首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
1. High light availability and stable base flow during the dry season promote primary production in perennial rivers of the wet–dry tropics, in contrast to production during the wet season which is often limited by turbidity and scouring. The Mitchell River of northern Queensland (Australia) was studied to understand controls on aquatic production and respiration in the dry season in relation to spatial and temporal gradients of light and temperature. 2. At three sites along the river, whole‐ecosystem gross primary production (GPP) and respiration (ER) were measured from diel changes of dissolved oxygen using the open‐channel single station method. Using stable carbon and nitrogen isotope analysis, aquatic consumers and their potential basal food resources were also assessed to determine food web relationships at the beginning and end of the dry season. 3. Nutrient limitation of aquatic net primary production was implied from the oligotrophic conditions and high algal C:N ratios. Rates of GPP were comparable with other tropical and temperate rivers and were regulated by light availability. 4. Respiration rates were high and similar to other tropical and subtropical rivers. Up to 52% of temporal variation of ER was explained by temperature, while P/R was lowest at the downstream site. 5. Benthic algae were the major carbon source for primary and secondary benthic consumers (insects) in the dry season but not for higher consumers (fish and crustaceans). Despite high rates of ER, which were probably supported by decaying terrestrial C3 plant material, this carbon source was not identified as contributing to animal consumer biomass. 6. While benthic algal production in the dry season sustained benthic invertebrates, the importance of external subsidies of carbon along the river, probably from the floodplain, was emphasised for fish and large invertebrates, which evidently were feeding on carbon sources not present in channel waterholes during the dry season.  相似文献   

2.
Analyses of stable isotope (δ13C and δ15N) and C:N ratios of food webs within a floodplain and a constricted-channel region of the Ohio River during October 1993 and July 1994 indicate that the increasingly influential flood pulse concept (FPC) does not, for either location, adequately address food web structure for this very large river. Furthermore, results of this study suggest that the riverine productivity model (RPM) is more appropriate than the widely known river continuum concept (RCC) for the constricted region of this river. These␣conclusions are based on stable isotope analyses of potential sources of organic matter (riparian C3 trees, riparian C4 grasses and agricultural crops, submerged macrophytes, benthic filamentous algae, benthic particulate organic matter, and transported organic matter containing detritus and phytoplankton) and various functional feeding groups of invertebrate and fish consumers. The FPC, which stresses the key contribution of organic matter, particularly terrestrial organic matter, originating from the floodplain to riverine food webs, was judged inappropriate for the floodplain region of the Ohio River for hydrodynamic and biotic reasons. The rising limb and peak period of discharge typically occur in November through March when temperatures are low (generally much less than 10°C) and greater than bank-full conditions are relatively unpredictable and short-lived. The major food potentially available to riverine organisms migrating into the floodplain would be decaying vegetation because autotrophic production is temperature and light limited and terrestrial insect production is minimal at that time. It is clear from our data that terrestrial C4 plants contribute little, if anything, to the consumer food web (based on δ13C values), and δ15N values for C3 plants, coarse benthic organic matter, and fine benthic organic matter were too depleted (∼7–12‰ lower than most invertebrate consumer values) for this organic matter to be supporting the food web. The RPM, which emphasizes the primary role of autotrophic production in large rivers, is the most viable of the remaining two ecosystem models for the constricted-channel region of the Ohio based on stable isotope linkage between sources and consumers of organic matter in the food web. The most important form of food web organic matter is apparently transported (suspended) fine (FTOM) and ultra-fine particulate organic matter. We propose that phytoplankton and detritus of an autochthonous origin in the seston would represent a more usable energy source for benthic (bivalve molluscs, hydropsychid caddisflies) and planktonic (microcrustaceans) suspension feeders than the more refractory allochthonous materials derived from upstream processing of terrestrial organic matter. Benthic grazers depend heavily on nonfilamentous benthic algae (based on gut analysis from a separate study), but filamentous benthic algae have no apparent connection to invertebrate consumers (based on δ13C values). Amphipod and crayfish show a strong relationship to aquatic macrophytes (possibly through detrital organic matter rather than living plant tissue). These observations contrast with the prediction of the RCC that food webs in large rivers are based principally on refractory FTOM and dissolved organic matter from upstream inefficiencies in organic-matter processing and the bacteria growing upon these suspended or dissolved detrital compounds. The conclusions drawn here for the Ohio River cannot yet be extended to other floodplain and constricted-channel rivers in temperate and tropical latitudes until more comparable data are available on relatively pristine and moderately regulated rivers. Received: 3 January 1997 / Accepted: 28 August 1998  相似文献   

3.
4.
Cross-ecosystem movements of material and energy are ubiquitous. Aquatic ecosystems typically receive material that also includes organic matter from the surrounding catchment. Terrestrial-derived (allochthonous) organic matter can enter aquatic ecosystems in dissolved or particulate form. Several studies have highlighted the importance of dissolved organic carbon to aquatic consumers, but less is known about allochthonous particulate organic carbon (POC). Similarly, most studies showing the effects of allochthonous organic carbon (OC) on aquatic consumers have investigated pelagic habitats; the effects of allochthonous OC on benthic communities are less well studied. Allochthonous inputs might further decrease primary production through light reduction, thereby potentially affecting autotrophic resource availability to consumers. Here, an enclosure experiment was carried out to test the importance of POC input and light availability on the resource use in a benthic food web of a clear-water lake. Corn starch (a C(4) plant) was used as a POC source due to its insoluble nature and its distinct carbon stable isotope value (δ(13)C). The starch carbon was closely dispersed over the bottom of the enclosures to study the fate of a POC source exclusively available to sediment biota. The addition of starch carbon resulted in a clear shift in the isotopic signature of surface-dwelling herbivorous and predatory invertebrates. Although the starch carbon was added solely to the sediment surface, the carbon originating from the starch reached zooplankton. We suggest that allochthonous POC can subsidize benthic food webs directly and can be further transferred to pelagic systems, thereby highlighting the importance of benthic pathways for pelagic habitats.  相似文献   

5.
1. Australian dryland rivers have among the most variable discharge of any rivers worldwide and are characterized by extended periods of no flow during which aquatic habitat contracts into isolated waterholes. Despite naturally high turbidity, benthic primary production is known to be the main source of carbon to waterhole food webs. The objective of this study was to quantify rates of benthic metabolism and identify factors influencing these rates in two Australian dryland rivers, the Cooper Creek and the Warrego River. 2. Both rivers have similar variable hydrology and high levels of turbidity (photic depths < 0.4 m), but fish abundance in Cooper Creek is 10 times than that of the Warrego River. Therefore, an additional aim of the study was to determine if fish abundances reflected underlying differences in benthic primary production. 3. Benthic gross primary production (GPP), benthic respiration, nutrient concentrations and light penetration were measured immediately after flow had ceased (‘post‐flow’) and after at least 2 months of zero flow (‘no‐flow’) in 15 waterholes from each river. A subset of four waterholes from each river was sampled on two additional occasions to determine if patterns were consistent over time. 4. Cooper Creek generally had higher rates of GPP and a more autotrophic benthic zone than the Warrego River. As a result, the expected positive relationship between fish abundance and GPP was generally observed at a broad catchment scale. 4. Light was the major control in benthic GPP in both rivers, as nutrient concentrations were high on all sampling occasions. However, for similar values of photic depth, GPP was greater in Cooper Creek than in the Warrego River. This suggests that more frequent disturbance of the littoral zone may inhibit biofilm development in waterholes of the Warrego River. 5. Although flow variability in dryland rivers is extreme compared with other rivers worldwide, cycles of expansion and contraction of aquatic habitat in these two rivers were associated with a shift in the dominance of regional scale (subcatchments contributing to river flow) versus local scale (waterhole morphology) influences on ecosystem functioning, similar to floodplain rivers in tropical and temperate regions.  相似文献   

6.
SUMMARY. 1. Inputs, movements and exchanges of particulate organic matter were measured on two contrasting floodplains of the Ogeechee River, Georgia, U.S.A. A model, which incorporated measurements of standing crop, respiration, litterfall, inundation, and litter processing rates, was used to estimate annual exchanges of organic matter between the river and floodplains.
2. Annual litterfall was higher on the East floodplain than on the lower elevation West floodplain (902 v. 784 g ash-free-dry-mass [AFDM] m−2).
3. Experiments with tagged leaves and sticks demonstrated that litter was readily displaced during floods. The distance and direction of displacement varied within and between floodplains but tended to be higher closer to the river and was generally parallel to the river.
4. The model indicated that both floodplains lost organic matter to the river. The lower elevation floodplain (East) lost more organic matter to the river (208 g AFDM m−2 year−1) than did the higher elevation (West) floodplain (79g AFDM m−2 year−1).
5. Inputs of organic matter from the floodplain to the river exceeded the amount of litterfall typically entering heavily forested high gradient headwater streams (5.5 v. 0.4-0.6 kg AFDM m−2 year−1).
6. Floodplain organic matter inputs may exert a greater influence upon structure and function within these streams than do upstream inputs or primary production. Consequently, current conceptualizations of stream structure and function need to be modified to account for the effects of floodplain inputs on stream channel processes within large, low-gradient rivers.  相似文献   

7.
Organic carbon inputs from outside of ecosystem boundaries potentially subsidize recipient food webs. Four whole-lake additions of dissolved inorganic 13C were made to reveal the pathways of subsidies to lakes from terrestrial dissolved organic carbon (t-DOC), terrestrial particulate organic carbon (t-POC) and terrestrial prey items. Terrestrial DOC, the largest input, was a major subsidy of pelagic bacterial respiration, but little of this bacterial C was passed up the food web. Zooplankton received <2% of their C from the t-DOC to bacteria pathway. Terrestrial POC significantly subsidized the production of both zooplankton and benthic invertebrates, and was passed up the food web to Chaoborus and fishes. This route supplied 33–73% of carbon flow to zooplankton and 20–50% to fishes in non-fertilized lakes. Terrestrial prey, by far the smallest input, provided some fishes with >20% of their carbon. The results show that impacts of cross-ecosystem subsidies depend on characteristics of the imported material, the route of entry into the food web, the types of consumers present, and the productivity of the recipient system.  相似文献   

8.
Ecosystems are generally linked via fluxes of nutrients and energy across their boundaries. For example, freshwater ecosystems in temperate regions may receive significant inputs of terrestrially derived carbon via autumnal leaf litter. This terrestrial particulate organic carbon (POC) is hypothesized to subsidize animal production in lakes, but direct evidence is still lacking. We divided two small eutrophic lakes each into two sections and added isotopically distinct maize litter to the treatment sections to simulate increased terrestrial POC inputs via leaf litter in autumn. We quantified the reliance of aquatic consumers on terrestrial resources (allochthony) in the year subsequent to POC additions by applying mixing models of stable isotopes. We also estimated lake-wide carbon (C) balances to calculate the C flow to the production of the major aquatic consumer groups: benthic macroinvertebrates, crustacean zooplankton, and fish. The sum of secondary production of crustaceans and benthic macroinvertebrates supported by terrestrial POC was higher in the treatment sections of both lakes. In contrast, total secondary and tertiary production (supported by both autochthonous and allochthonous C) was higher in the reference than in the treatment sections of both lakes. Average aquatic consumer allochthony per lake section was 27–40%, although terrestrial POC contributed less than about 10% to total organic C supply to the lakes. The production of aquatic consumers incorporated less than 5% of the total organic C supply in both lakes, indicating a low ecological efficiency. We suggest that the consumption of terrestrial POC by aquatic consumers facilitates a strong coupling with the terrestrial environment. However, the high autochthonous production and the large pool of autochthonous detritus in these nutrient-rich lakes make terrestrial POC quantitatively unimportant for the C flows within food webs.  相似文献   

9.
Trophic processes in coastal lagoons are strongly influenced by freshwater inputs and water exchanges with the sea. In recent years, stable isotope analysis has become a widespread and reliable method for the examination of trophic structure over time and space, also in complex ecosystems such as coastal lagoons. Stable isotopes of carbon and nitrogen were studied in primary producers and consumers to identify organic matter source pools from terrestrial, benthic and pelagic environments and to characterise the trophic structure in three Mediterranean coastal lagoons (Lake Fusaro, the Lake of Sabaudia and Stagnone di Marsala). The results highlighted the negligible importance of terrestrial production to higher trophic levels in all the ecosystems investigated. Consumer dependence on benthic and pelagic organic matter showed high variability: overall macroalgae were at the base of the food web in Lake Fusaro and the Lake of Sabaudia, while mixed sources (seagrass detritus, epiphytes, macroalgae and sedimentary organic matter) appeared to be the major baseline food resource in the Stagnone di Marsala. We have found evidence for significant changes in the trophic structure in these Mediterranean coastal lagoons and such differences may be triggered by differential environmental features (e.g. freshwater inputs and hydrodynamic regime). Guest editors: A. Razinkovas, Z. R. Gasiūnaitė, J. M. Zaldivar & P. Viaroli European Lagoons and their Watersheds: Function and Biodiversity  相似文献   

10.
We investigated the role of autochthonous and terrestrial carbon in supporting aquatic food webs in the Canadian High Arctic by determining the diet of the dominant primary consumer, aquatic chironomids. These organisms were studied in fresh waters on 3 islands of the Arctic Archipelago (~74–76°N) including barren polar desert watersheds and a polar oasis with lush meadows. Stomach content analysis of 578 larvae indicated that chironomids primarily ingested diatoms and sediment detritus with little variation among most genera. Carbon and nitrogen stable isotope mixing models applied to 2 lakes indicated that benthic algae contributed 68–95% to chironomid diet at a polar desert site and 70–78% at a polar oasis site. Detritus, originating from either phytoplankton or terrestrial sources, also contributed minor amounts to chironomid diet (0–32%). Radiocarbon measurements for the 2 lakes showed that old terrestrial carbon did not support chironomid production. Carbon stable isotope ratios of chironomids in other High Arctic lakes provided further dietary evidence that was consistent with mixing model results. These findings indicate that, in the Canadian High Arctic, chironomids (and fish that consume them) are supported primarily by benthic algae in both polar desert and oasis lakes. In contrast, our review of carbon flow studies for lakes in other Arctic regions of North America shows that terrestrial carbon and phytoplankton can be important energy sources for consumers. This study provides a baseline to detect future climate-related impacts on carbon pathways in High Arctic lakes.  相似文献   

11.
We used compound-specific isotope analysis of carbon isotopes in amino acids (AAs) to determine the biosynthetic source of AAs in fish from major tributaries to California's Sacramento-San Joaquin river delta (i.e., the Sacramento, Cosumnes and Mokelumne rivers). Using samples collected in winter and spring between 2016 and 2019, we confirmed that algae are a critical component of floodplain food webs in California's Central Valley. Results from bulk stable isotope analysis of carbon and nitrogen in producers and consumers were adequate to characterize a general trophic structure and identify potential upstream and downstream migration into our study site by American shad Alosa sapidissima and rainbow trout Oncorhynchus mykiss, respectively. However, owing to overlap and variability in source isotope compositions, our bulk data were unsuitable for conventional bulk isotope mixing models. Our results from compound-specific carbon isotope analysis of AAs clearly indicate that algae are important sources of organic matter to fish of conservation concern, such as Chinook salmon Oncorhynchus tshawytscha in California's Central Valley. However, algae were not the exclusive source of energy to metazoan food webs. We also revealed that other sources of AAs, such as bacteria, fungi and higher plants, contributed to fish as well. While consistent with the well-supported notion that algae are critical to aquatic food webs, our results highlight the possibility that detrital subsidies might intermittently support metazoan food webs.  相似文献   

12.
Dryland rivers associated with arid and semi-arid land areas offer an opportunity to explore food web concepts and models of energy sources in systems that experience unpredictable flooding and long dry spells. This study investigated the sources of energy supporting three species of fish feeding at different trophic levels within floodplain lagoons of the Macintyre River in the headwaters of the Murray-Darling river system, Australia. Stable isotope analyses revealed that fish consumers derived, on average, 46.9% of their biomass from zooplankton, 38.1% from Coarse Particulate Organic Matter (CPOM) and 24.0% from algae. Ambassis agassizii derived on average 57.6% of its biomass carbon from zooplankton and 20.4–27.8% from algae or CPOM. Leiopotherapon unicolor derived most of its carbon from zooplankton and CPOM (38.3–39.5%), with relatively high contributions from algae compared to the other species (33.3%). An average of 48.4% of the biomass of Nematalosa erebi was derived from zooplankton, with CPOM contributing another 38.1%. Zooplankton was the most important source of organic carbon supporting all three fish species in floodplain lagoons. Phytoplankton, and possibly, particulate organic matter in the seston, are the most likely energy sources for the planktonic suspension feeders (zooplankton) and, consequently, the fish that feed on them. These results indicate a stronger dependence of consumers on autochthonous sources and on locally produced organic matter from the riparian zone (i.e., the Riverine Productivity Model), than on other resources.  相似文献   

13.
1. Secondary production of benthic invertebrates in lakes is supported by current autochthonous primary production, and by detritus derived from a combination of terrestrial inputs and old autochthonous production from prior seasons. We quantified the importance of these two resources for the dominant benthic insects in Crampton Lake, a 26 ha, clear-water system.
2. Daily additions of NaH13CO3 to the lake caused an increase in the stable carbon isotope ratios ( δ 13C) of the current primary production of phytoplankton and periphyton. We measured the response of four insect groups (taxon-depth combinations) to this manipulation, quantifying their current autochthony (% reliance on current autochthonous primary production) by fitting dynamic mixing models to time series of insect δ 13C.
3. The δ 13C of all four groups increased in response to the manipulation, although the magnitude of response differed by taxon and by depth, indicating differences in current autochthony. Odonate larvae (Libellulidae and Corduliidae) collected at 1.5 m depth derived 75% of their C from current autochthonous primary production. Chironomid larvae collected at 1.5, 3.5 and 10 m depths derived, respectively, 43%, 39% and 17% of their C from current autochthonous primary production.
4. Both taxon-specific diet preferences and depth-specific differences in resource availability may contribute to differences in current autochthony. Our results demonstrate significant but incomplete support of insect production by current autochthony, and indicate that allochthonous inputs and old autochthonous detritus support a substantial fraction (25–83%) of insect production.  相似文献   

14.
SUMMARY. 1. Single-station diel oxygen curves were used to monitor the oxygen metabolism of the Ogeechee River, a sixth-order blackwater river in the Coastal Plain of southeastern U.S.A., over a period of 4 years. Ecosystem production ( P) and respiration (R) were estimated, and P/R ratios calculated to determine the extent of autotrophy characteristic of this type of river. The potential error in oxygen metabolism caused by photo-oxidation of dissolved organic carbon (DOC) in the water was measured and found to be minor.
2. Rates of ecosystem primary production measured were intermediate compared to other rivers, ranging from 0.49 to 13.99g O2m−2 day −1.Primary production rates were highest during the summer when water levels were low. Regression analysis indicated that water depth and light absorption by DOM were significant predictors of primary production in this river. Incident light intensities were not significantly correlated with production rate.
3. Respiration rates were unusually high, varying between 3.70 and 11.5 g O2 m−2 day − 1. System respiration also varied seasonally, but less than primary production. Rates were slightly higher in spring and summer.
4. With one exception, P/R ratios were considerably lower than l throughout the study period, indicating that the Ogeechee River was highly heterotrophic. PIR ratios ranged from 0.09 to 1.3, and averaged 0.25.
5. A carbon budget calculated for this river showed floodplain inputs were 7 times autochthonous production. Organic carbon turnover length was 690 km, considerably longer than has been reported for lower-order rivers.  相似文献   

15.
While the importance of terrestrial linkages to aquatic ecosystems is well appreciated, the degree of terrestrial support of aquatic consumers remains debated. Estimates of terrestrial contributions to lake zooplankton have omitted a key food source, phytoplankton produced below the mixed layer. We used carbon and nitrogen stable isotope data from 25 Pacific Northwest lakes to assess the relative importance of particulate organic matter (POM) from the mixed layer, below the mixed layer and terrestrial detritus to zooplankton. Zooplankton and deep POM were depleted in 13C relative to mixed layer POM in lakes that can support deep primary production. A Bayesian stable isotope mixing model estimated that terrestrial detritus contributed <5% to zooplankton production, and confirms the role of lake optical and thermal properties; deep POM accounted for up to 80% of zooplankton production in the clearest lakes. These results suggest terrestrial support of lake zooplankton production is trivial.  相似文献   

16.
1. Increased water motion is expected to reduce boundary layer diffusion resistance of autotrophs, thereby enabling greater isotopic discrimination against 13C such that lower δ13C values (ratio of 13C : 12C) should ensue. A field test of this hypothesis was undertaken by sampling benthic algae in streams of differing current speed.
2. Contrary to the expected negative relationship between δ13C and water motion, filamentous benthic algae were found to exhibit higher δ13C values in rapid water.
3. Under conditions of low current in the streams studied, concentrations of dissolved organic carbon as measured by water colour are elevated through the microbial decomposition of largely terrestrial organic matter. Photoassimilation of this respired carbon by benthic filamentous algae generates 13C‐depletion and lower δ13C values, and appears to be substantial enough in the streams used in the present study to override the competing influence of water motion on boundary layer thickness.  相似文献   

17.
The fish assemblages of an arid zone floodplain river, Cooper Creek, Queensland, Australia, were sampled during two dry periods in isolated waterholes and on the inundated floodplain during the early and late phase of a major flood event. Diets were described for nine native species and compared within and between dry and flood periods. In the dry season, when fishes were restricted to waterholes, diets were characteristically simple with narrow diet breadths. Movement onto the floodplain during flooding clearly increased feeding opportunities, with greater diet breadths evident in all species. Despite obvious potential for terrestrial inputs, diets tended to be dominated by aquatic resources in both the waterholes and on the floodplain. Stomach fullness, however, varied little between dry season waterhole and floodplain samples. Fishes appeared to feed on potentially lower value resources such as detritus and calanoid copepods during the dry season, when waterholes were isolated and food resources were limited. They were then able to capitalize on the 'boom' of aquatic production and more diverse food resources associated with episodic flood events.  相似文献   

18.
Perturbations on ecosystems can have profound immediate effects and can, accordingly, greatly alter the natural community. Land-use such as forestry activities in the Canadian Boreal region have increased in the last decades, raising concerns about their potential impact on aquatic ecosystems. The objective of this study was to evaluate the impact of forest harvesting on trophic structure in eastern Canadian Boreal Shield lakes. We measured carbon and nitrogen stable isotopes values for aquatic primary producers, terrestrial detritus, benthic macroinvertebrates, zooplankton and brook trout (Salvelinus fontinalis) over a three-year period in eight eastern Boreal Shield lakes. Four lakes were studied before, one and two years after forest harvesting (perturbed lakes) and compared with four undisturbed reference lakes (unperturbed lakes) sampled at the same time. Stable isotope mixing models showed leaf-litter to be the main food source for benthic primary consumers in both perturbed and unperturbed lakes, suggesting no logging impact on allochthonous subsidies to the littoral food web. Brook trout derived their food mainly from benthic predatory macroinvertebrates in unperturbed lakes. However, in perturbed lakes one year after harvesting, zooplankton appeared to be the main contributor to brook trout diet. This change in brook trout diet was mitigated two years after harvesting. Size-related diet shift were also observed for brook trout, indicating a diet shift related to size. Our study suggests that carbon from terrestrial habitat may be a significant contribution to the food web of oligotrophic Canadian Boreal Shield lakes. Forest harvesting did not have an impact on the diet of benthic primary consumers. On the other hand, brook trout diet composition was affected by logging with greater zooplankton contribution in perturbed lakes, possibly induced by darker-colored environment in these lakes one year after logging.  相似文献   

19.
Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.  相似文献   

20.
Adult aquatic insects are a common resource for many terrestrial predators, often considered to subsidize terrestrial food webs. However, larval aquatic insects themselves consume both aquatic primary producers and allochthonous terrestrial detritus, suggesting that adults could provide aquatic subsidy and/or recycled terrestrial energy to terrestrial consumers. Understanding the source of carbon (aquatic vs. terrestrial) driving aquatic insect emergence is important for predicting magnitude of emergence and effects on recipient food web dynamics; yet direct experimental tests of factors determining source are lacking. Here, we use Culex mosquitoes in experimental pools as an exemplar to test how variation in general factors common to aquatic systems (terrestrial plant inputs and light) may alter the source and amount of energy exported to terrestrial ecosystems in adult aquatic insects that rely on terrestrial resources as larvae. We found strong sequential effects of terrestrial plant inputs and light on aquatic insect oviposition, diet, and emergence of Culex mosquitoes. Ovipositing mosquitoes laid ~3 times more egg masses in high terrestrial input pools under low light conditions. This behavior increased adult emergence from pools under low light conditions; however, high input pools (which had the highest mosquito densities) showed low emergence rates due to density-dependent mortality. Mosquito diets consisted mainly of terrestrial resources (~70–90 %). As a result, the amount of aquatic carbon exported from pools by mosquitoes during the experiment was ~18 times higher from low versus high light pools, while exports of terrestrial carbon peaked from pools receiving intermediate levels of inputs (3–6 times higher) and low light (~6 times higher). Our results suggest that understanding the interplay among terrestrial plant inputs, light availability and biotic responses of aquatic insects may be key in predicting source and magnitude of emergence, and thus the strength and effects of aquatic–terrestrial linkages in freshwater systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号