首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During tree growth, hardwoods can initiate the formation of tension wood, which is a strongly stressed wood on the upper side of the stem and branches. In Eucalyptus globulus, tension wood presents wider and thicker cell walls with low lignin, similar glucan and high xylan content, as compared to opposite wood. In this work, tension and opposite wood of E. globulus trees were separated and evaluated for the production of bioethanol using ethanol/water delignification as pretreatment followed by simultaneous saccharification and fermentation (SSF). Low residual lignin and high glucan retention was obtained in organosolv pulps of tension wood as compared to pulps from opposite wood at the same H-factor of reaction. The faster delignification was associated with the low lignin content in tension wood, which was 15% lower than in opposite wood. Organosolv pulps obtained at low and high H-factor (3,900 and 12,500, respectively) were saccharified by cellulases resulting in glucan-to-glucose yields up to 69 and 77%, respectively. SSF of the pulps resulted in bioethanol yields up to 35 g/l that corresponded to 85–95% of the maximum theoretical yield on wood basis, considering 51% the yield of glucose to ethanol conversion in fermentation, which could be considered a very satisfactory result compared to previous studies on the conversion of organosolv pulps from hardwoods to bioethanol. Both tension and opposite wood of E. globulus were suitable raw materials for organosolv pretreatment and bioethanol production with high conversion yields.  相似文献   

2.
Autohydrolysis and ethanol-alkali pulping were used as pretreatment methods of wheat straw for its subsequent saccharification by Trichoderma reesei cellulase. The basic hydrolysis parameters, i.e., reaction time, pH, temperature, and enzyme and substrate concentration, were optimized to maximize sugar yields from ethanol-alkali modified straw. Thus, a 93% conversion of 2.5% straw material to sugar syrup containing 73% glucose was reached in 48 h using 40 filter paper units/g hydrolyzed substrate. The pretreated wheat straw was then fermented to ethanol at 43 degrees C in the simultaneous saccharification and fermentation (SSF) process using T. reesei cellulase and Kluyveromyces fragilis cells. From 10% (w/v) of chemically treated straw (dry matter), 2.4% (w/v) ethanol was obtained after 48 h. When the T. reesei cellulase system was supplemented with beta-glucosidase from Aspergillus niger, the ethanol yield in the SSF process increased to 3% (w/v) and the reaction time was shortened to 24 h.  相似文献   

3.
Pretreatment of bagasse by autohydrolysis at 200 degrees C for 4 min and explosive defibration resulted in the solubilization of 90% of the hemicellulose (a heteroxylan) and in the production of a pulp that was highly susceptible to hydrolysis by cellulases from Trichoderma reesei C-30 and QM 9414, and by a comercial preparation, Meicelase. Saccharification yields of 50% resulted after 24 h at 50 degrees C (pH 5.0) in enzymic digests containing 10% (w/v) bagasse pulps and 20 filter paper cellulase units (FPU). Saccharifications could be increased to more than 80% at 24 h by the addition of exogenous beta-glucosidase from Aspergillus niger. The crystallinity of cellulose in bagasse remained unchanged following autohydrolysis-explosion and did not appear to hinder the rate or extent of hydrolysis of cellulose. Autohydrolysis-exploded pulps extracted with alkali or ethanol to remove lignin resulted in lowere conversions of cellulose (28-36% after 25 h) than unextracted pulps. Alkali extracted pulps arising from autohydrolysis times of more than 10 min at 200 degrees C were less susceptible to enzymic hydrolysis than unextracted pulps and alkali-extracted pulps arising from short autohydrolysis times (e.g., 2 min at 200 degrees C). Autohydrolysis-explosion was as effective a pretreatment method as 0.25M NaOH (70 degrees C/2 h) both yielded pulps that resulted in high cellulose conversions with T. reesei cellulase preparations and Meicelase. Supplementation of T. reesei C-30 cellulose preparations with A. niger beta-glucosidases was effective in promoting the conversion of cellulose into glucose. A ration of FPU to beta-glucosidase of 1:1.25 was the minimum requirement to achieve more than 80% conversion of cellulose into glucose within 24 h. Other factors which influenced the extent of saccharification of autohydrolysis-exploded bagasse pulps were the enzyme-substrate ratio, the substrate concentration, and the saccharification mode.  相似文献   

4.
Lodgepole pine (Pinus contorta) killed by mountain pine beetle (Dendroctonus ponderosae) (BLP) was compared with healthy lodgepole pine (HLP) for bioconversion to ethanol and high-value co-products. The BLP and HLP chips were pretreated using an ethanol organosolv process at a variety of severities. It was shown that the BLP was easier to pretreat and delignify than were the HLP chips. The resulting pretreated BLP substrate had a lower residual lignin, lower degree of polymerization of cellulose, lower cellulose crystallinity, smaller fiber size and thereby a better enzymatic hydrolysability than did the HLP substrates. However, under the same conditions, the BLP showed lower substrate yield and cellulose recovery than did the HLP, which likely resulted from the excessive hydrolysis and subsequent decomposition of the cellulose and hemicellulose during the pretreatment. The BLP wood yielded more ethanol organosolv lignin than was obtained with the HLP material. The HLP lignin had a lower molecular weight and narrower distribution than did the BLP lignin. It appears that the beetle killed LP is more receptive to organosolv pretreatment other than a slightly lower recovery of carbohydrates.  相似文献   

5.
The conversion of lignocellulose to valuable products requires I: a fractionation of the major components hemicellulose, cellulose, and lignin, II: an efficient method to process these components to higher valued products. The present work compares liquid hot water (LHW) pretreatment to the soda pulping process and to the ethanol organosolv pretreatment using rye straw as a single lignocellulosic material. The organosolv pretreated rye straw was shown to require the lowest enzyme loading in order to achieve a complete saccharification of cellulose to glucose. At biomass loadings of up to 15% (w/w) cellulose conversion of LHW and organosolv pretreated lignocellulose was found to be almost equal. The soda pulping process shows lower carbohydrate and lignin recoveries compared to the other two processes. In combination with a detailed analysis of the different lignins obtained from the three pretreatment methods, this work gives an overview of the potential products from different pretreatment processes.  相似文献   

6.
Wood chips of Pinus radiata softwood were biotreated with the brown rot fungus (BRF) Gloeophyllum trabeum for periods from 4 and 12 weeks. Biodegradation by BRF leads to an increase in cellulose depolymerization with increasing incubation time. As a result, the intrinsic viscosity of holocellulose decreased from 1,487 cm3/g in control samples to 783 and 600 cm3/g in 4- and 12-week decayed wood chips, respectively. Wood weight and glucan losses varied from 6 to 14% and 9 to 21%, respectively. Undecayed and 4-week decayed wood chips were delignified by alkaline (NaOH solution) or organosolv (ethanol/water) processes to produced cellulosic pulps. For both process, pulp yield was 5–10% lower for decayed samples than for control pulps. However, organosolv bio-pulps presented low residual lignin amount and high glucan retention. Chemical pulps and milled wood from undecayed and 4-week decayed wood chips were pre-saccharified with cellulases for 24 h at 50°C followed by simultaneous saccharification and fermentation (SSF) with the yeast Saccharomyces cerevisiae IR2-9a at 40°C for 96 h for bioethanol production. Considering glucan losses during wood decay and conversion yields from chemical pulping and SSF processes, no gains in ethanol production were obtained from the combination of BRF with alkaline delignification; however, the combination of BRF and organosolv processes resulted in a calculated production of 210 mL ethanol/kg wood or 72% of the maximum theoretically possible from that pretreatment, which was the best result obtained in the present study.  相似文献   

7.
A comparative study on TCF (totally chlorine-free) bleachability of organosolv pulps from the annual fibre crop Arundo donax L. (giant reed) was carried out using a simple three-stage peroxide bleaching sequence without oxygen pre-bleaching. ASAM (alkali-sulfite-anthraquinone-methanol), Organocell (alkali-anthraquinone-methanol) and ethanol-soda organosolv pulps were bleached and compared with kraft pulp, as a reference. The final brightness of 76-78% ISO was attained for all tested pulps. The chemical charge required to reach this level of brightness varied for different pulps (despite the equal initial content of the residual lignin) and directly related to starting brightness values. No direct correlation between brightness improvement and lignin removal during bleaching was found, indicating the influence of the specific pulp properties introduced by pulping process on bleaching chemistry. The general higher bleaching response of organosolv pulps from A. donax was noted in comparison with kraft.  相似文献   

8.
The present study focuses on the fractionation of cashew apple bagasse via a pretreatment using acetic acid as a delignifying agent and sulfuric acid as an external catalyst. As expected, the concentrations of both acids and the incubation time dramatically affected delignification and hemicellulose solubilization. Under the optimal pretreatment conditions, recycling of the spent liquor had no apparent impact on the chemical composition of the pretreated material, yield of sugar produced via enzymatic hydrolysis (∼37 g/L reducing sugars at 7.5% (w/v) solid loading), or yield of ethanol obtained via fermentation with Saccharomyces cerevisiae (∼16 g/L at 10% (w/v) solid loading). The lignin recovered from the spent liquor showed a good ultraviolet protective effect; the addition of 5% (w/w) of the biopolymer increased the sun protection factor of a commercial sunscreen lotion from 21.62 to 40.71. The combined use of hydrogen peroxide and ultraviolet radiation reduced the organosolv lignin color (absorbance at 450 nm was four times lower) owing to aromatic ring cleavage, but cosmetics containing whitened organosolv lignin had low sun protection factor values. In summary, the results obtained in this study demonstrate the utility of organic acid pretreatment in the valorization of lignocellulosic materials.  相似文献   

9.
To lower the cost of ethanol distillation of fermentation broths, a high initial glucose concentration is desired. However, an increase in the substrate concentration typically reduces the ethanol yield because of insufficient mass and heat transfer. In addition, different operating temperatures are required to optimize the enzymatic hydrolysis (50 degrees ) and fermentation (30 degrees ). Thus, to overcome these incompatible temperatures, saccharification followed by fermentation (SFF) was employed with relatively high solid concentrations (10% to 20%) using a portion loading method. In this study, glucose and ethanol were produced from Solka Floc, which was first digested by enzymes at 50 degrees for 48 h, followed by fermentation. In this process, commercial enzymes were used in combination with a recombinant strain of Zymomonas mobilis (39679:pZB4L). The effects of the substrate concentration (10% to 20%, w/v) and reactor configuration were also investigated. In the first step, the enzyme reaction was achieved using 20 FPU/g cellulose at 50 degrees for 96 h. The fermentation was then performed at 30 degrees for 96 h. The enzymatic digestibility was 50.7%, 38.4%, and 29.4% after 96 h with a baffled Rushton impeller and initial solid concentration of 10%, 15%, and 20% (w/v), respectively, which was significantly higher than that obtained with a baffled marine impeller. The highest ethanol yield of 83.6%, 73.4%, and 21.8%, based on the theoretical amount of glucose, was obtained with a substrate concentration of 10%, 15%, and 20%, respectively, which also corresponded to 80.5%, 68.6%, and 19.1%, based on the theoretical amount of the cell biomass and soluble glucose present after 48 h of SFF.  相似文献   

10.
采用H2 SO4催化和自催化乙醇法对麦秆进行预处理,比较预处理后麦秆的主要化学组成、纤维素酶解性能和半同步糖化发酵生产乙醇特性,并进行物料衡算。结果表明:H2 SO4催化和自催化乙醇预处理过程中纤维素固体回收率大于90%。添加非离子表面活性剂吐温20和吐温80没有显著提高H2 SO4催化乙醇预处理后纤维素的酶解葡萄糖得率及半同步糖化发酵过程中乙醇的产量,而对自催化乙醇处理后麦秆的酶解和半同步糖化发酵过程有一定程度的促进作用,相应的酶解葡聚糖转化率由72.7%提高到85.0%,而半同步糖化发酵过程中乙醇质量浓度提高了11.4%。物料衡算结果表明:酸催化和自催化乙醇预处理后葡聚糖回收率分别为91.0%和95.4%;半同步糖化发酵生产乙醇的得率分别为10.4和11.6 g(按100 g原料计)。  相似文献   

11.
Summary A new and effective pretreatment process for biomass conversion involves the steeping of biomass in 2.9 M NH4OH. This resulted in the removing about 80–90% of the lignin along with almost all the acetate from cellulosic residues. Based on dry cellulose from corn cob, a high glucose yield of 92% was obtained after enzymatic saccharification of cellulose fraction. By using a genetically engineered, xylosefermenting Saccharomyces 1400(pLNH33) in the batch fermentation of a glucose-xylose mixture from corn cob, an ethanol concentration of 47 g/L was obtained within 36 h with 84% yield. In addition, an ethanol concentration of 45 g/L was obtained within 48 h with 86% yield using simultaneous saccharification-fermentation process.  相似文献   

12.
The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency.  相似文献   

13.
Buddleja davidii is a unique biomass that has many attractive agroenergy features, especially its wide range of growth habitat. The anatomical characteristics of B. davidii were investigated before and after ethanol organosolv pretreatment (one of the leading pretreatment technologies) in order to further understand the alterations that occur to the cellular structure of the biomass which can then be correlated with its enzymatic digestibility. Results showed that the ethanol organosolv pretreatment of B. davidii selectively removes lignin from the middle lamella (ML), which does not significantly disrupt the crystalline structure of cellulose. The removal of ML lignin is a major factor in enhancing enzymatic cellulose‐to‐glucose hydrolysis. The pretreatment also causes cell deformation, resulting in cracks and breaks in the cell wall. These observations, together with characterization analysis of the cell wall polymer material, lend support to the hypothesis that the physical distribution of lignin in the biomass matrix is an important structural feature affecting biomass enzymatic digestibility. Biotechnol. Bioeng. 2010;107: 795–801. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
Xu L  Tschirner U 《Bioresource technology》2011,102(21):10065-10071
Saccharification is one of the most critical steps in producing lignocellulose-based bio-ethanol through consolidated bioprocessing (CBP). However, extreme pH and ethanol concentration are commonly considered as potential inhibitors for the application of Clostridium sp. in CBP. The fermentations of several saccharides derived from lignocellulosics were investigated with a co-culture consisting of Clostridium themocellum and Clostridium thermolacticum. Alkali environments proved to be more favorable for ethanol production. Fermentation inhibition was observed at high ethanol concentrations and extreme pH. However, low levels of initial ethanol addition resulted in an unexpected stimulatory impact on the final ethanol productions for all cultures under selected conditions. The co-culture was able to actively ferment glucose, xylose, cellulose and micro-crystallized cellulose (MCC). The ethanol yield observed in the co-culture was higher (up to twofold) than in mono-cultures, especially in MCC fermentation. The highest ethanol yield (as a percentage of the theoretical maximum) observed was 75% (w/w) for MCC and 90% (w/w) for xylose.  相似文献   

15.
In this study, we determined the effect of organosolv pretreatment on herbaceous biomasses corn stover and wheat straw, by using high-concentration ethanol as the solvent. A high-concentration of ethanol allows for the easy reuse and recycling of the solvent. First, we tested the effects of ethanol pretreatments at 60 and 99.5% (w/w) and found that highest solvent concentration resulted in low glucose digestibility. The maximum enzymatic glucose digestibility with 60% ethanol was 92.6% at 190°C for 120 min (using corn stover) and 86.9% at 190°C for 120 min (using wheat straw). In contrast, the digestion rates with 99.5% ethanol were 68.8 and 77.4% under the same conditions, respectively, indicating that there is a limit to the use of high-concentration ethanol as the solvent. To overcome this limitation, we applied a mechanical pretreatment step before the chemical pretreatment. Subsequently, glucose digestibility increased significantly to 93.1% with 99.5% ethanol as the solvent. Additionally the enzymatic digestibility of mechanically pretreated corn stover was higher than that of non-pretreated corn stover by about 40%. Taken together, these results confirm the efficacy of using high-concentration ethanol as a solvent for organosolv pretreatment when done in conjunction with mechanical pretreatment.  相似文献   

16.
Rice hulls, a complex lignocellulosic material with high lignin (15.38 +/- 0.2%) and ash (18.71 +/- 0.01%) content, contain 35.62 +/- 0.12% cellulose and 11.96 +/- 0.73% hemicellulose and has the potential to serve as a low-cost feedstock for production of ethanol. Dilute H2SO4 pretreatments at varied temperature (120-190 degrees C) and enzymatic saccharification (45 degrees C, pH 5.0) were evaluated for conversion of rice hull cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from rice hulls (15%, w/v) by dilute H2SO4 (1.0%, v/v) pretreatment and enzymatic saccharification (45 degrees C, pH 5.0, 72 h) using cellulase, beta-glucosidase, xylanase, esterase, and Tween 20 was 287 +/- 3 mg/g (60% yield based on total carbohydrate content). Under this condition, no furfural and hydroxymethyl furfural were produced. The yield of ethanol per L by the mixed sugar utilizing recombinant Escherichia colistrain FBR 5 from rice hull hydrolyzate containing 43.6 +/- 3.0 g fermentable sugars (glucose, 18.2 +/- 1.4 g; xylose, 21.4 +/- 1.1 g; arabinose, 2.4 +/- 0.3 g; galactose, 1.6 +/- 0.2 g) was 18.7 +/- 0.6 g (0.43 +/- 0.02 g/g sugars obtained; 0.13 +/- 0.01 g/g rice hulls) at pH 6.5 and 35 degrees C. Detoxification of the acid- and enzyme-treated rice hull hydrolyzate by overliming (pH 10.5, 90 degrees C, 30 min) reduced the time required for maximum ethanol production (17 +/- 0.2 g from 42.0 +/- 0.7 g sugars per L) by the E. coli strain from 64 to 39 h in the case of separate hydrolysis and fermentation and increased the maximum ethanol yield (per L) from 7.1 +/- 2.3 g in 140 h to 9.1 +/- 0.7 g in 112 h in the case of simultaneous saccharification and fermentation.  相似文献   

17.
The effects of ethanol and Trichoderma reesei cellulase on the saccharification and fermentation processes as well as the tolerance of the cellulase complex for ethanol have been investigated. The studies were conducted with respect to their usefulness in the process of simulataneous saccharification and fermentation of cellulose to ethanol. The following results were obtained. (1) Fermentative activity of Kluyveromyces fragilis yeasts was gradually depressed with increasing intial ethanol concentrations and temperature of fermentation between 35–46°C. (2) Crude cellulase preparation introduced to the culture broth to a final enzyme activity of 0.5 to 2.0 FPU/ml had not distinct effect on the biomass production, ethanol yield, and glucose uptake by yeasts in 48 h fermentation at 43°C. On the other hand, only a negligible decrease in the cellulase complex activity was observed during fermentation process. (3) Saccharification of wheat straw was inhibited by at least 1% w/v ethanol. (4) The enzymes of the cellulase system showed a high stability to exposure to ethanol for 48 h at 43°C.  相似文献   

18.
This paper describes the organosolv delignification of depithed bagasse using glycerol–water mixtures without a catalyst. The experiments were performed using two separate experimental designs. In the first experiment, two temperatures (150 and 190 °C), two time periods (60 and 240 min) and two glycerol contents (20% and 80%, v/v) were used. In the second experiment, which was a central composite design, the glycerol content was maintained at 80%, and a range of temperatures (141.7–198.3 °C) and time (23–277 min) was used. The best result, obtained with a glycerol content of 80%, a reaction time of 150 min and a temperature of 198.3 °C, produced pulps with 54.4% pulp yield, 7.75% residual lignin, 81.4% delignification and 13.7% polyose content. The results showed that high contents of glycerol tend to produce pulps with higher delignification and higher polyoses content in relation to the pulps obtained from low glycerol content reactions. In addition, the proposed method shows potential as a pretreatment for cellulose saccharification.  相似文献   

19.
The enzymatic digestibility of steam-exploded Douglas-fir wood chips (steam exploded at 195 degrees C, 4.5 min, and 4.5% (w/w) SO(2)) was significantly improved using an optimized alkaline peroxide treatment. Best hydrolysis yields were attained when the steam-exploded material was post-treated with 1% hydrogen peroxide at pH 11.5 and 80 degrees C for 45 min. This alkaline peroxide treatment was applied directly to the water-washed, steam-exploded material eliminating the need for independent alkali treatment with 0.4% NaOH, which has been traditionally used to post-treat wood samples to try to remove residual lignin. Approximately 90% of the lignin in the original wood was solubilized by this novel procedure, leaving a cellulose-rich residue that was completely hydrolyzed within 48 h, using an enzyme loading of 10 FPU/g cellulose. About 82% of the originally available polysaccharide components of the wood could be recovered. The 18% of the carbohydrate that was not recovered was lost primarily to sugar degradation during steam explosion.  相似文献   

20.
This work provides an assessment on the fractionation of Eucalyptus globulus wood by sequential stages of autohydrolysis (to cause the solubilization of hemicelluloses) and organosolv pulping (to dissolve lignin, leaving solids enriched in cellulose). With this approach, valuable products (hemicellulose-derived saccharides, sulphur-free lignin fragments and cellulosic substrates with low contents of residual hemicelluloses) are obtained in separate streams, according to the biomass refinery approach. Autohydrolysis was carried out under optimized operational conditions, and organosolv pulping was performed using uncatalyzed ethanol-water solutions. The effects of the most influential operational variables (autohydrolysis severity, delignification temperature and ethanol concentration in the organosolv stage) on solid yield, solid composition, cellulose susceptibility and recovery of the various fractions was assessed using statistical methods, which enabled the identification of the most favourable operational conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号