首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Structure of tropical river food webs revealed by stable isotope ratios   总被引:7,自引:0,他引:7  
Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relationships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish δ15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. This was in contrast to our expectation that productive systems would promote longer food chains. Although isotope ratios could not resolve species-level feeding pathways, they did reveal how top consumers integrate isotopic variability occurring lower in the food web. Top piscivores, regardless of species, had carbon and nitrogen profiles less variable than other trophic groups.  相似文献   

2.
Synopsis The fish fauna of the Mulgrave and South Johnstone rivers is diverse relative to other Australian rivers and this study examines the diets of many of the resident fish species. Most species were small (< 200 g), and although considerable overlap in the size of the mouth was observed, closely related species tended to have non-overlapping ranges in mouth size. Five trophic guilds were recognised and substantial discrimination between guilds on the basis of body size was noted. Small fishes (< 5 gm body weight) consumed a variety of insect larvae and small terrestrial insects. The diet of large fish was characterised by the presence of large aquatic invertebrates and fish. A third group of intermediate sized fishes (10–20 gm), which included the 0+ age class of three species of large fish, also consumed aquatic invertebrates but only a small proportion of terrestrial invertebrates. Vegetable material was present in the diet of all three guilds but the source of that material varied. In groups 1 to 3 above, the source of that material was desmids and diatoms, aquatic macrophytes or filamentous alga respectively. A fourth guild fed predominately on detritus and some bivalve molluscs, and a fifth group, containing only two species, fed feavily on gastropod molluscs. The extent of dietary overlap varied both within- and between-rivers. In habitats dominated by low water velocities and sandy substrates, resource partitioning was pronounced and the number of fishes with empty or near empty guts was high, suggesting that food was more limited in this type of habitats. Little resource partitioning was observed in habitats characterised by a coarse substrate, high water velocity and dense riparian canopy.  相似文献   

3.
Abstract This study investigated the structure and properties of a tropical stream food web in a small spatial scale, characterizing its planktonic, epiphytic and benthic compartments. The study was carried out in the Potreirinho Creek, a second‐order stream located in the south‐east of Brazil. Some attributes of the three subwebs and of the conglomerate food web, composed by the trophic links of the three compartments plus the fish species, were determined. Among compartments, the food webs showed considerable variation in structure. The epiphytic food web was consistently more complex than the planktonic and benthic webs. The values of number of species, number of links and maximum food chain length were significantly higher in the epiphytic compartment than in the other two. Otherwise, the connectance was significantly lower in epiphyton. The significant differences of most food web parameters were determined by the increase in the number of trophic species, represented mainly by basal and intermediate species. High species richness, detritus‐based system and high degree of omnivory characterized the stream food web studied. The aquatic macrophytes probably provide a substratum more stable and structurally complex than the sediment. We suggest that the greater species richness and trophic complexity in the epiphytic subweb might be due to the higher degree of habitat complexity supported by macrophyte substrate. Despite differences observed in the structure of the three subwebs, they are highly connected by trophic interactions, mainly by fishes. The high degree of fish omnivory associated with their movements at different spatial scales suggests that these animals have a significant role in the food web dynamic of Potreirinho Creek. This interface between macrophytes and the interconnections resultant from fish foraging, diluted the compartmentalization of the Potreirinho food web.  相似文献   

4.
The relationship between food web dynamics and hydrological connectivity in rivers should be strongly influenced by annual flood pulses that affect primary production dynamics and movement of organic matter and consumer taxa. We sampled basal production sources and fishes from connected lagoons and the main channel of a low-gradient, floodplain river within the Orinoco River Basin in Venezuela. Stable isotope analysis was used to model the contribution of four basal production sources to fishes, and to examine patterns of mean trophic position during the falling-water period of the annual flood cycle. IsoSource, a multi-source mixing model, indicated that proportional contributions from production sources to fish assemblages were similar in lagoons and the main channel. Although distributions differed, the means for trophic positions of fish assemblages as well as individual species were similar between the two habitats. These findings contradict recent food web studies conducted in temperate floodplain rivers that described significant differences in trophic positions of fishes from slackwater and floodplain versus main channel habitats. Low between-habitat trophic variation in this tropical river probably results from an extended annual flood pulse (ca. 5 mo.) that allows mixing of sestonic and allochthonous basal production sources and extensive lateral movements of fishes throughout the riverscape.  相似文献   

5.
  1. It is often assumed that invertebrate consumers in small tropical streams are dependent on allochthonous sources, although recent studies indicate that algae can form the base of food webs in tropical streams. Fish in tropical streams can feed across several trophic levels and the origin and path of energy and nutrient flow is uncertain for many species.
  2. We collected fish, insects, periphyton, and leaf litter from 20 streams across four Atlantic Forest catchments. We analysed stomach contents of fish to define trophic guild and fish dietary trophic position. We also analysed stable isotopes of carbon and nitrogen of fish and their resources to identify the main basal resources of the food web and to estimate trophic positions and identify the path of energy flow.
  3. We found that autochthonous sources were the primary resource base for fish communities. Trophic positions estimated from diet and isotopes were similar and correlated for insectivore and algivore–insectivore fish, but not for algivore–detritivore or omnivore fish. Using path analysis, fish classified as algivore–detritivores appear to have derived their biomass through a diet of primary consumer insects and periphytic algae and thus, are more likely to play a trophic role as algivore–insectivores in these streams. However, omnivores probably derived much of their biomass from aquatic insects.
  4. Our findings support other studies of tropical systems in which the main basal resource is autochthonous, even in small streams. We also show that the assignment to a specific trophic guild for some fish species, based on gut contents, does not reflect what they assimilate into their bodies. In some species, food sources that are uncommon can make a disproportionately important contribution to their biomass.
  5. This study affirms the important role of inconspicuous algal resources in aquatic food webs, even in small forested streams, and demonstrates the effectiveness of taking a combined approach of diet analysis, isotopic tracing, and modelling to resolve food web pathways where the level of omnivory is high.
  相似文献   

6.
Several studies have demonstrated a latitudinal gradient in the proportion of omnivorous fish species (that is, consumers of both vegetal and animal material) in marine ecosystems. To establish if this global macroecological pattern also exists in fresh and brackish waters, we compared the relative richness of omnivorous fish in freshwater, estuarine, and marine ecosystems at contrasting latitudes. Furthermore, we sought to determine the main environmental correlates of change in fish omnivory. We conducted a meta-analysis of published data focusing on change in the relative richness of omnivorous fishes in native fish communities along a broad global latitudinal gradient, ranging from 41°S to 81.5 N° including all continents except for Antarctica. Data from streams, rivers, lakes, reservoirs, estuaries, and open marine waters (ca. 90 papers covering 269 systems) were analyzed. Additionally, the relationship between the observed richness in omnivory and key factors influencing trophic structure were explored. For all ecosystems, we found a consistent increasing trend in the relative richness of omnivores with decreasing latitude. Furthermore, omnivore richness was higher in freshwaters than in marine ecosystems. Our results suggest that the observed latitudinal gradient in fish omnivory is a global ecological pattern occurring in both freshwater and marine ecosystems. We hypothesize that this macroecological pattern in fish trophic structure is, in part, explained by the higher total fish diversity at lower latitudes and by the effect of temperature on individual food intake rates; both factors ultimately increasing animal food limitation as the systems get warmer.  相似文献   

7.
Fish assemblages in tropical lowland rivers are characterized by a high richness of species that feed on a diverse array of food resources. Although closely related species often have similar feeding ecology, species within the family Cichlidae display a broad spectrum of trophic niches, and resource partitioning has been inferred from studies conducted in Neotropical rivers. We investigated interspecific variation in food resource use and its relationship to morphological variation among cichlid fishes within the Pantanos de Centla Biosphere Reserve, a coastal area encompassing the delta of the Grijalva-Usumacinta River in Tabasco, Mexico. Most species consumed benthic crustaceans, aquatic insect larvae, and detritus, but some were more herbivorous, and one species was a specialized piscivore. Dietary niche overlap among species was higher than expected for one assemblage, and similar to random expectations for another, suggesting a lesser role for resource partitioning than has been shown for some cichlid assemblages, perhaps due to availability of abundant resources, even in low-water conditions. Canonical correspondence analysis revealed that greatest morphological differences am7ong species involved functional traits directly associated with resource use. Relationships between feeding ecology and morphology were similar to those described for other riverine cichlids. Strong ecomorphological relationships facilitate inferences about the ecology of cichlid species, including species that currently lack data from field studies. Knowledge of ecological relationships will be important for conservation in the Pantanos de Centla, an ecosystem of global significance for biodiversity and ecosystem services.  相似文献   

8.
9.
1. Studies of mesic temperate and tropical rivers suggest an important role for floodplain habitats as nursery areas for larval and juvenile fishes. In arid‐land rivers the extent and duration of flooding is diminished and habitats and resources used by larval fishes are poorly known. Our study documented habitat and resource use of larval fishes in the Rio Grande, New Mexico, an arid‐land river. 2. Spatial and temporal distribution of larval and juvenile fishes and their inferred microhabitat preferences were studied during spring, summer and autumn, 2003. Stable carbon (13C : 12C) and nitrogen (15N : 14N) isotope ratios were measured to identify nutrient sources and characterise trophic positions of young‐of‐year fishes in this system. 3. Some fishes recruited during high flows (in spring), whereas others recruited during low‐flow periods in late summer. Regardless of the timing of reproduction, microhabitats with lower current velocity and higher temperature appeared to serve as vital nursery grounds for Rio Grande fishes. Ephemeral backwaters and disconnected side channels held the highest abundance and diversity of larvae and juveniles. 4. Stable isotope analyses revealed that fish larvae obtained carbon predominately from algal production in early summer, but used organic carbon derived from emergent macrophytes as river discharge decreased in mid‐summer. This shift may have been facilitated by microinvertebrate prey that grazed down edible algae and then switched to macrophytes in mid‐summer. Nitrogen isotope ratios did not differ among species or early life stages, suggesting that larval and juvenile fishes use similar food resources, especially when restricted to isolated pools in summer.  相似文献   

10.
Recent studies of aquatic food webs show that parasite diversity is concentrated in nodes that likely favour transmission. Various aspects of parasite diversity have been observed to be correlated with the trophic level, size, diet breadth, and vulnerability to predation of hosts. However, no study has attempted to distinguish among all four correlates, which may have differential importance for trophically transmitted parasites occurring as larvae or adults. We searched for factors that best predict the diversity of larval and adult endoparasites in 4105 fish in 25 species studied over a three-year period in the Bothnian Bay, Finland. Local predator–prey relationships were determined from stomach contents, parasites, and published data in 8,229 fish in 31 species and in seals and piscivorous birds. Fish that consumed more species of prey had more diverse trophically transmitted adult parasites. Larval parasite diversity increased with the diversity of both prey and predators, but increases in predator diversity had a greater effect. Prey diversity was more strongly associated with the diversity of adult parasites than with that of larvae. The proportion of parasite species present as larvae in a host species was correlated with the diversity of its predators. There was a notable lack of association with the diversity of any parasite guild and fish length, trophic level, or trophic category. Thus, diversity is associated with different nodal properties in larval and adult parasites, and association strengths also differ, strongly reflecting the life cycles of parasites and the food chains they follow to complete transmission.  相似文献   

11.
A total of 298 fish specimens belonging to seven families were caught during ichthyoplanktonic survey of three rivers within the Ewekoro cement facility catchment area located in southwestern Nigeria. The highest numbers of specimens were caught from Alaguntan (37.0%) and Elebute (36.6%) rivers while 28.9% of the fish samples were collected from Itori River. The fish population and species diversity recorded in the catchment rivers were significantly lower (p < 0.05) than comparative catches from Ewekoro River located about 30 km downstream of the factory operational area. The food items ingested by the specimens across the seasons in the catchment rivers revealed obvious differences in diet with some degree of overlap in the fish trophic preferences. However, the omnivorous species dominated the catches in each of the rivers, irrespective of season. Categorization of the fish specimens based on habitat-related adaptive physiology showed that a significant number of the fish from Alaguntan and Itori Rivers have accessory respiratory organs. The four species with accessory respiratory organs were Polypterus senegalus Curv., Clarias gariepinus C. & V., Ctenopoma kingslayae Gun. and Channa obscura Smith. Of the 12 fish species recorded in the Ewekoro cement facility catchment rivers, only P. senegalus, C. gariepinus, C. obscura and Oreochromis niloticus (Trew.) are valuable food fishes in southwestern Nigeria.  相似文献   

12.
13.
Understanding trophic relationships of fish in estuarine ecosystem is an important element for sustainable resource management. This study examined the feeding habits of 29 dominant fish species, characterized the trophic guilds, assessed the impact of season and clarified the role of diets in structuring the fish community in the mouth region of Pattani Bay, Thailand. Samples of 5792 fishes collected monthly by gillnets from March 2019 to February 2020 were used for stomach content analyses. It was found that the number of food types and fullness index differed between fish taxa (P < 0.001). Most fishes were specialist feeders feeding on specific food components and were categorized into five trophic guilds: piscivore, shrimp-fish feeder, polychaete feeder, zooplanktivore and planktivore. Six species were piscivorous, considered as apex predators, that fed almost entirely on fishes. High diet overlaps among some species (>0.6) were recorded. Not much variation in seasonal guilds was observed: four guilds in the dry season, three in the moderate rainy season and four in the rainy season. Some species remained in the same guild the whole year round, but some fishes changed seasonally. Two fish communities from different regions of the bay were segregated based on feeding habits. The inner bay community comprised mainly copepod and plankton feeders, but there were more piscivores in the deeper bay mouth area. Results from this study help us to understand the feeding habits and trophic guilds of dominant fish species at the mouth of this tropical estuarine bay.  相似文献   

14.
The role of riparian forests in the functioning of aquatic ecosystems is well known, and they are recognized as an important food source for riverine fauna. This study investigates the trophic structure of coastal freshwater stream fishes from a large conservation area in an Atlantic rainforest using stomach content and food availability analyses. Four samples were collected from 19 sample sites. Fishes were caught with electrofishing. Prey were sampled with trays, Surber, traps, and electrofishing to evaluate the availability of food resources. The diets of 20 fish species were determined from the stomach contents of 1691 individuals. Terrestrial and aquatic insects and detritus were the most consumed items. Fish diet and prey availability were not seasonally dependent. A cluster analysis showed five trophic functional groups: terrestrial insectivores, aquatic insectivores, detritivores, carnivores, and omnivores. Insectivores predominated in species richness (60%), abundance (47%) and biomass (39%). Allochthonous and autochthonous items were found in similar proportions in the environment; however, allochthonous items were representative for insectivores and detritivores, whereas autochthonous items were important for primarily aquatic insectivores. The preference for certain insects by insectivorous fishes was associated with food selectivity rather than the availability of the resource and demonstrated the strong relationship between feeding behavior and food preference. The absence of seasonal variation in the diets of the fishes was possibly related to the consistent food supply. Our results confirm the role of the forest as a food provider for stream fishes, such as terrestrial insects and plant debris/detritus (also consumed by aquatic insects, which subsequently serve as food for fish), highlighting the importance of conserving the Brazilian Atlantic rainforests.  相似文献   

15.
Diets were estimated from stomach contents and the MixSIR model using stable isotope values for five co-existing and abundant benthic fishes in relation to potential prey from a riffle habitat in a tropical river in eastern Thailand. Collectively, aquatic insects were of greatest dietary importance based on stomach contents and, except for one fish species, predicted from the MixSIR. The most prominent functional feeding insect groups in fish diets were collector-filterers and scrapers and, to a lesser extent, predators. MixSIR predicted shrimp to be the most important single dietary constituent for all fishes in contrast to stomach contents, which indicated they are a major item for only one species. MixSIR predicted plant material to be more important in fish diets than stomach contents where the composition of detritus was a concern. Differences in temporal feeding schedules, prey availability, species adaptations and others are important in understanding diet and in the construction of food webs. Stable isotope and dietary analysis provides a more accurate assessment of the food web structure and dynamics of tropical river ecosystems than either method alone.  相似文献   

16.
In this study, the diet composition and trophic structure of the fish assemblage in the headwaters of the Chishui River were investigated. A total of 1677 fish specimens belonging to 14 species were collected and dissected. Of these specimens, 1063 individuals with undigested food in their stomachs or guts were used for analysis. Our analysis identified thirty-one kinds of prey, which were classified into eight categories, namely, diatoms, chlorophytes, other vegetable prey, aquatic insects, mollusks, other invertebrates, fishes, and unidentified organic matters. Among these categories, diatoms were the most important prey for this fish assemblage. With an ontogenetic dietary shift, the 14 species were subdivided into 16 predator groups, which were categorized into five trophic guilds, namely, algivore (diatoms), algivore (chlorophytes), omnivore, aquatic insectivore, and piscivore. Their diet composition significantly differed from one guild to another (p?<?0.05), and an evident overlap was observed in the diet spectrum between predator group in the algivore (diatoms) guild. These results suggested that autochthonous organic carbon was an important nutrient source for the fish assemblage in the headwaters of the Chishui River rather than allochthonous nutrients. For the protection of the fish resources, conservation efforts on the river substratum and the riparian zone in the headwaters of the Chishui River should be prioritized because these places are the main nutrient sources.  相似文献   

17.
Habitat fragmentation, overexploitation of natural resources, the introduction of alien species and environmental degradation in aquatic environments are the main causes of reductions in aquatic biota diversity. Phytoplankton represent good ecological indicators because they are highly diverse and rapidly respond to a wide array of environmental disturbances. We investigated the interannual variation in alpha diversity of the phytoplankton community in lakes of an alluvial floodplain. We predicted that the phytoplankton diversity decreases over time in lakes and rivers subjected to human activities, whereas those biotopes in areas under pristine environmental conditions do not show a reduction in alpha diversity. Phytoplankton samples were taken quarterly over a period of eleven years (2000–2010), from ten localities associated with three large rivers, which showed different uses of the watershed. The time series of alpha diversity was analysed, to assess the temporal trend, in addition to their relationships with environmental factors. Phytoplankton alpha diversity in the Upper Paraná River floodplain ranged between 4 and 87 species and showed a mean of 30 (±16.5). Sites associated with the Paraná River showed a decline in diversity, which was associated with transparency, nitrogen and phosphorus forms. These results reflect a combination of seston retention by damming and an increase in the N:P ratio, which appears to negatively affect phytoplankton diversity. If temporal trends in environmental variation and the phytoplankton community remain, the future consequences for phytoplanktonic diversity in the Paraná subsystem will be severe, which might cause changes in the trophic structure and dynamics, and therefore in the functioning of environments, since this community is one of the main sources of energy for other trophic levels.  相似文献   

18.
1. Riverscapes consist of the main channel and lateral slackwater habitats along a gradient of hydrological connectivity from maximum connection in main channel habitats to minimum connection in backwaters. Spatiotemporal differences in water currents along this gradient produce dynamic habitat conditions that influence species diversity, population densities and trophic interactions of fishes. 2. We examined the importance of lateral connectivity gradients for food web dynamics in the Upper Mississippi River during spring (high flow, moderately low temperatures) and summer (low flow, higher temperatures). We used literature information and gut contents analyses to determine feeding guilds and stable isotope analysis to estimate mean trophic position of local fish assemblages. During June and August 2006, we collected over 1000 tissue samples from four habitats (main channel, secondary channels, tertiary channels and backwaters) distributed within four hydrologic connectivity gradients. 3. Mean trophic position differed among feeding guilds and seasons, with highest values in spring. Mean trophic position of fish assemblages, variability in trophic position and food chain length (maximum trophic position) of the two dominant piscivore species (Micropterus salmoides and M. dolomieu) in both seasons were significantly associated with habitat along the lateral connectivity gradient. Food chain length peaked in tertiary channels in both seasons, probably due to higher species diversity of prey at these habitats. We infer that food chain length and trophic position of fish assemblages were lower in backwater habitats in the summer mainly because of the use of alternative food sources in these habitats. 4. A greater number of conspecifics exhibited significant among‐habitat variation in trophic position during the summer, indicating that low river stages can constrain fish movements in the Upper Mississippi River. 5. Results of this study should provide a better understanding of the fundamental structure of large river ecosystems and an improved basis for river rehabilitation and management through knowledge of the importance of lateral complexity in rivers.  相似文献   

19.
Diet overlap and niche breadth are well-known species traits from trophic ecology that can assist in explaining how species interact and coexist as well as the ecological mechanisms that influence biodiversity. In the present study, we analyzed the relationships between these trophic variables and indicators of resource availability with some attributes of fish assemblages (species richness, Shannon diversity index, evenness, density and individual body size). The physical and chemical characteristics of the biotopes (topography, water quality and conservation of slopes) were examined to identify possible patterns. Monthly sampling using electrofishing was conducted in 2003 along five streams located in the Cuiabá River watershed. The relationships between environmental variables and attributes of fish assemblages were evaluated using Spearman correlation. Species richness and abundance varied among streams, with higher values (54 and 82 species) found in low-gradient streams that drained small swampy areas discharging in Cuiabá River. Diet overlap showed significant and negative correlations with species richness, the diversity index, abundance, variation in body size and food availability and positive correlations with evenness and niche breadth. Environments that had greater food availability had a reduced variety of food items (smaller amplitude) and distinct values in terms of dietary overlap. Nevertheless, to explain resource partitioning in a fish assemblage (overlap), it is necessary to consider food availability and niche breadth (degree of trophic specialization) beyond the interaction of these variables with species richness and density. In conclusion, high diversity and abundance values were strongly associated with a high degree of trophic specialization (low amplitude of trophic niche) and a small degree of overlap in the diet.  相似文献   

20.
The present study aimed to investigate the distribution and abundance of fish eggs and larvae in three important tributaries (Chapecó, Peixe, and Ligeiro rivers) of the Upper Uruguay River. The spatial and temporal distribution of fish eggs and larvae were studied as well as the correlation between environmental parameters and the abundance of ichthyoplankton species. The study was conducted between October 2005 and September 2006. Ichthyoplankton samples were collected at night with cylindroconical 0.5-mm mesh plankton nets every 5 days. Of the 591 samples collected, 170 contained ichthyoplankton organisms, resulting in the capture of 12,847 fish eggs and 962 fish larvae. Twenty-seven fish species were observed, of which 69% were Characiforms and 27% were Siluriforms. Among the fish species captured, the representatives were predominantly young forms of small and medium size fishes, with rheophilic species occurring infrequently. Eggs occurred exclusively between October and January, while the highest larvae occurrence was observed between November and December. Fish larvae assemblage structure was shown to be related to some environmental variables. There was a tendency of higher values of water temperature and velocity at the lower sampling sites than at the upper ones, as well an increase number of eggs and larvae. The study tributaries serve as reproduction sites and nursery areas for several fish species of the Upper Uruguay River; thus, the maintenance of their integrity is important for the preservation of diversity and enhancement of fisheries in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号