首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: Tolerance of complete submergence is recognized in a small number of accessions of domesticated Asian rice (Oryza sativa) and can be conferred by the Sub1A-1 gene of the polygenic Submergence-1 (Sub1) locus. In all O. sativa varieties, the Sub1 locus encodes the ethylene-responsive factor (ERF) genes Sub1B and Sub1C. A third paralogous ERF gene, Sub1A, is limited to a subset of indica accessions. It is thought that O. sativa was domesticated from the gene pools of the wild perennial species O. rufipogon Griff. and/or the annual species O. nivara Sharma et Shastry. The aim of this study was to evaluate the orthologues of the Sub1 locus in the closest relatives of O. sativa to provide insight into the origin of the gene and allelic variation of the Sub1 locus. METHODS: Orthologues of the Sub1 genes were isolated from O. rufipogon and O. nivara by use of oligonucleotide primers corresponding to the most highly conserved regions of the Sub1 genes of domesticated rice. The phylogenetic relatedness of Sub1 genes of O. sativa and its wild relatives was evaluated. KEY RESULTS AND CONCLUSIONS: Both O. rufipogon and O. nivara possess two Sub1 gene orthologues with strong sequence identity to the Sub1B and Sub1C alleles of cultivated rice. The phylogeny of the Sub1 genes of the domesticated and wild rice suggests that Sub1A arose from duplication of Sub1B. Variation in Sub1B alleles is correlated with the absence or presence of Sub1A. Together, the results indicate that genetic variation at the Sub1 locus is due to gene duplication and divergence that have occurred both prior to and after rice domestication.  相似文献   

2.
Varying degrees of reduction of genetic diversity in crops relative to their wild progenitors occurred during the process of domestication. Such information, however, has not been available for the Asian cultivated rice (Oryza sativa) despite its importance as a staple food and a model organism. To reveal levels and patterns of nucleotide diversity and to elucidate the genetic relationship and demographic history of O. sativa and its close relatives (Oryza rufipogon and Oryza nivara), we investigated nucleotide diversity data from 10 unlinked nuclear loci in species-wide samples of these species. The results indicated that O. rufipogon and O. nivara possessed comparable levels of nucleotide variation ((sil) = 0.0077 approximately 0.0095) compared with the relatives of other crops. In contrast, nucleotide diversity of O. sativa was as low as (sil) = 0.0024 and even lower ((sil) = 0.0021 for indica and 0.0011 for japonica), if we consider the 2 subspecies separately. Overall, only 20-10% of the diversity in the wild species was retained in 2 subspecies of the cultivated rice (indica and japonica), respectively. Because statistic tests did not reject the assumption of neutrality for all 10 loci, we further used coalescent to simulate bottlenecks under various lengths and population sizes to better understand the domestication process. Consistent with the dramatic reduction in nucleotide diversity, we detected a severe domestication bottleneck and demonstrated that the sequence diversity currently found in the rice genome could be explained by a founding population of 1,500 individuals if the initial domestication event occurred over a 3,000-year period. Phylogenetic analyses revealed close genetic relationships and ambiguous species boundary of O. rufipogon and O. nivara, providing additional evidence to treat them as 2 ecotypes of a single species. Lowest linkage disequilibrium (LD) was found in the perennial O. rufipogon where the r(2) value dropped to a negligible level within 400 bp, and the highest in the japonica rice where LD extended to the entirely sequenced region ( approximately 900 bp), implying that LD mapping by genome scans may not be feasible in wild rice due to the high density of markers needed.  相似文献   

3.
段世华  李绍清  李阳生  熊云  朱英国 《遗传》2007,29(4):455-461
水稻线粒体基因组嵌合基因orf79 和 orfH79分别被认为与BT-型和HL-型水稻CMS有关, 两者具有98%的同源性, 并且其DNA序列只存在4核苷酸的差异。对于这两个嵌合基因, 前者来源于栽培稻(Oryza. sativa L.), 而后者则来源于普通野生稻(O. rufipogon Griff.)。这意味着orf79/ orfH79可能在广泛分布于稻属AA基因组中。为了调查orf79/ orfH79在稻属物种中的分布和变异, 190份栽培稻品系[包括156份亚洲栽培稻(O. sativa var. landrace)和34份非洲栽培稻(O. glaberrima)]以及104份稻属AA基因组野生稻品系(包括O. rufipogon、O.nivara、O. glumaepatula、O. barthii、O. longistaminata和O. meridionalis 6个种), 被用于PCR扩增检测。31份具有控制粤泰A和笹锦A的特异片段的稻属AA基因组水稻品系被检测出。所有特异片段均被回收并测序, 基于DNA 序列的聚类结果显示31份水稻材料被分成了两组, 分别代表为BT-型和HL-型水稻不育细胞质组群。结果也进一步表明: HL-型水稻CMS胞质主要分布于一年生的O. nivara中; BT-型水稻CMS胞质可能来源于栽培稻变种或多年生野生稻O. rufipogon。  相似文献   

4.
We determined the complete nucleotide sequence of the chloroplast genome of wild rice, Oryza nivara and compared it with the corresponding published sequence of relative cultivated rice, Oryza sativa. The genome was 134,494 bp long with a large single-copy region of 80,544 bp, a small single-copy region of 12,346 bp and two inverted repeats of 20,802 bp each. The overall A+T content was 61.0%. The O. nivara chloroplast genome encoded identical functional genes to O. sativa in the same order along the genome. On the other hand, detailed analysis revealed 57 insertion, 61 deletion and 159 base substitution events in the entire chloroplast genome of O. nivara. Among substitutions, transversions were much higher than transitions with the former even more frequent than the latter in the coding region. Most of the insertions/deletions were single-base but a few large length mutations were also detected. The frequency of insertion/deletion events was more in the coding region within inverted repeats. In contrast, a very few substitution events were identified in the coding region. Polymorphism was observed among rice cultivars at loci of large insertion/deletion events. This is the first report describing comparative and genome wide chloroplast analysis between a wild and cultivated crop.  相似文献   

5.
G S Buso  P H Rangel  M E Ferreira 《Génome》2001,44(3):476-494
A sample of American wild rice and other accessions of the genus Oryza were studied at polymorphic regions of nuclear, mitochondrial, and chloroplastic genomes. First, flow cytometry, genome-specific RAPD markers, and chromosome counting were utilized to verify the original ploidy and classification of 230 accessions studied. Based on these methods, 8% of the accessions were considered to be misclassified either taxonomically or as a result of contamination. Second, a fine resolution analysis was conducted at genomic regions sampled at random by RAPD markers and at specific sites of the chloroplast and mitochondrial DNA by cleaved amplified polymorphic sequence (CAPS) analysis. Phylogenetic trees resulting from phenetic and cladistic analyses of RAPD, cpDNA, and mtDNA polymorphisms were obtained. The results indicated that the American diploid species O. glumaepatula should be considered an individual species, distinct from O. rufipogon, and confirmed that the American tetraploid species (O. alta, O. grandiglumis, and O. latifolia) belong to the O. officinalis complex. The data indicate that these species should still be treated as a group rather than as three distinct species and that their closest relative is a CC-genome species. It was estimated that the diploid and tetraploid American species diverged from O. sativa - O. nivara (AA genome) and CC- and BBCC-genome species, respectively, 20 million years ago.  相似文献   

6.
Li S  Yang G  Li S  Li Y  Chen Z  Zhu Y 《Annals of botany》2005,96(3):461-466
BACKGROUND AND AIMS: Rice (Oryza sativa) is one of the most important cereal plants in the world. Wild-abortive (WA) and Honglian (HL) cytoplasmic male sterility (CMS) have been used extensively in the production of hybrid seeds. Although a variable number of fertility-restorer genes (Rf) for WA and HL-CMS have been identified in various cultivars, information on Rf in Oryza species with the AA-genome is sparse. Therefore the distribution and heredity of Rf for WA and HL-CMS in wild rice species of Oryza with the AA-genome were investigated. METHODS: Fertility-restorer genes for WA and HL-CMS in wild rice species with the AA-genome were investigated by following the fertility of microspores identified by I2-KI staining and by following the seed-setting rate of spikelets. A genetic model of Rf in some selected restorer accessions was analysed based on the fertility segregation of BC1F1 populations. KEY RESULTS: Fertility analysis showed that 21 out of 35 HL-type F1s, and 13 out of 31 WA-type F1s were scored as fertile. The frequency of Rf in wild rice was 60% for HL-CMS and 41.9% for WA-CMS, respectively. The fertility-restorer accessions, especially those with complete restoring ability, aggregated mainly in two species of O. rufipogon and O. nivara. The wild rice accessions with Rf for HL-CMS were distributed in Asia, Oceania, Latin American and Africa, but were centered mainly in Asia, whilst the wild restorer accessions for WA-CMS were limited only to Asia and Africa. Apart from one restorer accession that possessed two pairs of Rf for WA-CMS, all of the other nine tested wild restorer accessions each contained only a single Rf for WA-CMS or HL-CMS. Allele analysis indicated that there existed at least three Rf loci for the WA and HL-CMS systems. CONCLUSIONS: These data support the hypothesis that fertility-restorer genes exist widely in Oryza species with the AA-genome, and that Rf in Oryza sativa originated from the Oryza rufipogon/Oryza nivara complex, the ancestor of cultivated rice in Asia. The origin and evolution of Rf is tightly linked to that of CMS in wild rice, and fertility of a given CMS type is controlled by several Rf alleles in various wild restorer accessions.  相似文献   

7.
The mechanism by which a new species arises and adapts to its environment is a fundamental question in evolutionary biology.Seed characteristics such as seed size and nutrient composition are important fitness-related traits and have been shown to vary greatly among populations and species.However,the significance of variation in seed traits in plant adaptation and speciation remains unclear.We carried out a population genetic study on nucleotide variation of one 11S seed storage protein gene(Pss) of Oryza rufipogon Griff,and O.nivara Sharma Shastry,two closely related wild rice species.By comparatively examining the genetic variation pattern of the regulatory and coding regions of Pss and fragments of six reference loci across different chromosomes,we found significantly lower polymorphisms at coding regions of the gene(PssI) in O.nivara relative to O.rufipogon.Neutrality tests indicated that the reduction of polymorphisms at PssI in O.nivara was caused by positive selection rather than population demography,implying a role of selection on the 11S seed protein gene.Further phylogenetic and principal component analyses also support the hypotheses that the origin of O.nivara was associated with the adaptive divergence on the coding region of Pss.It is most likely that higher reproductive effort would be favored when O.nivara arose from O.rufipogon populations and adapted to the environment change.  相似文献   

8.
Li C  Zhou A  Sang T 《The New phytologist》2006,170(1):185-194
With a small and sequenced genome, rice provides an excellent system for studying the genetics of cereal domestication. We conducted a quantitative trait locus (QTL) analysis of key domestication traits using an F2 population derived from a cross between the cultivated rice, Oryza sativa, and the annual wild species, O. nivara. We found that the QTL of large phenotypic effects were targeted by domestication selection for effective harvest and planting, including a reduction in seed shattering and seed dormancy and the synchronization of seed maturation. Selection for higher yield was probably responsible for the fixation of mutations at a cluster of QTL on chromosome 7 and a few other chromosomal locations that could have substantially improved plant architecture and panicle structure, resulting in fewer erect tillers and longer and more highly branched panicles in cultivated rice. In comparison with the wild perennial species, O. rufipogon, rice domestication from O. nivara would have involved QTL with a greater degree of chromosomal co-localization and required little genetic change associated with life history or mating system transitions. The genetic analyses of domestication traits with both wild relatives will open opportunities for the improvement of rice cultivars utilizing natural germplasm.  相似文献   

9.
Two hundred and seventy-five accessions of cultivated Asian rice and 44 accessions of AA genome Oryza species were classified into 8 chloroplast (cp) genome types (A-H) based on insertion-deletion events at 3 regions (8K, 57K, and 76K) of the cp genome. The ancestral cp genome type was determined according to the frequency of occurrence in Oryza species and the likely evolution of the variable 57K region of the cp genome. When 2 nucleotide substitutions (AA or TT) were taken into account, these 8 cp types were subdivided into 11 cp types. Most indica cultivars had 1 of 3 cp genome types that were also identified in the wild relatives of rice, O. nivara and O. rufipogon, suggesting that the 3 indica cp types had evolved from distinct gene pools of the O. rufipogon - O. nivara complex. The majority of japonica cultivars had 1 of 3 different cp genome types. One of these 3 was identified in O. rufipogon, suggesting that at least 1 japonica type is derived from O. rufipogon with the same cp genome type. These results provide evidence to support a polyphyletic origin of cultivated Asian rice from at least 4 principal lineages in the O. rufipogon - O. nivara complex.  相似文献   

10.
CACTA is a class 2 transposon, that is very abundantly present in plant genomes. Using Rim2/Hipa CACTA transposon display (hereafter Rim2/Hipa-TD), we analyzed several A-genome diploid Oryza species that have a high distribution of the CACTA motifs. High levels of polymorphism were detected within and between the Oryza species. The African taxa, O. glaberrima and O. barthii, both showed lower levels of polymorphism than the Asian taxa, O. sativa, O. rufipogon, and O. nivara. However, O. longistaminata, another African taxon, showed levels of polymorphism that were similar to the Asian taxa. The Latin American taxon, O. glumaepatula, and the Australian taxon, O. meridionalis, exhibited intermediate levels of polymorphism between those of the Asian and African taxa. The lowest level of polymorphism was observed in O. glaberrima (32.1%) and the highest level of polymorphism was observed in O. rufipogon (95.7%). The phylogenetic tree revealed three major groups at the genetic similarity level of 0.409. The first group consisted of three Asian taxa, O. sativa, O. rufipogon and O. nivara. The second group consisted of three African taxa, O. glaberrima, O. barthii, O. longistaminata, and an American taxon, O. glumaepatula. The third group contained an Australian taxon, O. meridionalis. The clustering patterns of these species matched well with their geographical origins. Rim2/Hipa-TD appears to be a useful marker system for studying the genetic diversity and species relationships among the AA diploid Oryza species.  相似文献   

11.
The recognition of a new species of rice (Oryza) from Australia   总被引:1,自引:0,他引:1  
The discovery is reported of a new endemic species of wild rice in series Sativae from northern Australia, Oryza meridionalis Ng. This species has previously been confused with O. rufipogon, O. nivara and O. saliva f. spontanea. Its geographical distribution is confined to northern Australia. It is also reproductively isolated from all other species of the series Sativae.  相似文献   

12.
RAPD, RFLP, nuclear SSLP and chloroplast SSLP analyses were carried out to clarify the phylogenetic relationships among A-genome species of rice. In total, 12 cultivars of Oryza sativa (4 Japonica, 3 Javanica and 5 Indica), one cultivar of O. glaberrima, and 17 wild accessions (12 O. rufipogon, 2 O. glumaepatula, 1 O. longistaminata, 1 O. meridionalis and 1 O. barthii) were used. Their banding patterns were scored and compared to evaluate the similarity between accessions. Genetic differentiation within and between taxa was examined based on the average similarity indices. Except for chloroplast SSLP analysis, the average similarities were higher within O. sativa than within O. rufipogon, and O. sativa Indica had greater intrasubspecific variation than Japonica and Javanica. Comparisons between cultivated and wild species showed that O. sativa was closely related to O. rufipogon, while O. glaberrima was closely related to O. barthii. This indicated that two cultivated species, O. sativa and O. glaberrima, originated from O. rufipogon and O. barthii, respectively. Domestication of O. sativa seemed to be diphyletic, since strong similarity was observed between O. sativa Japonica-Javanica and O. rufipogon from China and between O. sativa Indica and O. rufipogon from tropical Asia. In addition, dendrograms for RAPD, RFLP, and nuclear and chloroplast SSLP analyses were constructed to reveal the overall genetic relationships among A-genome species. In all analyses, O. sativa and O. glaberrima formed groups with O. rufipogon and O. barthii, respectively. However, their manners of clustering with other wild species were not the same. The results of RAPD and RFLP analyses indicate that O. glumaepatula was relatively close to the groups of O. sativa and O. glaberrima whereas O. longistaminata and O. meridionalis were highly differentiated from other A-genome species. On the other hand, clear interspecific relationships were not obtained by nuclear or chloroplast SSLP analyses.  相似文献   

13.
Peng ZY  Zhang H  Liu T  Dzikiewicz KM  Li S  Wang X  Hu G  Zhu Z  Wei X  Zhu QH  Sun Z  Ge S  Ma L  Li L  Deng XW 《Genomics》2009,93(2):169-178
To study how changes in gene regulation shape phenotypic variations in rice, we performed a comparative analysis of genome expression in the heading-stage panicle from six lineages of cultivated and wild rice, including Oryza sativa subsp. indica, japonica and javanica, O. nivara , O. rufipogon and O. glaberrima. While nearly three-quarters of the genes are expressed at a constant level in all six lineages, a large portion of the genome, ranging from 1767 to 4489 genes, exhibited differential expression between Asian domesticated and wild rice with repression or down-regulation of genome expression in Asian cultivated rice as the dominant trend. Importantly, we found this repression was achieved to a large extent by the differential expression of a single member of paralogous gene families. Functional analysis of the differentially expressed genes revealed that genes related to catabolism are repressed while genes related to anabolism up-regulated. Finally, we observed that distinct evolutionary forces may have acted on gene expression and the coding sequences in the examined rice lineages.  相似文献   

14.
Oryza rufipogon Griff. is a wild progenitor of the Asian cultivated rice Oryza sativa. To better understand the genomic diversity of the wild rice, high-quality reference genomes of O. rufipogon populations are needed, which also facilitate utilization of the wild genetic resources in rice breeding. In this study, we generated a chromosome-level genome assembly of O. rufipogon using a combination of short-read sequencing, single-molecule sequencing, BioNano and Hi-C platforms. The genome sequence(399.8 Mb) was assembled into 46 scaffolds on the 12 chromosomes, with contig N50 and scaffold N50 of 13.2 Mb and 20.3 Mb,respectively. The genome contains 36,520 protein-coding genes, and 49.37% of the genome consists of repetitive elements. The genome has strong synteny with those of the O. sativa subspecies indica and japonica, but containing some large structural variations. Evolutionary analysis unveiled the polyphyletic origins of O. sativa, in which the japonica and indica genome formations involved different divergent O. rufipogon(including O. nivara) lineages, accompanied by introgression of genomic regions between japonica and indica. This high-quality reference genome provides insight on the genome evolution of the wild rice and the origins of the O. sativa subspecies, and valuable information for basic research and rice breeding.  相似文献   

15.
Of the rice species with an AA genome, Oryza meridionalis has been identified in northern Australia as a species of the annual type, among those previously classified as Oryza perennis, Oryza rufipogon or Oryza nivara. This notion has, however, led to some confusion to determine which strains belong to O. meridionalis and how different these strains are from the O. rufipogon strains of the annual type. In this paper, we examined Australian wild rice strains for the presence or absence of p-SINE1 members, which have been used for identification of the strains of species with the AA genome, by PCR using primers that hybridize to the sequences flanking each p-SINE1 member. The rice strains examined include perennial and annual strains, which have previously been described as O. rufipogon. We found that all the annual strains and other strains, whose types have not been determined, have p-SINE1 members that are specifically present at the corresponding loci in the standard strains of O. meridionalis, but do not have those which are specifically present at the corresponding loci in the strains of the other species with the AA genome. The perennial strains, however, have p-SINE1 members that are specifically present at the corresponding loci in the standard O. rufipogon strains of either the annual or the perennial type, but do not have those which are specifically present at the corresponding loci in the strains of the other species with the AA genome, including O. meridionalis. These findings support the previous notion that O. meridionalis consists of the annual strains and is a distinct species from O. rufipogon. The p-SINE1 members used in this study appear to be very useful for classification of any wild rice strains of the AA-genome species, even when one has limited knowledge of morphology, taxonomy, physiology, and biochemistry of rice strains.  相似文献   

16.
Genetic differentiation of wild relatives of rice as assessed by RFLP analysis   总被引:14,自引:0,他引:14  
To study genetic diversity and relationships of wild relatives of rice, 58 accessions of Oryza rufipogon, Oryza nivara, Oryza sativa f. spontanea and the cultivated Oryza sativa, representing a wide range of their distribution, were analyzed using the restriction fragment length polymorphism (RFLP) technique. All 30-used RFLP probes detected polymorphisms among the Oryza accessions, with an average of 3.8 polymorphic fragments per probe. Considerable genetic diversity was scored among the Oryza accessions with a similarity coefficient ranging from 0.28 to 0.93; but the cluster analysis of the accessions did not show an apparent grouping based on the species classification, instead they were scattered randomly in different groups. Noticeably, the Oryza accessions from the same geographic region, or near-by geographic regions, tended to be clustered in the same groups. The indica rice varieties showed relatively high genetic diversity and were scattered in different groups of their wild relatives, but the japonica varieties showed a relatively low variation and formed an independent group. It is concluded from the molecular analytical result that: (1) the four Oryza taxa have a remarkably close relationship and their independent species status need to be carefully reviewed; (2) geographic isolation has played a significant role in the differentiation of the Oryza accessions; therefore, a wide geographic range needs to be covered in collecting wild rice germplasm for ex situ conservation; and (3) the conventional conclusion of indica rice being directly domesticated from its ancestral wild species, and japonica rice being derived from indica, gains support from our data.  相似文献   

17.
In addition to rice (Oryza sativa L.) cultivars, there are three wild rice species, namely O.rufipogon Griff, O. officinalis Wall and O. granulata Baill, in Yunnan Province, China. Each species has different subtypes and ecological distributions. Yunnan wild rice species are excellent genetic resources for developing new rice cultivars. The nutritional components of the husked seeds of wild rice have not been investigated thus far. Herein, we report on the contents of total protein, starch, amylose, 17 amino acids, and five macro and five trace mineral elements in husked seeds from three wild rice species and six O. sativa cultivars. The mean (± SD) protein content in the husked rice of O. rufipogon, O. officinalis, and O. granulata was (14.5 ± 0.6)%, (16.3 ± 1. 1)%, and (15.3 ± 0.5)%, respectively. O. officinalis Ⅲ originating from Gengma had the highest protein content (19.3%). In contrast, the average protein content of six O. sativa cultivars was only 9.15%. The total content of 17 amino acids of three wild rice species was 30%-50% higher than that of the six cultivars. Tyrosine, lysine, and valine content in the three wild rice species was 34%-209% higher than that of the cultivars. However, the difference in total starch content among different O. sativa varieties or types of wild rice species was very small. The average amylose content of O. rufipogon, O. officinalis,and O. granulata was 12.0%, 9.7%, and 11.3%, respectively, much lower than that of the indica and japonica varieties (14.37%-17.17%) but much higher than that of the glutinous rice cultivars (3.89%). The sulfur, phosphorus, magnesium, zinc, and ferrite content in the three wild rice species was 30%-158% higher than that of the six cultivars. The considerable difference in some nutritional components among wild rice species and O. sativa cultivars represents a wide biodiversity of Yunnan Oryza species. Based on the results of the present study, it is predicted that some good genetic traits, especially high protein and ideal amylose content, of Yunnan wild rice species may be useful in improving the nutritional value of rice. This is the first report regarding the amino acid, mineral element, protein and amylose content of husked seeds of some Yunnan wild rice species that have important genetic characteristics for rice quality and nutritional value.  相似文献   

18.
Genetic variations of AA genome Oryza species measured by MITE-AFLP   总被引:5,自引:0,他引:5  
MITEs (miniature inverted-repeat transposable elements) are the major transposable elements in Oryza species. We have applied the MITE-AFLP technique to study the genetic variation and species relationship in the AA-genome Oryza species. High polymorphism was detected within and between species. The genetic variation in the cultivated species, Oryza sativa and Oryza glaberrima, was comparatively lower than in their ancestral wild species. In comparison between geographical lineages of the AA genome species, African taxa, O. glaberrima and Oryza barthii, showed lower variation than the Asian taxa, O. sativa, Oryza rufipogon, and Oryza nivara, and Australian taxon Oryza meridionalis. However, another African taxon, Oryza longistaminata, showed high genetic variation. Species relationships were analyzed by the pattern of presence or absence of homologous fragments, because nucleotide sequences of the detected MITE-AFLP fragments revealed that the same fragments in different species shared very high sequence homology. The clustering pattern of the AA-genome species matched well with the geographical origins (Asian, African and Australian), and with the Australian taxon being distant to the others. Therefore, this study demonstrated that the MITE-AFLP technique is amenable for studying the genetic variation and species relationship in rice.  相似文献   

19.
本文调查研究了野生稻群体内及群体间的DNA甲基化多样性。选取与亚洲栽培稻近缘的两个野生种Oryza nivaraO. rufipogon作为研究对象, 采用改进的MSAP (methylation-sensitive amplification polymorphism)技术对其基因组CCGG位点的甲基化多样性进行了分析。结果表明: 在同一个IRGC(the International Rice Germplasm Center)编号群体内的不同个体间, 基因组甲基化条带高度一致; 而在不同编号群体间, 甲基化条带表现为多态。其中后者又可以分为两类: 条带模式高度一致的Class I和条带模式呈多态性的Class II。将上述两类甲基化片段的编码基因与栽培稻粳稻(O. sativaL. subsp. japonica)和籼稻(O. sativa L. subsp. indica)两个亚种的同源基因进行序列比对发现, 在进化趋势上Class I表现得比较保守, 而Class II较为活跃。DNA甲基化多样性作为标志遗传多样性的一种信息来源, 其在群体分化及物种进化过程中的作用还需要进一步探讨。  相似文献   

20.
The appearance and cooking quality of rice determine its acceptability and price to a large extent. Quantitative trait loci (QTLs) for 12 grain quality traits were mapped in 2 mapping populations derived from Oryza sativa cv Swarna × O. nivara. The BC(2)F(2) population of the cross Swarna × O. nivara IRGC81848 (population 1) was evaluated during 2005 and that from Swarna × O. nivara IRGC81832 (population 2) was evaluated during 2006. Linkage maps were constructed using 100 simple sequence repeat (SSR) markers in population 1 and 75 SSR markers in population 2. In all, 21 QTLs were identified in population 1 (43% from O. nivara) and 37 in population 2 (38% QTLs from O. nivara). The location of O. nivara-derived QTLs mp1.2 for milling percent, kw6.1 for kernel width, and klac12.1 for kernel length after cooking coincided in the 2 populations and appear to be useful for Marker Assisted Selection (MAS). Four QTLs for milling percent, 1 QTL each for amylose content, water uptake, elongation ratio, 2 QTLs for kernel width, and 3 QTLs for gel consistency, each explained more than 20% phenotypic variance. Three QTL clusters for grain quality traits were close to the genes/QTLs for shattering and seed dormancy. QTLs for 4 quality traits were associated with 5 of the 7 major yield QTLs reported in the same 2 mapping populations. Useful introgression lines have been developed for several agronomic traits. It emerges that 40% O. nivara alleles were trait enhancing in both populations, and QTLs for grain quality overlapped with yield meta-QTLs and QTLs for dormancy and seed shattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号