundred kilometers beyond the range of one of their parents. ITS sequence polymorphisms have apparently persisted in these two taxa perhaps because of polyploidy and/or agamospermy (asexual seed production), which are prevalent in the genus.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号