首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
2.
The formation and the development of the floral organs require an intercalate expression of organ-specific genes. At the same time, meristem-specific genes are repressed to complete the differentiation of the organs in the floral whorls. In an Arabidopsis activation tagging population, a mutant affected in inflorescence architecture was identified. This gain-of-function mutant, designateddownwards siliques1 (dsl1-D), has shorter internodes and the lateral organs such as flowers are bending downwards, similar to the loss-of-function brevipedicellus (bp) mutant. The affected gene in dsl1-D appeared to be ASYMMETRIC LEAVES2-LIKE1 (ASL1)/LATERAL ORGAN BOUNDARIESdomain gene 36 (LBD36), which is a member of the ASYMMETRIC LEAVES2 (AS2)/LATERAL ORGAN BOUNDARIES (LOB) domain gene family. Analysis of the loss-of-function mutant asl1/lbd36 did not show morphological aberration. Double mutant analysis of asl1/lbd36 together with as2, the ASL1/LBD36 closest homologue, demonstrates that these two members of the AS2/LOB family act partially redundant to control cell fate determination in Arabidopsis petals. Moreover, molecular analysis revealed that overexpression of ASL1/LBD36 leads to repression of the homeobox gene BP, which supports the model that an antagonistic relationship between ASL/LBD and homeobox members is required for the differentiation of lateral organs.  相似文献   

3.
4.
为研究ASL25/LBD28基因在植物发育过程中的作用,该研究构建了拟南芥ASL25/LBD28的过量表达载体并将其转入野生型拟南芥中,结果发现,ASL25/LBD28基因的过量表达可导致转基因拟南芥的叶片变得狭长;在叶极性发育突变体as2中,ASL25/LBD28基因过量表达导致部分转基因植株在形成1~3片畸形叶后顶端分生组织的发育会终止;而许多转基因植株则会形成许多"针状"叶.扫描电镜观察表明,不正常的叶片近轴面或"针状"叶的表皮细胞具有远轴面化的长条形细胞,说明在as2突变体中过量表达ASL25/LBD28基因影响叶片的极性发育.  相似文献   

5.
6.
7.
顶端优势是指侧生分生组织的生长被主茎或主花序所抑制.最近的研究通过分离和鉴定顶端优势发生改变的突变体开始揭示顶端优势的分子机制.通过T-DNA标签法分离了拟南芥矮小丛生(bushy and dwarf 1, bud1 )突变体.突变体植株的表型包括顶端优势丧失、株型矮小,表明bud1 突变体存在生长素代谢、运输或信号传导的缺陷.一个对生长素特异反应的启动子驱动的报告基因在bud1 中表达模式改变.生长素敏感性和运输能力的测定表明这两个过程在 bud1中均正常.以上结果显示bud1 表型是生长素代谢缺陷的结果.遗传分析表明BUD1 为半显性突变且与一个T-DNA插入共分离,可通过iPCR方法分离.  相似文献   

8.
Auxin plays critical roles in many aspects of plant growth and development. Although a number of auxin biosynthetic pathways have been identified, their overlapping nature has prevented a clear elucidation of auxin biosynthesis. Recently, Arabidopsis (Arabidopsis thaliana) mutants with supernormal auxin phenotypes have been reported. These mutants exhibit hyperactivation of genes belonging to the YUCCA family, encoding putative flavin monooxygenase enzymes that result in increased endogenous auxin levels. Here, we report the discovery of fertile dominant Arabidopsis hypertall1-1D and hypertall1-2D (yucca6-1D, -2D) mutants that exhibit typical auxin overproduction phenotypic alterations, such as epinastic cotyledons, increased apical dominance, and curled leaves. However, unlike other auxin overproduction mutants, yucca6 plants do not display short or hairy root phenotypes and lack morphological changes under dark conditions. In addition, yucca6-1D and yucca6-2D have extremely tall (>1 m) inflorescences with extreme apical dominance and twisted cauline leaves. Microarray analyses revealed that expression of several indole-3-acetic acid-inducible genes, including Aux/IAA, SMALL AUXIN-UP RNA, and GH3, is severalfold higher in yucca6 mutants than in the wild type. Tryptophan (Trp) analog feeding experiments and catalytic activity assays with recombinant YUCCA6 indicate that YUCCA6 is involved in a Trp-dependent auxin biosynthesis pathway. YUCCA6:GREEN FLUORESCENT PROTEIN fusion protein indicates YUCCA6 protein exhibits a nonplastidial subcellular localization in an unidentified intracellular compartment. Taken together, our results identify YUCCA6 as a functional member of the YUCCA family with unique roles in growth and development.  相似文献   

9.
The four mutant genes, cyc2, cyc3, cyc8 and cyc9, that affect the levels of the two iso-cytochromes c in the yeast Saccharomyces cerevisiae have been characterized and mapped. Both cyc2 and cyc3 lower the amount of iso-1-cytochrome c and iso-2-cytochrome c; whereas, cyc8 and cyc9 increase the amount of iso-2-cytochrome c. The cyc2, cyc3, cyc8 and cyc9 genes are located, respectively, on chromosomes XV, I, II and III, and are, therefore, unlinked to each other and unlinked to CYC1, the structural gene of iso-1-cytochrome c and to CYC7, the structural gene of iso-2-cytochrome c. While some cyc3 mutants are completely or almost completely deficient in cyotchromes c, none of the cyc2 mutants contained less than 10% of parental level of cytochrome c even though over one-half of the mutants contain UAA or UAG nonsense mutations. Thus, it appears as if a complete block of the cyc2 gene product still allows the formation of a residual fraction of cytochrome c. The cyc2 and cyc3 mutant genes cause deficiencies even in the presence of CYC7, cyc8 and cyc9, which normally cause overproduction of iso-2-cytochrome c. We suggest that cyc2 and cyc3 may be involved with the regulation or maturation of the iso-cytochromes c. In addition to having high levels of iso-2-cytochromes c, the cyc8 and cyc9 mutants are associated with flocculent cells and other abnormal phenotypes. The cyc9 mutant was shown to be allelic with the tup1 mutant and to share its properties, which include the ability to utilize exogenous dTMP, a characteristic flocculent morphology, the lack of sporulation of homozygous diploids and low frequency of mating and abnormally shaped cells of alpha strains. The diverse abnormalities suggest that cyc8 and cyc9 are not simple regulatory mutants controlling iso-2-cytochrome c.  相似文献   

10.
11.
12.
13.
14.
An allelic series of the novel argonaute mutant (ago1-1 to ago1-6) of the herbaceous plant Arabidopsis thaliana has been isolated. The ago1 mutation pleotropically affects general plant architecture. The apical shoot meristem generates rosette leaves and a single stem, but axillary meristems rarely develop. Rosette leaves lack a leaf blade but still show adaxial/abaxial differentiation. Instead of cauline leaves, filamentous structures without adaxial/abaxial differentiation develop along the stem and an abnormal inflorescence bearing infertile flowers with filamentous organs is produced. Two independent T-DNA insertions into the AGO1 locus led to the isolation of two corresponding genomic sequences as well as a complete cDNA. The AGO1 locus was mapped close to the marker mi291a on chromosome 1. Antisense expression of the cDNA resulted in a partial mutant phenotype. Sense expression caused some transgenic lines to develop goblet-like leaves and petals. The cDNA encodes a putative 115 kDa protein with sequence similarity to translation products of a novel gene family present in nematodes as well as humans. No specific function has been assigned to these genes. Similar proteins are not encoded by the genomes of yeast or bacteria, suggesting that AGO1 belongs to a novel class of genes with a function specific to multicellular organisms.  相似文献   

15.
16.
17.
Cytokinins are adenine derivatives that regulate numerous plant growth and developmental processes, including apical and floral meristem development, stem growth, leaf senescence, apical dominance, and stress tolerance. However, not much is known about how cytokinin biosynthesis and metabolism is regulated. We identified a novel Arabidopsis gene, ALL, encoding an aldolase-like enzyme that regulates cytokinin signaling. An Arabidopsis mutant, all-1D, in which ALL is activated by the nearby insertion of the 35S enhancer, exhibited extreme dwarfism with rolled, dark-green leaves and reduced apical dominance, symptomatic of cytokinin-overproducing mutants. Consistent with this, ARR4 and ARR5, two representative primary cytokinin-responsive genes, were significantly induced in all-1D. Whereas SHOOT MERISTEMLESS (STM) and KNAT1, which regulate meristem development, were also greatly induced, expression of REV and PHV that regulate lateral organ polarity was inhibited. ALL encodes an aldolase-like enzyme that belongs to the HpcH/HpaI aldolase family in prokaryotes and is down-regulated by exogenous cytokinin, possibly through a negative feedback pathway. We propose that ALL is involved in cytokinin biosynthesis or metabolism and acts as a positive regulator of cytokinin signaling during shoot apical meristem development and determination of lateral organ polarity.  相似文献   

18.
19.
ASYMMETRIC LEAVES2-LIKE38/LBD41 gene of Arabidopsis is a member of the ASYMMETRIC LEAVES2 (AS2)/LATERAL ORGAN BOUNDARIES (LOB) domain gene family. To explore ASL38 function, we transformed 35S:ASL38 constructs into cockscomb (Celosia plumosus) plants via Agrobacterium tumefaciens and obtained T1 35S:ASL38 plants. The extremely folded or crinkly leaves were seen in these T1 cockscomb plants. The anatomical analysis of these malformed leaf blades indicated that adaxial cells revealed abaxialized traits, which were never seen in those of wild-type plants. These results suggested that ectopic expression of ASL38 might lead to alternations of dorsoventrality in folded or crinkly leaves of 35S:ASL38 cockscomb. In general, all data showed that ASL38 might be involved in dorsoventral determination in lateral organ development of plants.  相似文献   

20.
To study the GH3 gene family of Arabidopsis, we investigated a flanking sequence database of Arabidopsis activation-tagged lines. We found a dwarf mutant, named yadokari 1-D (ydk1-D), that had a T-DNA insertion proximal to a GH3 gene. ydk1-D is dominant and has a short hypocotyl not only in light but also in darkness. Moreover, ydk1-D has a short primary root, a reduced lateral root number, and reduced apical dominance. A GH3 gene, named YDK1, was upregulated in ydk1-D, and YDK1 transgenic plants showed the ydk1-D phenotype. YDK1 gene expression was induced by exogenously applied auxin and regulated by auxin-response factor (ARF)7. In addition, YDK1 gene expression was downregulated by blue and far-red (FR) lights. Strong promoter activity of YDK1 was observed in roots and flowers. These results suggest that YDK1 may function as a negative component in auxin signaling by regulating auxin activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号