首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY 1. Many Australian inland rivers are characterised by vast floodplains with a network of anastomosing channels that interconnect only during unpredictable flooding. For much of the time, however, rivers are reduced to a string of disconnected and highly turbid waterholes. Given these features, we predicted that aquatic primary production would be light-limited and the riverine food web would be dependent on terrestrial carbon from floodplain exchanges and direct riparian inputs.
2. To test these predictions, we measured rates of benthic primary production and respiration and sampled primary sources of organic carbon and consumers for stable isotope analysis in several river waterholes at four locations in the Cooper Creek system in central Australia.
3. A conspicuous band of filamentous algae was observed along the shallow littoral zone of the larger waterholes. Despite the high turbidity, benthic gross primary production in this narrow zone was very high (1.7–3.6 g C m−2 day−1); about two orders of magnitude greater than that measured in the main channel.
4. Stable carbon isotope analysis confirmed that the band of algae was the major source of energy for aquatic consumers, ultimately supporting large populations of crustaceans and fish. Variation in the stable carbon and nitrogen isotope signatures of consumers suggested that zooplankton was the other likely major source.
5. Existing ecosystem models of large rivers often emphasise the importance of longitudinal or lateral inputs of terrestrial organic matter as a source of organic carbon for aquatic consumers. Our data suggest that, despite the presence of large amounts of terrestrial carbon, there was no evidence of it being a significant contributor to the aquatic food web in this floodplain river system.  相似文献   

2.
1. Floodplain inundation provides many benefits to fish assemblages of floodplain river systems, particularly those with a predictable annual flood pulse that drives yearly peaks in fish production. In arid‐zone rivers, hydrological patterns are highly variable and the influence of irregular floods on fish production and floodplain energy subsidies may be less clear‐cut. To investigate the importance of floodplain inundation to a dryland river fish assemblage, we sampled fish life stages on the floodplain of Cooper Creek, an Australian arid‐zone river. Sampling was focused around Windorah during a major flood in January 2004 and in isolated waterholes in March 2004 following flood drawdown. 2. Of the 12 native species known to occur in this region, 11 were present on the floodplain, and all were represented by at least two of three life‐stages – larvae, juveniles or adult fish. Late stage larvae of six fish species were found on the floodplain. There were site‐specific differences in larval species assemblages, individual species abundances and larval distribution patterns among floodplain sites. 3. Significant growth was evident on the floodplain, particularly by larval and juvenile fish, reflecting the combination of high water temperatures and shallow, food rich habitats provided by the relatively flat floodplain. 4. Low variation in biomass, species richness and presence/absence of juvenile and adult fish across four floodplain sites indicates consistently high fish productivity across an extensive area. 5. Similarities and differences in fish biomass between the floodplain and isolated post‐flood waterholes suggest high rates of biomass transfer (involving the most abundant species) into local waterholes and, potentially, biomass transfer by some species to other waterholes in the catchment during floodplain inundation and after floods recede. 6. The high concentration of fish on this shallow floodplain suggests it could be a key area of high fish production that drives a significant proportion of waterhole productivity in the vicinity. The Windorah floodplain provides favourable conditions necessary for the spawning of some species and juvenile recruitment of the majority of species. It is also appears to be a significant conduit for the movements of fish that underpin high genetic similarity, hence population mixing, of many species throughout the Cooper Creek catchment. The high floodplain fish production in turn provides a significant energy subsidy to waterholes after floodwaters recede. 7. The identification of key sites of high fish production, such as the Windorah floodplain, may be important from a conservation perspective. Key management principles should be: maintenance of the natural flooding regime; identification of the most productive floodplain areas; and maintenance of their connectivity to anastomosing river channels and the remnant aquatic habitats that ultimately sustain this fish assemblage through long‐term dry/drought and flood cycles.  相似文献   

3.
1. High light availability and stable base flow during the dry season promote primary production in perennial rivers of the wet–dry tropics, in contrast to production during the wet season which is often limited by turbidity and scouring. The Mitchell River of northern Queensland (Australia) was studied to understand controls on aquatic production and respiration in the dry season in relation to spatial and temporal gradients of light and temperature. 2. At three sites along the river, whole‐ecosystem gross primary production (GPP) and respiration (ER) were measured from diel changes of dissolved oxygen using the open‐channel single station method. Using stable carbon and nitrogen isotope analysis, aquatic consumers and their potential basal food resources were also assessed to determine food web relationships at the beginning and end of the dry season. 3. Nutrient limitation of aquatic net primary production was implied from the oligotrophic conditions and high algal C:N ratios. Rates of GPP were comparable with other tropical and temperate rivers and were regulated by light availability. 4. Respiration rates were high and similar to other tropical and subtropical rivers. Up to 52% of temporal variation of ER was explained by temperature, while P/R was lowest at the downstream site. 5. Benthic algae were the major carbon source for primary and secondary benthic consumers (insects) in the dry season but not for higher consumers (fish and crustaceans). Despite high rates of ER, which were probably supported by decaying terrestrial C3 plant material, this carbon source was not identified as contributing to animal consumer biomass. 6. While benthic algal production in the dry season sustained benthic invertebrates, the importance of external subsidies of carbon along the river, probably from the floodplain, was emphasised for fish and large invertebrates, which evidently were feeding on carbon sources not present in channel waterholes during the dry season.  相似文献   

4.
The fish assemblages of an arid zone floodplain river, Cooper Creek, Queensland, Australia, were sampled during two dry periods in isolated waterholes and on the inundated floodplain during the early and late phase of a major flood event. Diets were described for nine native species and compared within and between dry and flood periods. In the dry season, when fishes were restricted to waterholes, diets were characteristically simple with narrow diet breadths. Movement onto the floodplain during flooding clearly increased feeding opportunities, with greater diet breadths evident in all species. Despite obvious potential for terrestrial inputs, diets tended to be dominated by aquatic resources in both the waterholes and on the floodplain. Stomach fullness, however, varied little between dry season waterhole and floodplain samples. Fishes appeared to feed on potentially lower value resources such as detritus and calanoid copepods during the dry season, when waterholes were isolated and food resources were limited. They were then able to capitalize on the 'boom' of aquatic production and more diverse food resources associated with episodic flood events.  相似文献   

5.
  1. Accurately accounting for flows of energy through food webs is challenging because of the spatial and temporal variability associated with energy production and consumption. Wet–dry tropical rivers have a highly seasonal discharge regime where wet season flows allow access to energy sources (inundated wetlands) that are not available during the dry season when aquatic consumers are confined to disconnected waterholes.
  2. We combined measures of fish community biomass with previously published feeding guild specific stable isotope analyses to explore how opposing wet- and dry-season habitat templates influence spatial and temporal trends in the sources of energy supporting fish biomass throughout a river network in the wet–dry tropics of northern Australia.
  3. Accounting for the relative contribution of each feeding guild to fish community biomass was a critical component of our analyses, as a single feeding guild (invertivore/piscivore) influenced spatial and temporal patterns in the sources of energy supporting overall fish biomass. During the early dry season, the reliance of fish communities on autochthonous sources of energy (periphyton) decreased from the upper to lower reaches of the river network, which correlates with increasing floodplain area and wet season inundation times. These patterns disappeared by the late dry season as fish in both upper and lower reaches became increasingly reliant on autochthonous sources produced within waterholes over the course of the dry season, indicating that the large wet-season gains in fish biomass are maintained through the dry season by energy produced within waterhole refuges.
  4. Collectively these results indicate that a combination of autochthonous and allochthonous sources of energy work in unison to support fish community biomass throughout the Mitchell River catchment and that access to these sources of energy is dictated by seasonal patterns in discharge interacting with spatial variability in river geomorphology (channel geometry and floodplain area).
  5. Many rivers are experiencing decreased flows due to water resource development and more frequent and severe droughts. Thus, we suggest our study provides insight into how changes in discharge regime could influence food web energetics throughout river networks.
  相似文献   

6.
The zooplankton of freshwater systems has been recognized as an important energy resource for fish of small body size that, in turn, provide energy to piscivorous fish consumers higher up the food web. This study evaluates the importance of zooplankton to the diets of three species of fish living in floodplain waterholes of an Australian dryland river. The species selected for study represent different trophic categories in waterhole food webs: Ambassis agassizii is a microcarnivore, Leiopotherapon unicolor is an omnivore, and Nematalosa erebi is a detritivore. Dietary differences among size classes of each species were also evaluated to understand possible ontogenetic shifts in zooplankton consumption. Ambassis agassizii fed primarily on zooplankton (99.9%, made up mostly of 81.6% Calanoida and 17.4% Moinidae), regardless of the size of individual fish. Leiopotherapon unicolor fed on zooplankton (47%, mostly Daphniidae and Moinidae) and aquatic insects (46.7%). Smaller individuals of Leiopotherapon unicolor (30–49 mm TL—total length) were responsible for 36.1% of the plankton consumed by the species. Nematalosa erebi fed on detritus (84.6%) with zooplankton (Calanoida, Moinidae, and Cyclopoida) contributing only 13.7% of the mean diet. Smaller individuals (40–69 mm TL) were responsible for 98% of the plankton consumed by Nematalosa erebi, and individuals of 40–49 mm (TL) fed exclusively on zooplankton (53.8% Moinidae and 46.2% Calanoida). Although the three fish species had different diets, reflecting differences in species-specific and ontogenetic morphological and behavioral characteristics, zooplankton formed the basis of the diet of all species when young. These results confirm the importance of zooplankton as a major food resource for three fish species and smaller size classes of these species in floodplain waterholes of the Macintyre River, Australia. Guest editors: U. M. Azeiteiro, I. Jenkinson & M. J. Pereira Plankton Studies  相似文献   

7.
1. Episodic floods and extended low or no flow periods characterise dryland river systems in Western Queensland, Australia. During protracted intervals between floods, rivers consist of a series of isolated waterholes, which serve as ‘refugia’ for aquatic species and much of the channel is dry. We categorised these waterholes into ‘main waterholes’, which are located in the main part of the river channel and ‘satellite waterholes’, which are located in distributary river channels. 2. We used mitochondrial sequences and allozymes to investigate levels of genetic diversity and patterns of connectivity among waterholes for two obligate freshwater species: Macrobrachium australiense (Decapoda: Palaemonidae) and Notopala sublineata (Gastropoda: Viviparidae). 3. We sampled 31 waterholes for M. australiense and 12 for N. sublineata. Based on a 505‐bp fragment of cytochrome oxidase subunit I, we identified 54 haplotypes in a sample of 232 individuals for M. australiense and based on a 457‐bp fragment of the same gene, 36 haplotypes in a sample of 145 individuals for N. sublineata. 4. Both nuclear and mitochondrial genetic data sets indicated that estimates of genetic diversity were not different in populations inhabiting main and satellite waterholes for either species. Also, there was generally very limited genetic differentiation among populations at any site. 5. We suggest that levels of connectivity among populations inhabiting waterholes at most sites are higher than expected. High levels of connectivity may help to maintain overall high levels of genetic diversity as well as low levels of genetic differentiation among waterholes within sites.  相似文献   

8.
This article examines the trophic ecology of freshwater fishes (22 species in 15 families) in a wet and dry tropical Australian river of high intra‐annual and interannual hydrological variability. Seven major trophic groups were identified by cluster analysis; however, four food items (filamentous algae, chironomid larvae, Trichoptera larvae and Ephemeroptera nymphs) comprised almost half of the average diet of all species. The influence of species, fish size, spatial effects and temporal effects on food use was investigated using redundancy analysis. Size, time and space accounted for little of the perceived variation. Ontogenetic changes in diet were minor and limited to a few large species. Spatial variation in trophic composition of the fish assemblages reflected the effects of the Burdekin Falls and dam, a major geographic barrier, on species distributions. Little spatial variation in diet was detected after accounting for this biogeographical effect. Temporal variations in flow, although marked, had little effect on variations in fish diet composition due to the low temporal diversity of food resources in physically monotonous sand and gravel channels. Species identity accounted for<50% of the observed variation in food choice; omnivory and generalism were pronounced. The aquatic food web of the Burdekin River appears simple, supported largely by autochthonous production (filamentous and benthic microalgae, and to some extent, aquatic macrophytes). Allochthonous food resources appear to be unimportant. The generalist feeding strategies, widespread omnivory and absence of pronounced trophic segregation reported here for Burdekin River fishes may be common to variable and intermittent rivers of subtropical and tropical northern Australia with similar fish communities and may be a general feature of rivers of low habitat diversity and characterized by flow regimes that vary greatly both within and between years.  相似文献   

9.
1. The dry tropics are characterised by episodic summer rainfall such that the majority of annual river flow occurs in a short period of time. This dryland hydrological cycle leads to variably connected channels and waterholes along the length of a river bed. 2. We investigated the seasonal changes in biophysical characteristics and macroinvertebrate assemblage composition in dry‐tropics rivers at 15 sites on four rivers, each sampled five times (representing one annual hydrological cycle), in the Burdekin catchment, north Queensland, Australia. 3. Assemblages and their temporal trajectories differed among seasons, sites and habitats, even within the same habitat and/or river. Wet season flooding did not appear to ‘reset’ assemblages, with post‐wet season assemblages differing between years. 4. We found no consistent pattern in taxonomic richness over time, and sites within rivers showed no consistent convergence or divergence (i.e. turnover) in macroinvertebrate assemblage composition. However, biophysical variables associated with the rigours of the late dry season had significant effects on macroinvertebrate assemblages, highlighting the variable and often harsh conditions of dry‐tropics rivers. Underlying these patterns were different resistance and resilience traits of invertebrates (such as colonisation and establishment abilities), as well as the local‐scale effects of biophysical variables. 5. The dynamic nature of dryland rivers presents major challenges to monitoring programmes, and our results suggest a more complex scenario for monitoring and management than previously described.  相似文献   

10.
Food web subsidies from external sources (“allochthony”) can support rich biological diversity and high secondary and tertiary production in aquatic systems, even those with low rates of primary production. However, animals vary in their degree of dependence on these subsidies. We examined dietary sources for aquatic animals restricted to refugial habitats (waterholes) during the dry season in Australia’s wet–dry tropics, and show that allochthony is strongly size dependent. While small-bodied fishes and invertebrates derived a large proportion of their diet from autochthonous sources within the waterhole (phytoplankton, periphyton, or macrophytes), larger animals, including predatory fishes and crocodiles, demonstrated allochthony from seasonally inundated floodplains, coastal zones or the surrounding savanna. Autochthony declined roughly 10% for each order of magnitude increase in body size. The largest animals in the food web, estuarine crocodiles (Crocodylus porosus), derived ~80% of their diet from allochthonous sources. Allochthony enables crocodiles and large predatory fish to achieve high biomass, countering empirically derived expectations for negative density vs. body size relationships. These results highlight the strong degree of connectivity that exists between rivers and their floodplains in systems largely unaffected by river regulation or dams and levees, and how large iconic predators could be disproportionately affected by these human activities.  相似文献   

11.
12.
Synopsis Fish assemblages were sampled at 22 sites within the Mulgrave and South Johnstone Rivers of the Wet Tropics World Heritage Area, north Queensland. Flow regimes of these rivers are highly predictable, by Australian standards, due to low annual and seasonal variability. A gradual downstream change in fish assemblage structure, correlated with gradual change in habitat, substrate and type of in-stream cover, was observed in the Mulgrave River but not the South Johnstone. A reduced species richness was observed in the South Johnstone relative to the Mulgrave probably due to the effect of two high gradient sections located in the former river and a more diverse array of habitat types present in the latter. Both rivers contained more species than other tropical Australian rivers of greater size. Possible reasons for this included the constant and predictable flow regime and the greater diversity of habitats found in rivers of the Wet Tropics compared to other tropical Australian rivers.To whom correspondence should be addressed  相似文献   

13.
Intraspecific trait variation, including animal personalities and behavioural syndromes, affects how individual animals and populations interact with their environment. Within-species behavioural variation is widespread across animal taxa, which has substantial and unexplored implications for the ecological and evolutionary processes of animals. Accordingly, we sought to investigate individual behavioural characteristics in several populations of a desert-dwelling fish, the Australian desert goby (Chlamydogobius eremius). We reared first generation offspring in a common garden to compare non-ontogenic divergence in behavioural phenotypes between genetically interconnected populations from contrasting habitats (isolated groundwater springs versus hydrologically variable river waterholes). Despite the genetic connectedness of populations, fish had divergent bold-exploratory traits associated with their source habitat. This demonstrates divergence in risk-taking traits as a rapid phenotypic response to ecological pressures in arid aquatic habitats: neophilia may be suppressed by increased predation pressure and elevated by high intraspecific competition. Correlations between personality traits also differed between spring and river fish. River populations showed correlations between dispersal and novel environment behaviours, revealing an adaptive behavioural syndrome (related to dispersal and exploration) that was not found in spring populations. This illustrates the adaptive significance of heritable behavioural variation within and between populations, and their importance to animals persisting across contrasting habitats.  相似文献   

14.
1. Climatic effects are increasingly being recognised as an important factor causing inter‐annual variability in organism abundances in aquatic and terrestrial ecosystems. This study investigated the relationships between water temperature (cumulative degree‐days >12 °C), river discharge (cumulative discharge‐days above basal discharge rate), the position of the North Wall of the Gulf Stream (NWGS), and the 0+ growth (September mean length) and recruitment success (year‐class strength, YCS) of three species of cyprinid fishes in two contrasting English lowland rivers, using a 21‐year dataset. 2. Contrary to the majority of studies on 0+ fishes, growth in the Yorkshire Ouse was most significantly correlated with river discharge, with water temperature of less importance. By contrast, temperature was more influential than discharge in the River Trent, possibly because of its regulated hydrological regime, although none of the relationships were statistically significant for this river. 3. Year‐class strength of roach (Rutilus rutilus) was positively correlated with the position of the NWGS, and there was evidence of synchrony in recruitment success between rivers, but the relationships were poorer for chub (Leuciscus cephalus) and dace (Leuciscus leuciscus). The strongest relationships between YCS and discharge during specific time periods were for when the fish were in their early (especially larval) developmental stages, although none of the relationships were statistically significant because of inter‐annual variations in river discharge relative to the timing of fish hatching. 4. Fishes are key predators in the majority of aquatic ecosystems and, as such, fluctuations in their abundances can have implications for ecosystem functioning as a whole. This study has demonstrated an underlying influence of broad‐scale climatic effects on the recruitment of riverine fishes, in spite of local variations in biotic and abiotic conditions. The relative importance of various abiotic factors on the recruitment success of riverine cyprinid populations varies spatially and temporally. For example, river discharge is likely to be of relatively greater importance in poorly‐structured rivers or those that are prone to large and rapid fluctuations in flow, while temporal variations occur because of inter‐annual differences in river discharge relative to the timing of fish hatching. Biotic factors may also be important determinants of fish recruitment success, especially in rivers with stable and predictable flow regimes.  相似文献   

15.
River flow alterations caused by dams have introduced many ecological problems, in particular a decline in aquatic species such as fishes. One compensatory measure is to create a hydrological process similar to the natural state with regard to the survival requirements of the fish. In recent years, the Three Gorges Reservoir (TGR) has introduced man‐made flood by ecological operation experiments to facilitate spawning of the four major Chinese carps in the Yangtze River, China. To investigate the fish spawning activities and their responses to the TGR operation, eggs from the four major Chinese carps were sampled using conical drift nets in the middle mainstream of the Yangtze River, May to July in 2012 and 2013. Spawning timing, location, and scale of the four carps were studied and compared between the 2 years; key hydrological and environmental factors associated with spawning were determined by principal component analysis and stepwise regression analysis. Two factors were significantly positive when correlated with egg abundance: one was increasing rate of the river flow (flood amplitude), and the other was river transparency; only one factor, starting of the river flow (flooding occasions), was significantly and negatively correlated with the time of spawning. Comparison of egg abundance in one flood pulse response to different operation rules showed that flooding made by an ecological operation induced a larger scale of spawning than a conventional operation. The study implied that suitable flood conditions could produce a successful spawning event, and that the occasion and pattern of the flood process might result in different responses in fish spawning. Further research is required to develop more scientific monitoring designs in order to obtain accurate field data for both biotic and abiotic factors, and explore new research methods for egg abundance estimations combined with particle experiment and hydrodynamic modeling. This work is fundamental to improve the strategic decisions on reservoir operation and river management.  相似文献   

16.
Cooper Creek is one of Australia's largest unregulated river systems and one of the world's most variable large river systems. It is a dynamic environment that oscillates between booms and busts; yet, many species thrive in it. One of these species, the Cooper Creek turtle (Emydura macquarii emmotti) has received little attention, despite being one of Australia's largest freshwater turtles and living further inland than any other Australian turtle. We conducted surveys for E. m. emmotti in 2001–2004, 2019, and 2022, focussing predominantly on the Waterloo waterhole. Waterloo had a large population of E. m. emmotti (508 estimated individuals; 95% CI = 447–596) with an estimated density of 64.8 turtles/ha (95% CI = 57.0–76.2) and estimate biomass of 74.4 kg/ha (95% CI = 57.6–100.3 kg/ha). Juveniles were highly abundant in all years, representing up to 63.6% of captured individuals. It was slightly (but not significantly) male-biased in 2001–2004 and significantly female-biased in 2019. All sizes and sexes used the floodplain during a flooding event in 2022, but more males than females were captured on the floodplain, and there was evidence of male-biased dispersal across the years. Compared to Murray River turtles (Emydura macquarii macquarii), E. m. emmotti exhibited megacephaly across all ages and sexes, with particularly pronounced megacephaly in adult females. Algae were present on many individuals (including on the skin and plastron) but was relatively more abundant on juveniles. Leeches were not detected on any of the 66 turtles that were examined for them. The following injuries/malformations were noted: missing or injured limbs (3.2%), missing or injured eyes (1.3%), damaged shells (8.0%), scute/shell anomalies and malformations (10.6%), and marginal scute seams extending into the costals (67.4% of adults, 1.2% of juveniles). This paper presents some of the first work on this unusual turtle and makes recommendations for future research.  相似文献   

17.
River regulation and fish larvae: variation through space and time   总被引:4,自引:0,他引:4  
1. Patterns in abundance and distribution of larval fish in a heavily regulated and a mildly regulated Australian lowland river were compared over four breeding seasons to gain some insight into how river regulation affects fish populations.
2. Larvae from a total of 13 species from nine families were recorded from the two rivers. The mildly regulated Broken River supported twice as many species as the heavily regulated Campaspe River. The two rivers shared three introduced species but only two native species. The dominant species in the Campaspe was not found in the Broken River.
3. The two most abundant species in the Campaspe were classified as `opportunists'. They are small, short-lived species, which spawn for up to 9 months, encompassing extremes in temperature and flow. The extended spawning period may place a subset of larvae in optimal conditions for recruitment and is hypothesised as being the key to the success of these species.
4. Most species spawned each year, despite large interannual variation in flow and temperature conditions. Poor recruitment over several decades, rather than a failure to spawn, is considered the most likely explanation for differences in the larval fish faunas between the two rivers.
5. The highly regulated section of the Campaspe River downstream of the regulating impoundment is thought to provide suboptimal habitat conditions for larvae relative to the less regulated downstream sections.
6. The timing of occurrence of larvae of the dominant species varied by breeding season and may be the result of flexibility in the timing of spawning.  相似文献   

18.
1. The biological productivity of floodplain rivers is intimately related to their flow regimes and it has been proposed that fish production should be linked to components of the flow regime in productivity models. To assess applicability of existing models of productivity in floodplain rivers, we tested predictions about growth during the early life stages of a common, short‐lived fish (Australian smelt Retropinna semoni) in a non‐flow‐altered, temperate Australian floodplain river. 2. The morphometric condition of larval and juvenile fish measured over a five‐year period was positively related to annual discharge, but the highest average seasonal growth rates occurred in two years of contrasting hydrology, one with early spring flooding and the other with predominantly low flows and a late season (within channel) flow pulse. 3. Analysis of daily growth measures indicated that timing, river height, the duration of in‐channel flow events and antecedent flood events are all significant factors influencing the early growth of Australian smelt. The flexible manner in which fish growth responds to these factors appears to be an effective early life history strategy for a short‐lived species occupying a highly variable environment. 4. Growth rates conformed to some predictions of the Flood Pulse Concept (in particular the Extended Flood Pulse Concept), but specific growth responses suggest that the Riverine Productivity Model and tenets of the Low Flow Recruitment Hypothesis best describe the production of Australian smelt in this system. We suggest that none of the existing conceptual models adequately describes fish productivity in temperate Australian floodplain rivers but that aspects of each are likely to be relevant under different flow conditions.  相似文献   

19.
Whole-body concentrations of cortisol and glucose were measured in three-spined sticklebacks Gasterosteus aculeatus from two rivers (Rivers Ray and Ock) in southern England during a 30 month period in order to assess effects on the stress axis of (1) remediation of a wastewater treatment works (WWTW) effluent (River Ray) and (2) episodic changes in flow rate arising from periods of high rainfall (Rivers Ray and Ock). The postcapture concentrations of cortisol and glucose in fish from both rivers did not exhibit a seasonal periodicity but did show significant between-sample, between-site and between-river variation, superimposed upon a consistent downward trend for each analyte during the monitoring period. Corticosteroid and glucose concentrations following capture were inversely linked with a progressive increase in condition of the fish during this period. Site-dependent trends possibly related to exposure to the WWTW effluent were detected for both analytes in fish from the River Ray. For fish in the River Ray, a significant proportion of variation in both corticosteroid and glucose concentrations, additional to the downward trend with time, was accounted for by temporal proximity of the sample to exceptional flow events arising from episodes of high rainfall and high turbidity. This relationship was not statistically significant for fish from the River Ock. These data suggest that the responsiveness of the stress axis in free-living G. aculeatus may be altered by exposure to WWTW effluent and by exposure to physical changes in the aquatic environment such as those arising from extreme weather events. The magnitude of these effects may be increased by exposure to both stressors concurrently.  相似文献   

20.
1. Possible impacts of water‐resource development on assemblages of freshwater macroinvertebrates were investigated in the upper Darling River and some of its tributaries in north‐western New South Wales (Australia), an arid and semi‐arid region of low relief where alteration of river flows has intensified through expansion of irrigated agriculture. 2. Study sites were grouped into four hydrological regimes resulting from impoundment, flow regulation, water abstraction and natural variation, namely (i) intermittent flow with relatively little hydrological alteration from water‐resource development, (ii) intermittent flow with substantial alteration, (iii) near‐perennial flow with substantial alteration but unimpounded and (iv) near‐perennial flow with substantial alteration plus impoundment by weirs that stabilise water levels. 3. Macroinvertebrates were sampled with three methods (a quantitative cylinder sampler, handnet sampling and baited traps) in three periods with differing hydrology (recessional low flow in June 2003, high flow in March 2004 and increasing flow after drought in December 2004). 4. Taxonomic richness, assemblage composition and catch per unit effort of the crayfish Cherax destructor differed significantly among the site groups, but total macroinvertebrate density and the AUSRIVAS O/E (Australian River Assessment System observed‐over‐expected) index did not. The principal spatial differences were between the intermittent and near‐perennial rivers, and apparent effects of water‐resource development and impoundment were more subtle. Temporal differences in richness, abundance and composition were substantial and appeared to be related mainly to variations in discharge and temperature. 5. Current macroinvertebrate‐based methods for assessing the ‘condition’ or ‘health’ of Australian dryland rivers are inadequate. Such assessments might be improved with (i) reference data that take adequate account of antecedent hydrological conditions, (ii) consideration of long‐term taxonomic richness as well as richness on individual sampling occasions, (iii) evaluation of invertebrate population sizes, (iv) analysis of assemblage data by trait composition and (v) adoption of the genus as the default level of taxonomic resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号