首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract In many organisms, large offspring have improved fitness over small offspring, and thus their size is under strong selection. However, due to a trade-off between offspring size and number, females producing larger offspring necessarily must produce fewer unless the total amount of reproductive effort is unlimited. Because differential gene expression among environments may affect genetic covariances among traits, it is important to consider environmental effects on the genetic relationships among traits. We compared the genetic relationships among egg size, lifetime fecundity, and female adult body mass (a trait linked to reproductive effort) in the seed beetle, Stator limbatus , between two environments (host-plant species Acacia greggii and Cercidium floridum ). Genetic correlations among these traits were estimated through half-sib analysis, followed with artificial selection on egg size to observe the correlated responses of lifetime fecundity and female body mass. We found that the magnitude of the genetic trade-off between egg size and lifetime fecundity differed between environments–a strong trade-off was estimated when females laid eggs on C. floridum seeds, yet this trade-off was weak when females laid eggs on A. greggii seeds. Also differing between environments was the genetic correlation between egg size and female body mass–these traits were positively genetically correlated for egg size on A. greggii seeds, yet uncorrelated on C. floridum seeds. On A. greggii seeds, the evolution of egg size and traits linked to reproductive effort (such as female body mass) are not independent from each other as commonly assumed in life-history theory.  相似文献   

2.
Miles CM  Wayne ML 《Genetica》2009,135(3):289-298
In order to examine the genetic relationships among life-history traits in a hermaphroditic species we used artificial selection for increased egg size and measured correlated responses across the life cycle of the serpulid polychaete Hydroides elegans, a protandrous sequential hermaphrodite. We recorded sex ratios across generations, and measured egg size, egg energy, larval volume at two time points, juvenile tube length, adult dry weight and fecundity after selection. Selection for larger eggs produced positive correlated responses in egg energy, fecundity and larval size at competence. Selection for increased egg size was also manifested by earlier sex change and this resulted in selected individuals spending less time as males relative to controls. We propose that egg size is negatively correlated with duration of andromorphy, that is, that female fitness trades off with male fitness.  相似文献   

3.
In parasitoids, the size of the adult is influenced by the size and quality of the host in which it develops. Body size is generally positively correlated with several adult fitness proxies (fecundity, longevity, and mating capacity). The initial resources available to an individual can influence gamete production (sperm and oocytes), and the number and quality of gametes produced directly influence the expected fitness of both males and females. Gamete production in relation to adult body size was quantified in Trichogramma euproctidis (Girault) (Hymenoptera: Trichogrammatidae), a short‐lived egg parasitoid of lepidopteran species. To avoid host quality variation, male and female parasitoids of different body sizes were produced using superparasitism by allowing mated and virgin female parasitoids to oviposit on Trichoplusia ni Hübner (Lepidoptera: Noctuidae) eggs. Seminal vesicles and ovaries of their offspring were dissected to count oocytes and to measure sperm length and oocytes volume. Tibia length was also measured to estimate body size. The number of oocytes, volume of oocytes, maternal investment index [= (number of oocytes × mean volume of oocytes)/10 000] and sperm length were all significantly positively correlated to body size. These results show that initial resources acquired during larval stage induce phenotypic plasticity in gamete production in both male and female T. euproctidis. Whereas number of sperm and oocytes can influence the fitness of males and females through increased mating capacity and fecundity, variation in gamete size (sperm length and oocyte volume) could also affect the fitness of an individual through sperm and larval competition.  相似文献   

4.
Nuptial gifts and the evolution of male body size   总被引:4,自引:0,他引:4  
In many insect systems, males donate nuptial gifts to insure an effective copulation or as a form of paternal investment. However, if gift magnitude is both body size-limited and positively related to fitness, then the opportunity exists for the gift to promote the evolution of large male size. In the striped ground cricket, Allonemobius socius, males transfer a body size-limited, somatic nuptial gift that is comprised primarily of hemolymph. To address the implications of this gift on male size evolution, we quantified the intensity and direction of natural (fecundity) and sexual (mating success) selection over multiple generations. We found that male size was under strong positive sexual selection throughout the breeding season. This pattern of selection was similar in successive generations spanning multiple years. Male size was also under strong natural selection, with the largest males siring the most offspring. However, multivariate selection gradients indicated that gift size, and not male size, was the best predictor of female fecundity. In other words, direct fecundity selection for larger gifts placed indirect positive selection on male body size, supporting the hypothesis that nuptial gifts can influence the evolution of male body size in this system. Although female size was also under strong selection due to a size related fecundity advantage, it did not exceed selection on male size. The implications of these results with regard to the maintenance of the female-biased size dimorphic system are discussed.  相似文献   

5.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

6.
Abstract.— Sexual size dimorphism (SSD), the difference in body size between males and females, is common in almost all taxa of animals and is generally assumed to be adaptive. Although sexual selection and fecundity selection alone have often been invoked to explain the evolution of SSD, more recent views indicate that the sexes must experience different lifetime selection pressures for SSD to evolve and be maintained. We estimated selection acting on male and female adult body size (total length) and components of body size in the waterstrider Aquarius remigis during three phases of life history. Opposing selection pressures for overall body size occurred in separate episodes of fitness for females in both years and for males in one year. Specific components of body size were often the targets of the selection on overall body size. When net adult fitness was estimated by combining each individual's fitnesses from all episodes, we found stabilizing selection in both sexes. In addition, the net optimum overall body size of males was smaller than that of females. However, even when components of body size had experienced opposing selection pressures in individual episodes, no components appeared to be under lifetime stabilizing selection. This is the first evidence that contemporary selection in a natural population acts to maintain female size larger than male size, the most common pattern of SSD in nature.  相似文献   

7.
Genetic and developmental constraints have often been invoked to explain patterns of existing morphologies. Yet, empirical tests addressing this issue directly are still scarce. We here set out to investigate the importance of maternal body size as an evolutionary constraint on egg size in the tropical butterfly Bicyclus anynana, employing an artificial two-trait selection experiment on simultaneous changes in body and egg size (synergistic and antagonistic selection). Selection on maternal body size and egg size was successful in both the synergistic and the antagonistic selection direction. Yet, responses to selection and realized heritabilities varied across selection regimes: the most extreme values for pupal mass were found in the synergistic selection directions, whereas in the antagonistic selection direction realized heritabilities were low and nonsignificant in three of four cases. In contrast, for egg size the highest values were obtained in the lines selected for low pupal mass. Thus, selection on body size yielded a stronger correlated response in egg size than vice versa, which is likely to bias (i.e., constrain), if weakly, evolutionary change in body size. However, it seems questionable whether this will prevent evolution toward novel phenotypes, given enough time and that natural selection is strong. Correlated responses to selection were overall weak. Egg and larval development times tended to be associated with changes in maternal size, whereas variation in pupal development times weakly tended to follow variation in egg size. Lifetime fecundity was similar across selection regimes, except for females simultaneously selected for large body mass and small egg size, exhibiting increased fecundity. Multiple regressions showed that lifetime fecundity and concomitantly reproductive investment were primarily determined by longevity, as expected for an income breeder, whereas egg size was primarily determined by pupal mass. Evidence for a phenotypic trade-off between egg size and number was weak.  相似文献   

8.
1. Maternal adult diet and body size influence the fecundity of a female and possibly the quality and the performance of her offspring via egg size or egg quality. In laboratory experiments, negative effects in the offspring generation have often been obscured by optimal rearing conditions.
2. To estimate these effects in the Yellow Dung Fly, Scathophaga stercoraria , how maternal body size and adult nutritional status affected her fecundity, longevity and egg size were first investigated.
3. Second, it was investigated how female age and adult nutritional experience, mediated through the effects of egg size or egg quality, influenced the performance of offspring at different larval densities.
4. Maternal size was less important than maternal adult feeding in increasing reproductive output. Without food restriction, large females had larger clutch sizes and higher oviposition rates, whereas under food restriction this advantage was reversed in favour of small females.
5. Offspring from mothers reared under nutritional stress experienced reduced fitness in terms of egg mortality and survival to adult emergence. If the offspring from low-quality eggs survived, the transmitted maternal food deficiency only affected adult male body size under stressful larval environments.
6. Smaller egg sizes due to maternal age only slightly affected the performance of the offspring under all larval conditions.  相似文献   

9.
Most studies of phenotypic selection do not estimate selection or fitness surfaces for multiple components of fitness within a unified statistical framework. This makes it difficult or impossible to assess how selection operates on traits through variation in multiple components of fitness. We describe a new generation of aster models that can evaluate phenotypic selection by accounting for timing of life‐history transitions and their effect on population growth rate, in addition to survival and reproductive output. We use this approach to estimate selection on body size and development time for a field population of the herbivorous insect, Manduca sexta (Lepidoptera: Sphingidae). Estimated fitness surfaces revealed strong and significant directional selection favoring both larger adult size (via effects on egg counts) and more rapid rates of early larval development (via effects on larval survival). Incorporating the timing of reproduction and its influence on population growth rate into the analysis resulted in larger values for size in early larval development at which fitness is maximized, and weaker selection on size in early larval development. These results illustrate how the interplay of different components of fitness can influence selection on size and development time. This integrated modeling framework can be readily applied to studies of phenotypic selection via multiple fitness components in other systems.  相似文献   

10.
Sexual selection theory predicts that the larger sex shouldbe that for which fitness increases at the faster rate withsize. In butterflies, as in most invertebrates, females areusually the larger sex, but previous comparative analysis hasshown that relative male size increases with female polyandryamong butterflies. In agreement with this pattern, males arelarger than females in the strongly polyandrous green-veinedwhite butterfly, Pieris napi L., and in this article we assessthe size dependence of reproductive success in both sexes. Inan experiment where virgin males and females were released inthe field, we found no strong association between size and malemating success. However, laboratory experiments showed thatthere was a strong correlation between size and the ejaculatethat the male delivered to the female at mating and that largeejaculates delayed female remating for a longer time comparedto small ejaculates. Moreover, female P. napi utilize male-derivednutrients received at mating to increase their fecundity. Hence,large males sire more offspring both by way of donating morenutrients to female egg production and by way of delaying femaleremating (given that the last male to mate with the female willfather most of the offspring). Laboratory experiments showedthat the association between size and fecundity was low, ornonexistent, among P. napi females allowed to mate only once.However, weak size dependence was found for polyandrous females.We hypothesize that size dependence of female fecundity maybe especially weak among polyandrous butterflies because a fundamentalsource of variation in fecundity relates to their ability tofind nutrient giving males, an ability which may be unrelatedto female size. According to this hypothesis there is a causalassociation between weak size dependence of female fecundityand polyandry, and a strong size dependence of male reproductivesuccess that may underlie the comparative pattern of positivecorrelation between relative male size and polyandry.  相似文献   

11.
Standardized measures of the strength of selection on a character allow quantitative comparisons across populations in time and space. Spatiotemporal variation in selection influences patterns of adaptation and the evolution of characters and must therefore be documented. For the dung-breeding fly Sepsis cynipsea, we document patterns of variation in sexual, fecundity and larval and adult viability selection on body size at several spatiotemporal scales: between-populations, over the season, over the day and between dung pats. Adult viability selection based on residual physiological survivorship in the laboratory was nil or weakly negative. In contrast, larval viability selection in two laboratory environments was weakly positive for males at low competition and females at high competition. Fecundity selection was positive and strong at all times and in all populations. Sexual selection reflecting pairing success was overall strongly positive (about three times stronger than fecundity selection), while selection reflecting male reproductive success via the clutch size of his mate (i.e. assortative mating) was essentially nil. Only sexual selection varied significantly at coarse (between populations and seasonally) but not at fine (within a day or between pats on a pasture) spatial and temporal scales. Quadratic and correlational selection differentials were low and inconsistent in all episodes except for fecundity selection, where there was some evidence that clutch size reaches an asymptote at large body sizes, implying weaker selection for large size as females get bigger. Implications of these results for the evolution of body size and body size dimorphism are discussed.  相似文献   

12.
Abstract:  We studied the mating selection in the cotton bollworm, Helicoverpa armigera (Hübner), in relation to body size and larval diet in the laboratory. When provided with an artificial diet at larval stage, weight, body and forewing length did not affect the probability of a male/female moth being selected for mating, but the abdominal width of selected female moths was significantly wider than that of non-selected female moths. 30 female moths were dissected and number of eggs was counted after mating, and there was a correlation between the abdominal width and egg number. There was also significant difference of weight loss between selected and non-selected male/female moths after the mating. The effect of operational sex ratio on mating latency and copulation duration were tested, and the result indicated that mating latency of male selection was significantly longer than that of female selection, but the difference of copulation duration was not significant. Cotton, corn and peanut plants were provided to larvae to test the effect of larval host plant experience on mate choice. When cotton- and peanut-fed moth severed as potential partners, both female and male of cotton-fed moths significantly preferred cotton- to peanut-fed moths for mating. The possible reasons for mate preference based on larval host plant experience may account for host plants attributes on sex pheromone variation and sexual maturity. These findings may impact Bacillus thuringiensis resistance management.  相似文献   

13.
Abstract.— Males of many insect species increase the fecundity and/or egg size of their mates through the amount or composition of their nuptial gifts or ejaculate. The genetic bases of such male effects on fecundity or egg size are generally unknown, and thus their ability to evolve remains speculative. Likewise, the genetic relationship between male and female investment into reproduction in dioecious species, which is expected to be positive if effects on fecundity are controlled by at least some of the same genes in males and females, is also unknown. Males of the seed beetle Stator limbatus contribute large ejaculates to females during mating, and the amount of donated ejaculate is positively correlated with male body mass. Females mated to large males lay more eggs in their lifetime than females mated to small males. We describe an experiment in which we quantify genetic variation in the number of eggs sired by males (mated to a single female) and found that a significant proportion of the phenotypic variance in the number of eggs sired by males was explained by their genotype. Additionally, the number of eggs sired by a male was highly positively genetically correlated with his body mass. The between-sex genetic correlation, that is, the genetic correlation between the number of eggs sired by males and the number of eggs laid by females, was highly positive when eggs were laid on Acacia greggii seeds. This indicates that males that sire many eggs have sisters that lay many eggs. Thus, some of the genes that control male ejaculate size (or some other fecundity-enhancing factor) when expressed in males appear to control fecundity when expressed in females. We found no significant interaction between male and female genotype on fecundity.  相似文献   

14.
Throughout an organism's lifetime, resources are strategically allocated to many different functions, including reproduction. Reproduction can be costly for both sexes; females produce nutrient‐rich eggs, whereas males of many species produce large and complex ejaculates. In capital breeding insects, nutrients are mainly acquired during the larval period, yet allocation decisions impact the reproductive fitness of adults. The present study examines the effect of larval dietary nitrogen on both male and female reproductive traits in the European corn borer moth Ostrinia nubilalis Hübner, whose adults do not feed and whose males transfer a large, nitrogen‐rich spermatophore. One day post‐eclosion, O. nubilalis adults reared on one of three different diets (3.0%, 1.6%, or 1.1% nitrogen) are mated and two experiments are undertaken: one to measure nitrogen and carbon content of male ejaculates, and the other to determine female fecundity and fertility. Although male larval diet does not alter the percentage nitrogen content of adult somatic tissue, males reared on the higher nitrogen diet (3.0%) produce spermatophores with increased nitrogen relative to somatic nitrogen. Furthermore, females raised on the 3.0% nitrogen diet receive spermatophores with lower carbon : nitrogen ratios and thus more nitrogen. Overall, females lay more eggs as their larval dietary nitrogen increases, although they lay fewer eggs when their mates are raised on the higher (3.0%) nitrogen diet. This suggests that O. nubilalis females may use male‐derived nitrogen not to supplement egg production, but rather for somatic maintenance. Overall, the present study furthers our understanding of how larval diet can affect adult fitness in Lepidoptera.  相似文献   

15.
Body size varies considerably among species and among populations within species, exhibiting many repeatable patterns. However, which sources of selection generate geographic patterns, and which components of fitness mediate evolution of body size, are not well understood. For many animals, resource quality and intraspecific competition may mediate selection on body size producing large-scale geographic patterns. In two sequential experiments, we examine how variation in larval competition and resource quality (seed size) affects the fitness consequences of variation in body size in a scramble-competing seed-feeding beetle, Stator limbatus. Specifically, we compared fitness components among three natural populations of S. limbatus that vary in body size, and then among three lineages of beetles derived from a single base population artificially selected to vary in size, all reared on three sizes of seeds at variable larval density. The effects of larval competition and seed size on larval survival and development time were similar for larger versus smaller beetles. However, larger-bodied beetles suffered a greater reduction in adult body mass with decreasing seed size and increasing larval density; the relative advantage of being large decreased with decreasing seed size and increasing larval density. There were highly significant interactions between the effects of seed size and larval density on body size, and a significant three-way interaction (population-by-density-by-seed size), indicating that environmental effects on the fitness consequences of being large are nonadditive. Our study demonstrates how multiple ecological variables (resource availability and resource competition) interact to affect organismal fitness components, and that such interactions can mediate natural selection on body size. Studying individual factors influencing selection on body size may lead to misleading results given the potential for nonlinear interactions among selective agents.  相似文献   

16.
Evolutionary biologists typically assume that the number of eggs fertilized or developing embryos produced is correlated with an individual's fitness. Using microsatellite markers, we document for the first time estimates of realized fitness quantified as the number of offspring surviving to adulthood in an insect under field conditions. In a territorial damselfly whose males defend tree hole oviposition sites, patterns of offspring survivorship could not be anticipated by adults. Fewer than half of the parents contributing eggs to a larval habitat realized any reproductive success from their investment. The best fitness correlate was the span over which eggs in a clutch hatched. Among parents, female fecundity and male fertilization success were poor predictors of realized fitness. Although body size was correlated with female clutch size and male mating success, larger parents did not realize greater fitness than smaller ones. The uncoupling of traditional fitness surrogates from realized fitness provides strong empirical evidence that selection at the larval stage constrains selection on mated adults.  相似文献   

17.
Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity.  相似文献   

18.
The effects of larval nutrition and parental size on offspring horn (male) and body size (male and female) were examined in the Japanese horned beetle Allomyrina dichotoma L. (Coleoptera: Scarabaeidae). Offspring-parent regressions for both horn size and body size of males show no heritable effect, and the magnitudes of these traits were primarily determined by the larval nutritional condition. Male Allomyrina dichotoma also displayed dimorphic horn size-body size allometry, that is, larger males had longer horns relative to their body size and vice versa. Because it has been suggested that males of different body sizes adopt different reproductive tactics, the dimorphic horn size–body size allometry and male reproductive tactics are also a result of the larval environment. Similarly, female body size was determined by larval nutrition, and, thus, larval condition might influence future female fecundity. Females under low nutrition treatment spent longer duration of the third larval instar than females under high nutrition. Females under poor nutrition treatment probably attempted to be as large as possible by the extent of larval duration. Since horn and/or body sizes of males and females affect their fitness, this suggests the evolution of female choice for better oviposition site.  相似文献   

19.
Most larval drosophilids eat the microorganisms that develop in rotting fruit, a relatively protein‐rich resource. By contrast, the spotted‐wing Drosophila suzukii Matsumara (Diptera: Drosophilidae) uniquely develops in ripening fruit, a protein‐poor, carbohydrate‐rich resource. This shift in larval nutritional niche has led to D. suzukii being a significant agricultural pest in the U.S.A. and Europe. Although occupying a new niche may benefit a species by reducing competition, adaptation in host use may generate trade‐offs affecting fitness. To test the hypothesis that fitness trade‐offs will change with adaptation to novel larval diets, D. suzukii larval development on either a diet of a fresh, ripe blueberry (a natural host) or standard artificial Drosophila media (protein‐rich) is compared and the effect of diet on development time from egg to adult, adult body size and male wing spot area, and female fecundity is assessed. Larval development time differs, with larvae on the blueberry emerging as adults earlier than those on the artificial medium, although other fitness measures do not vary between the two diets. In addition, the faster development time on a blueberry does not trade off with body size as expected, although early fecundity is delayed in females that develop on blueberries. Thus, adaptation to a novel larval diet environment does not come at a cost to the ability to develop in protein‐rich resources.  相似文献   

20.
Strong correlation between female body size and potential fecundity is often observed in insects. Directional selection favouring increased body sizes is thus predicted in the absence of opposing selection pressure. The evolutionary forces capable of counterbalancing such a 'fecundity advantage' are poorly documented. This study focuses on revealing the costs of large body size in the wingless females of Orgyia antiqua and O. leucostigma, two related species of lymantriid moths. Extreme behavioural simplicity of these animals allows systematic assessment of various fitness components in conditions that are close to natural. A linear relationship between pupal weight and potential fecundity was observed. This association was found to be independent of particular rearing conditions. There was no evidence that the relationship between fecundity and body mass becomes asymptotic when body sizes increases. No component of fitness showed a negative phenotypic correlation with body size; some displayed a weakly positive one. In particular, pupal mortality, adult longevity, mating and oviposition success, as well as egg hatching rate and egg size, were established as independent of body size in a series of field and laboratory experiments. There was a very high overall efficiency of converting resources accumulated during the larval stage to egg masses. With no costs of large adult size, selective forces balancing the fecundity advantage should operate in the course of immature development. The strong dependence of realized fecundity on body size is considered characteristic of the capital breeding strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号