首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
The TET (transient electro-thermal) technique is an effective approach developed to measure the thermal diffusivity of solid materials, including conductive, semi-conductive or nonconductive one-dimensional structures. This technique broadens the measurement scope of materials (conductive and nonconductive) and improves the accuracy and stability. If the sample (especially biomaterials, such as human head hair, spider silk, and silkworm silk) is not conductive, it will be coated with a gold layer to make it electronically conductive. The effect of parasitic conduction and radiative losses on the thermal diffusivity can be subtracted during data processing. Then the real thermal conductivity can be calculated with the given value of volume-based specific heat (ρcp), which can be obtained from calibration, noncontact photo-thermal technique or measuring the density and specific heat separately. In this work, human head hair samples are used to show how to set up the experiment, process the experimental data, and subtract the effect of parasitic conduction and radiative losses.  相似文献   

2.
Spider silk is the toughest known biomaterial and even outrivals modern synthetic high‐performance materials. The question of understanding fiber formation is how the spider can prevent premature and fatal aggregation processes inside its own body and how the chemical and mechanical stimuli used to induce the fiber formation process translate into structural changes of the silk material, finally leading to controlled and irreversible aggregation. Here, the focus will be on the structure and function of the highly conserved N‐domains and C‐terminal domains of spider dragline silk which, unlike the very long repetitive sequence elements, adopt a folded conformation in solution and are therefore able to control intermolecular interactions and aggregation between other spider silk molecules. The structures of these domains add valuable details for the construction of a molecular picture of the complicated and highly optimized silk assembly process that might be beneficial for large‐scale in vitro fiber formation attempts with recombinant silk material. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
4.
As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce man-made fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of β-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers.  相似文献   

5.
北京幽灵蛛体表微感受器的类型、结构和分布   总被引:2,自引:1,他引:1  
北京幽灵蛛(Pholcus beijingensis)体表的微感受器包括毛状感受器(触毛、听毛、味觉毛和刺)、裂缝状感受器(单个裂缝器、竖琴器)和跗节器等.扫描电镜观察显示,北京幽灵蛛体表的毛状感受器数量最多,分布最广;其次是裂缝感受器;此外,每个跗节末端具有一个跗节器.除触毛在整个身体表面均有分布外,其他毛状感受器(...  相似文献   

6.
Use of biomolecular templates for the fabrication of metal nanowires   总被引:1,自引:0,他引:1  
Gazit E 《The FEBS journal》2007,274(2):317-322
The nano-scale spatial organization of metallic and other inorganic materials into 1D objects is a key task in nanotechnology. Nano-scale fibers and tubes are very useful templates for such organization because of their inherent 1D organization. Fibrillar biological molecules and biomolecular assemblies are excellent physical supports on which to organize the inorganic material. Furthermore, these biological assemblies can facilitate high-order organization and specific orientation of inorganic structures by their utilization of highly specific biological recognition properties. In this minireview, I will describe the use of biomolecules and biomolecular assemblies, including DNA, proteins, peptides, and even viral particles, which are excellent templates for 1D organization of inorganic materials into wires. This ranges from simple attempts at electroless deposition on inert biological templates to the advanced use of structural motifs and specific protein-DNA interactions for nano-bio-lithography as well as the fabrication of multilayer organic and inorganic composites. The potential technological applications of these hybrid biological-inorganic assemblies will be discussed.  相似文献   

7.
Eisoldt L  Thamm C  Scheibel T 《Biopolymers》2012,97(6):355-361
Fibrous proteins in nature fulfill a wide variety of functions in different structures ranging from cellular scaffolds to very resilient structures like tendons and even extra-corporal fibers such as silks in spider webs or silkworm cocoons. Despite their different origins and sequence varieties many of these fibrous proteins share a common building principle: they consist of a large repetitive core domain flanked by relatively small non-repetitive terminal domains. Amongst protein fibers, spider dragline silk shows prominent mechanical properties that exceed those of man-made fibers like Kevlar. Spider silk fibers assemble in a spinning process allowing the transformation from an aqueous solution into a solid fiber within milliseconds. Here, we highlight the role of the non-repetitive terminal domains of spider dragline silk proteins during storage in the gland and initiation of the fiber assembly process.  相似文献   

8.
蜘蛛丝的组成结构与生物学功能   总被引:1,自引:0,他引:1  
蜘蛛是纺丝种类最多的一种节肢动物,目前共发现有8种丝腺,各纺出具有不同生物学功能的丝纤维,可分别用于织网、捕食、逃避、扩散、织制卵袋等行为活动。蜘蛛丝是一种天然的动物蛋白纤维,是随蜘蛛4亿年进化的结果,也是为蜘蛛的生存与繁殖所设计的,蜘蛛丝的适应与进化使蜘蛛丝具有多样化的生物学功能。但蜘蛛不是唯一能纺丝的节肢动物,除蛛形纲以外,还有其它很多节肢动物,如昆虫纲和多足纲的动物都有具有丝腺,能纺出一种或多种丝蛋白纤维。本文将以昆虫作为比较来概述蜘蛛丝腺的起源与种类,蜘蛛丝的化学组成、结构、种类与其生物学功能。  相似文献   

9.
Novel protein chimeras constituted of "silk" and a silica-binding peptide (KSLSRHDHIHHH) were synthesized by genetic or chemical approaches and their influence on silica-silk based chimera composite formation evaluated. Genetic chimeras were constructed from 6 or 15 repeats of the 32 amino acid consensus sequence of Nephila clavipes spider silk ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG](n)) to which one silica binding peptide was fused at the N terminus. For the chemical chimera, 28 equiv of the silica binding peptide were chemically coupled to natural Bombyx mori silk after modification of tyrosine groups by diazonium coupling and EDC/NHS activation of all acid groups. After silica formation under mild, biomaterial-compatible conditions, the effect of peptide addition on the properties of the silk and chimeric silk-silica composite materials was explored. The composite biomaterial properties could be related to the extent of silica condensation and to the higher number of silica binding sites in the chemical chimera as compared with the genetically derived variants. In all cases, the structure of the protein/chimera in solution dictated the type of composite structure that formed with the silica deposition process having little effect on the secondary structural composition of the silk-based materials. Similarly to our study of genetic silk based chimeras containing the R5 peptide (SSKKSGSYSGSKGSKRRIL), the role of the chimeras (genetic and chemical) used in the present study resided more in aggregation and scaffolding than in the catalysis of condensation. The variables of peptide identity, silk construct (number of consensus repeats or silk source), and approach to synthesis (genetic or chemical) can be used to "tune" the properties of the composite materials formed and is a general approach that can be used to prepare a range of materials for biomedical and sensor-based applications.  相似文献   

10.
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.  相似文献   

11.
As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks.  相似文献   

12.
蜘蛛丝是一种高分子蛋白纤维,具有高强度、高弹性等许多重要的优良特性,在军事、医学、工业、建筑、纺织等领域具有广泛而巨大的应用。然而蜘蛛的产丝量小,且无法高密度养殖以获取大量的蜘蛛丝,难以满足实际应用的需要。于是人们只能着眼于生物工程方法,即将蜘蛛丝蛋白基因转入其它生物体来表达生产蜘蛛丝蛋白,经过多年的研究,已取得很多重要的进展。对蜘蛛丝蛋白在微生物、植物、哺乳动物及家蚕等不同生物载体中表达的研究进展进行重点阐述,并探讨了已有研究的不足和今后研究展望,为进一步探索和研发蜘蛛丝的规模化生产方法提供借鉴与参考。  相似文献   

13.
Human hair is principally composed of hair keratins and keratin-associated proteins (KAPs) that form a complex network giving the hair its rigidity and mechanical properties. However, during their growth, hairs are subject to various treatments that can induce irreversible damage. For a better understanding of the human hair protein structures, proteomic mass spectrometry (MS)-based strategies could assist in characterizing numerous isoforms and posttranslational modifications of human hair fiber proteins. However, due to their physicochemical properties, characterization of human hair proteins using classical proteomic approaches is still a challenge. To address this issue, we have used two complementary approaches to analyze proteins from the human hair cortex. The multidimensional protein identification technology (MudPit) approach allowed identifying all keratins and the major KAPs present in the hair as well as posttranslational modifications in keratins such as cysteine trioxidation, lysine, and histidine methylation. Then two-dimensional gel electrophoresis coupled with MS (2-DE gel MS) allowed us to obtain the most complete 2-DE gel pattern of human hair proteins, revealing an unexpected heterogeneity of keratin structures. Analyses of these structures by differential peptide mapping have brought evidence of cleaved species in hair keratins and suggest a preferential breaking zone in α-helical segments.  相似文献   

14.
Spiders use a myriad of silk types for daily survival, and each silk type has a unique suite of task-specific mechanical properties. Of all spider silk types, pyriform silk is distinct because it is a combination of a dry protein fiber and wet glue. Pyriform silk fibers are coated with wet cement and extruded into “attachment discs” that adhere silks to each other and to substrates. The mechanical properties of spider silk types are linked to the primary and higher-level structures of spider silk proteins (spidroins). Spidroins are often enormous molecules (>250 kDa) and have a lengthy repetitive region that is flanked by relatively short (∼100 amino acids), non-repetitive amino- and carboxyl-terminal regions. The amino acid sequence motifs in the repetitive region vary greatly between spidroin type, while motif length and number underlie the remarkable mechanical properties of spider silk fibers. Existing knowledge of pyriform spidroins is fragmented, making it difficult to define links between the structure and function of pyriform spidroins. Here, we present the full-length sequence of the gene encoding pyriform spidroin 1 (PySp1) from the silver garden spider Argiope argentata. The predicted protein is similar to previously reported PySp1 sequences but the A. argentata PySp1 has a uniquely long and repetitive “linker”, which bridges the amino-terminal and repetitive regions. Predictions of the hydrophobicity and secondary structure of A. argentata PySp1 identify regions important to protein self-assembly. Analysis of the full complement of A. argentata PySp1 repeats reveals extreme intragenic homogenization, and comparison of A. argentata PySp1 repeats with other PySp1 sequences identifies variability in two sub-repetitive expansion regions. Overall, the full-length A. argentata PySp1 sequence provides new evidence for understanding how pyriform spidroins contribute to the properties of pyriform silk fibers.  相似文献   

15.
Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers.  相似文献   

16.
Spider dragline silk is a remarkably strong fiber with impressive mechanical properties, which were thought to result from the specific structures of the underlying proteins and their molecular size. In this study, silk protein 11R26 from the dragline silk protein of Nephila clavipes was used to analyze the potential effects of the special amino acids on the function of 11R26. Three protein derivatives, ZF4, ZF5, and ZF6, were obtained by site-directed mutagenesis, based on the sequence of 11R26, and among these derivatives, serine was replaced with cysteine, isoleucine, and arginine, respectively. After these were expressed and purified, the mechanical performance of the fibers derived from the four proteins was tested. Both hardness and average elastic modulus of ZF4 fiber increased 2.2 times compared with those of 11R26. The number of disulfide bonds in ZF4 protein was 4.67 times that of 11R26, which implied that disulfide bonds outside the poly-Ala region affect the mechanical properties of spider silk more efficiently. The results indicated that the mechanical performances of spider silk proteins with small molecular size can be enhanced by modification of the amino acids residues. Our research not only has shown the feasibility of large-scale production of spider silk proteins but also provides valuable information for protein rational design.  相似文献   

17.
18.
S F Li  A J McGhie    S L Tang 《Biophysical journal》1994,66(4):1209-1212
Atomic force microscopy was used to study the three-dimensional nanometer-scale structure of the dragline silk of Nephila clavipes from microtomed sections of the silk. Contrary to a previously proposed model of randomly distributed protein crystallites interspersed in amorphous regions, a highly organized skin-core structure of the fiber was observed. The skin appeared to be thin with no discernible distinct features. The core consists of pleated fibril-like structures, which are arranged in two concentric cylinders. Upon stretching, the pleats were smoothed out substantially. The mechanical properties of spider silk can quite straightforwardly be related to the newly observed structures.  相似文献   

19.
Although the role of polycationic macromolecules in catalyzing the synthesis of silica structures is well established, detailed understanding of the mechanisms behind the production of silica structures of controlled morphologies remains unclear. In this study, we have used both poly-L-lysine (PLL) and/or poly-D-lysine (PDL) for silica synthesis to investigate mechanisms controlling inorganic morphologies. The formation of both spherical silica particles and hexagonal plates was observed. The formation of hexagonal plates was suggested, via circular dichroic spectroscopy (CD), to result from the assembly of helical polylysine molecules. We confirm that the formation of PLL helices is a prerequisite to the hexagonal silica synthesis. In addition, we present for the first time that the handedness of the helicity of the macromolecule does not affect the formation of hexagonal silica. We also show, by using two different silica precursors, that the precursor does not have a direct effect on the formation of hexagonal silica plates. Furthermore, when polylysine helices were converted to beta-sheet structure, only silica particles were obtained, thus suggesting that the adoption of a helical conformation by PLL is required for the formation of hexagonally organized silica. These results demonstrate that the change in polylysine conformation can act as a "switch" in silica structure formation and suggest the potential for controlling morphologies and structures of inorganic materials via control of the conformation of soft macromolecular templates.  相似文献   

20.
Spider silk possesses a unique combination of high tensile strength and elasticity resulting in extraordinarily tough fibers, compared with the best synthetic materials. However, the potential application of spider silk and biomimetic fibers depends upon retention of their high performance under a variety of conditions. Here, we report on changes in the mechanical properties of dragline and capture silk fibers from several spider species over periods up to 4 years of benign aging. We find an improvement in mechanical performance of silk fibers during the first year of aging. Fibers rapidly decrease in diameter, suggesting an increase in structural alignment and organization of molecules. One-year old silk also is stiffer and has higher stress at yield than fresh silk, whereas breaking force, elasticity, and toughness either improve or are unaffected by early aging. However, 4-year old silk shows signs of degradation as the breaking load, elasticity, and toughness are all lower than in fresh silk. Aging, however, does not reduce the tensile strength of silk. These data suggest initially rapid reorganization and tighter packaging of molecules within the fiber, followed by longer-term decomposition. We hypothesize that possibly the breakdown of amino acids via emission of ammonia gas, as is seen in long-term aging of museum silkworm fabrics, may contribute. Degradation of spider silk under benign conditions may be a concern for efforts to construct and utilize biomimetic silk analogs. However, our findings suggest an initial improvement in mechanical performance and that even old spider silk still retains impressive mechanical performance. J. Exp. Zool. 309A:494-504, 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号