首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Carcass and meat quality traits are economically important in pigs. In this study, 17 carcass composition traits and 23 meat quality traits were recorded in 1028 F2 animals from a White Duroc × Erhualian resource population. All pigs in this experimental population were genotyped for 194 informative markers covering the entire porcine genome. Seventy-seven genome-wide significant quantitative trait loci (QTL) for carcass traits and 68 for meat quality were mapped to 34 genomic regions. These results not only confirmed many previously reported QTL but also revealed novel regions associated with the measured traits. For carcass traits, the most prominent QTL was identified for carcass length and head weight at 57 cM on SSC7, which explained up to 50% of the phenotypic variance and had a 95% confidence interval of only 3 cM. Moreover, QTL for kidney and spleen weight and lengths of cervical vertebrae were reported for the first time in pigs. For meat quality traits, two significant QTL on SSC5 and X were identified for both intramuscular fat content and marbling score in the longissimus muscle, while three significant QTL on SSC1 and SSC9 were found exclusively for IMF. Both LM and the semimembranous muscle showed common QTL for colour score on SSC4, 5, 7, 8, 13 and X and discordant QTL on other chromosomes. White Duroc alleles at a majority of QTL detected were favourable for carcass composition, while favourable QTL alleles for meat quality originated from both White Duroc and Erhualian.  相似文献   

2.

Background

We conducted a genome-wide linkage analysis to identify quantitative trait loci (QTL) that influence meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Thirteen meat quality-related traits of the m. longissimus lumborum et thoracis were measured in more than 830 F2 progeny. All these animals were genotyped with 173 microsatellite markers located throughout the pig genome, and the GridQTL program based on the least squares regression model was used to perform the QTL analysis.

Results

We identified 23 genome-wide significant QTL in eight chromosome regions (SSC1, 2, 6, 7, 9, 12, 13, and 16) (SSC for Sus Scrofa) and detected 51 suggestive QTL in the 17 chromosome regions. QTL that affect 10 meat quality traits were detected on SSC12 and were highly significant at the genome-wide level. In particular, the QTL with the largest effect affected crude fat percentage and explained 22.5% of the phenotypic variance (F-ratio = 278.0 under the additive model, nominal P = 5.5 × 10−55). Interestingly, the QTL on SSC12 that influenced meat quality traits showed an obvious trend for co-localization.

Conclusions

Our results confirm several previously reported QTL. In addition, we identified novel QTL for meat quality traits, which together with the associated positional candidate genes improve the knowledge on the genetic structure that underlies genetic variation for meat quality traits in pigs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0080-6) contains supplementary material, which is available to authorized users.  相似文献   

3.
Four genes, VTN, KERA, LYZ, and a non-annotated EST (Affymetrix probe set ID: Ssc.25503.1.S1_at), whose candidacy for traits related to water-holding capacity of meat arises from their trait-dependent differential expression, were selected for candidate gene analysis. Based on in silico analysis SNPs were detected, confirmed by sequencing and used to genotype animals of 4 pig populations including 3 commercial herds of Pietrain (PI), Pietrain × (German Large White × German Landrace) (PIF1), German Landrace (DL) and 1 experimental F2 population Duroc × Pietrain (DUPI). Comparative and genetic mapping established the location of VTN on SSC12, of LYZ and KERA on SSC5 and of UN on SSC7, coinciding with QTL regions for meat quality traits. VTN showed association with pH1, pH24 and drip loss. LYZ revealed association with conductivity 24, pH1 and drip loss. KERA was associated with pH. UN showed association with pH24 and drip loss, respectively. However, none of the candidate genes showed significant associations for a particular trait across all populations. This may be due to breed specific effects that are related to the differences in meat quality of theses pig breeds. The studies revealed statistic evidence for a link of genetic variation at these loci or close to them and promoted those four candidate genes as functional and/or positional candidate genes for meat quality traits.  相似文献   

4.
Six genes that were known to exhibit expression levels that are correlated to drip loss BVES, SLC3A2, ZDHHC5, CS, COQ9, and EGFR have been for candidate gene analysis. Based on in silico analysis SNPs were detected, confirmed by sequencing, and used for genotyping. The SNPs were genotyped in about 1,800 animals from six pig populations including commercial herds of Pietrain (PI) and German Landrace (DL), different commercial herds of Pietrain × (German Large White × German Landrace) (PIF1(a/b/c)), and one experimental F2-population Duroc × Pietrain (DUPI). Comparative and genetic mapping established the location of BVES on SSC1, of SLC3A2 and ZDHHC5 on SSC2, of CS on SSC5, of COQ9 on SSC6 and of EGFR on SSC9, respectively, coinciding with QTL regions for carcass and meat quality traits. BVES, SLC3A2, and CS revealed association at least with drip loss and with several other measures of water holding capacity (WHC). Moreover, COQ9 and EGFR were associated with several meat quality traits such as meat color and/or thawing loss. This study reveals statistic evidence in addition to the functional relationship of these genes to WHC previously evidenced by expression analysis. This study reveals positional and genetic statistical evidence for a link of genetic variation at these loci or close to them and promotes those six candidate genes as functional and/or positional candidate genes for meat quality traits.  相似文献   

5.
A high-resolution radiation hybrid map of porcine chromosome 6   总被引:2,自引:0,他引:2  
A high-resolution comprehensive map was constructed for porcine chromosome (SSC) 6, where quantitative trait loci (QTL) for reproduction and meat quality traits have been reported to exist. A radiation hybrid (RH) map containing 105 gene-based markers and 15 microsatellite markers was constructed for this chromosome using a 3000-rad porcine/hamster RH panel. In total, 40 genes from human chromosome (HSA) 1p36.3-p22, 29 from HSA16q12-q24, 17 from HSA18p11.3-q12 and 19 from HSA19q13.1-q13.4 were assigned to SSC6. All primers for these gene markers were designed based on porcine gene or EST sequences, and the orthologous status of the gene markers was confirmed by direct sequencing of PCR products amplified from separate Meishan and Large White genomic DNA pools. The RH map spans SSC6 and consists of six linkage groups created by using a LOD score threshold of 4. The boundaries of the conserved segments between SSC6 and HSA1, 16, 18 and 19 were defined more precisely than previously reported. This represents the most comprehensive RH map of SSC6 reported to date. Polymorphisms were detected for 38 of 105 gene-based markers placed on the RH map and these are being exploited in ongoing chromosome wide scans for QTL and eventual fine mapping of genes associated with prolificacy in a Meishan x Large White multigenerational commercial population.  相似文献   

6.
7.
An F2 cross between Duroc and Large White pigs was carried out in order to detect quantitative trait loci (QTL) for 11 meat quality traits (L*, a* and b* Minolta coordinates and water-holding capacity (WHC) of two ham muscles, ultimate pH of two ham and one loin muscles), 13 production traits (birth weight, average daily gain during post-weaning and fattening periods, carcass fat depths at three locations, estimated lean meat content, carcass length and weights of five carcass cuts) and three stress hormone-level traits (cortisol, adrenaline and noradrenaline). Animals from the three generations of the experimental design (including 456 F2 pigs) were genotyped for 91 microsatellite markers covering all the autosomes. A total of 56 QTL were detected: 49 reached the chromosome-wide level (suggestive QTL with a maximal probability of 0.05) and seven were significant at the genome-wide level (with a probability varying from 6 × 10(-4) to 3 × 10(-3)). Twenty suggestive QTL were identified for ultimate pH, colour measurements and WHC on chromosome (SSC) 5, 6, 7, 8, 9, 11, 13, 14, 15 and 17. For production traits, 33 QTL were detected on all autosomes except SSC6, 8 and 9. Seven of these QTL, located on SSC2, 3, 10, 13, 16 and 17, exceeded the genome-wide significance threshold. Finally, three QTL were identified for levels of stress hormones: a QTL for cortisol level on SSC7 in the cortisol-binding globulin gene region, a QTL for adrenaline level on SSC10 and a QTL for noradrenaline level on SSC13. Among all the detected QTL, seven are described for the first time: a QTL for ultimate pH measurement on SSC5, two QTL affecting birth weight on SSC2 and 10, two QTL for growth rate on SSC15 (during fattening) and 17 (during post-weaning) and two QTL affecting the adrenaline and noradrenaline levels. For each QTL, only one to five of the six F1 sires were found to be heterozygous. It means that all QTL are segregating in at least one of the founder populations used in this study. These results suggest that both meat quality and production traits can be improved in purebred Duroc and Large White pigs through marker-assisted selection. It is of particular interest for meat quality traits, which are difficult to include in classical selection programmes.  相似文献   

8.
9.

Background

Understanding the genetic mechanisms that underlie meat quality traits is essential to improve pork quality. To date, most quantitative trait loci (QTL) analyses have been performed on F2 crosses between outbred pig strains and have led to the identification of numerous QTL. However, because linkage disequilibrium is high in such crosses, QTL mapping precision is unsatisfactory and only a few QTL have been found to segregate within outbred strains, which limits their use to improve animal performance. To detect QTL in outbred pig populations of Chinese and Western origins, we performed genome-wide association studies (GWAS) for meat quality traits in Chinese purebred Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) (DLY) commercial population.

Methods

Three hundred and thirty six Chinese Erhualian and 610 DLY pigs were genotyped using the Illumina PorcineSNP60K Beadchip and evaluated for 20 meat quality traits. After quality control, 35 985 and 56 216 single nucleotide polymorphisms (SNPs) were available for the Chinese Erhualian and DLY datasets, respectively, and were used to perform two separate GWAS. We also performed a meta-analysis that combined P-values and effects of 29 516 SNPs that were common to Erhualian, DLY, F2 and Sutai pig populations.

Results

We detected 28 and nine suggestive SNPs that surpassed the significance level for meat quality in Erhualian and DLY pigs, respectively. Among these SNPs, ss131261254 on pig chromosome 4 (SSC4) was the most significant (P = 7.97E-09) and was associated with drip loss in Erhualian pigs. Our results suggested that at least two QTL on SSC12 and on SSC15 may have pleiotropic effects on several related traits. All the QTL that were detected by GWAS were population-specific, including 12 novel regions. However, the meta-analysis revealed seven novel QTL for meat characteristics, which suggests the existence of common underlying variants that may differ in frequency across populations. These QTL regions contain several relevant candidate genes.

Conclusions

These findings provide valuable insights into the molecular basis of convergent evolution of meat quality traits in Chinese and Western breeds that show divergent phenotypes. They may contribute to genetic improvement of purebreds for crossbred performance.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0120-x) contains supplementary material, which is available to authorized users.  相似文献   

10.
Improvement in growth and meat quality is one of the main objectives in sire line pig breeding programmes. Mapping quantitative trait loci for these traits using experimental crosses and a linkage‐based approach has been performed frequently in the past. The Piétrain breed often was involved as a founder breed to establish the experimental crosses. This breed was selected for muscularity and leanness but shows relatively poor meat quality. It is frequently used as a sire line breed. With the advent of genome‐wide and dense SNP chips in pig genomic research, it is possible to also conduct genome‐wide association studies within the Piétrain breed. In this study, around 500 progeny‐tested sires were genotyped with 60k SNPs. Data filtering showed that around 48k SNPs were useable in this sample. These SNPs were used to conduct a genome‐wide association study for growth, muscularity and meat quality traits. Because it is known that a mutation in the RYR1 gene located on chromosome 6 shows a major effect on meat quality, this mutation was included in the models. Single‐marker and multimarker association analyses were performed. The results revealed between zero and eight significant associations per trait with P < 5 × 10?5. Of special interest are SNPs located on SSC6, SSC10 and SSC15.  相似文献   

11.
Pork quality is an economically important trait and one of the main selection criteria for breeding in the swine industry. In this genome-wide association study (GWAS), 455 pigs from a porcine Large White × Minzhu intercross population were genotyped using the Illumina PorcineSNP60K Beadchip, and phenotyped for intramuscular fat content (IMF), marbling, moisture, color L*, color a*, color b* and color score in the longissimus muscle (LM). Association tests between each trait and the SNPs were performed via the Genome Wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. From the Ensembl porcine database, SNP annotation was implemented using Sus scrofa Build 9. A total of 45 SNPs showed significant association with one or multiple meat quality traits. Of the 45 SNPs, 36 were located on SSC12. These significantly associated SNPs aligned to or were in close approximation to previously reported quantitative trait loci (QTL) and some were located within introns of previously reported candidate genes. Two haplotype blocks ASGA0100525-ASGA0055225-ALGA0067099-MARC0004712-DIAS0000861, and ASGA0085522-H3GA0056170 were detected in the significant region. The first block contained the genes MYH1, MYH2 and MYH4. A SNP (ASGA0094812) within an intron of the USP43 gene was significantly associated with five meat quality traits. The present results effectively narrowed down the associated regions compared to previous QTL studies and revealed haplotypes and candidate genes on SSC12 for meat quality traits in pigs.  相似文献   

12.
In the present study we show FISH localization of 4 porcine BAC clones harbouring potential candidate genes for fatness traits: DGAT1 (SSC4p15), PPARA (SSC5p15), ADIPOR1 (SSC10p13) and CREB (SSC15q24). Until now the CREB and ADIPOR1 genes are considered to be monomorphic, DGAT1 is highly polymorphic, while for the PPARA gene only 1 SNP was identified. Assignment of the studied genes in relation to QTL chromosome regions for meat quality in pig chromosomes SSC4, SSC5, SSC10 and SSC15 is discussed.  相似文献   

13.
Nero Siciliano (Sicilian Black, SB) is a local pig breed generally of uniform black color. In addition to this officially recognized breed, there are animals showing morphological characteristics resembling the SB but with gray hair (Sicilian Grey, SG). The SG, compared with the SB, also shows a more compact structure with greater transverse diameters, higher average daily gains and lower thickness of the back fat. In this study, using the Illumina PorcineSNP60 BeadChip, we run genome-wide analyses to identify regions that may explain the phenotypic differences between SB (n = 21) and SG (= 27) individuals. Combining the results of the two case–control approaches (GWAS and FST), we identified two significant regions, one on SSC5 (95 401 083 bp) and one on SSC15 (55 051 435 bp), which contains several candidate genes related to growth traits in pig. The results of the Bayesian population differentiation approach identified a marker near the MGAT4C, a gene associated with average daily gain in pigs. Finally, scanning the genome for runs of homozygosity islands, we found that the two groups have different runs of homozygosity islands, with several candidate genes involved in coat color (in SG) or related to different pig performance traits (in SB). In summary, the two analyzed groups differed for several phenotypic traits, and genes involved in these traits (growth, meat traits and coat color) were detected. This study provided another contribution to the identification of genomic regions involved in phenotypic variability in local pig populations  相似文献   

14.
Cho IC  Park HB  Yoo CK  Lee GJ  Lim HT  Lee JB  Jung EJ  Ko MS  Lee JH  Jeon JT 《Animal genetics》2011,42(6):621-626
Haematological traits play important roles in disease resistance and defence functions. The objective of this study was to locate quantitative trait loci (QTL) and the associated positional candidate genes influencing haematological traits in an F2 intercross between Landrace and Korean native pigs. Eight blood‐related traits (six erythrocyte traits, one leucocyte trait and one platelet trait) were measured in 816 F2 progeny. All experimental animals were genotyped with 173 informative microsatellite markers located throughout the pig genome. We report that nine chromosomes harboured QTL for the baseline blood parameters: genomic regions on SSC 1, 4, 5, 6, 8, 9, 11, 13 and 17. Eight of twenty identified QTL reached genome‐wide significance. In addition, we evaluated the KIT locus, an obvious candidate gene locus affecting variation in blood‐related traits. Using dense single nucleotide polymorphism marker data on SSC 8 and the marker‐assisted association test, the strong association of the KIT locus with blood phenotypes was confirmed. In conclusion, our study identified both previously reported and novel QTL affecting baseline haematological parameters in pigs. Additionally, the positional candidate genes identified here could play an important role in elucidating the genetic architecture of haematological phenotype variation in swine and in humans.  相似文献   

15.
The improvement of meat quality and production traits has high priority in the pork industry. Many of these traits show a low to moderate heritability and are difficult and expensive to measure. Their improvement by targeted breeding programs is challenging and requires knowledge of the genetic and molecular background. For this study we genotyped 192 artificial insemination boars of a commercial line derived from the Swiss Large White breed using the PorcineSNP60 BeadChip with 62,163 evenly spaced SNPs across the pig genome. We obtained 26 estimated breeding values (EBVs) for various traits including exterior, meat quality, reproduction, and production. The subsequent genome-wide association analysis allowed us to identify four QTL with suggestive significance for three of these traits (p-values ranging from 4.99×10−6 to 2.73×10−5). Single QTL for the EBVs pH one hour post mortem (pH1) and carcass length were on pig chromosome (SSC) 14 and SSC 2, respectively. Two QTL for the EBV rear view hind legs were on SSC 10 and SSC 16.  相似文献   

16.
17.
A whole-genome quantitative trait locus (QTL) scan for 31 phenotypes related to growth, carcass composition and meat quality was conducted using 1187 progeny of a commercial four-way cross. Animals were genotyped for 198 microsatellite markers that spanned the entire porcine genome. QTL analysis was conducted to extract information from paternal and maternal meioses separately using a rank-based nonparametric approach for half-sib designs. Nine QTL exceeded genome-wide significance: one QTL affecting growth (average daily gain on SSC1), two QTL influencing carcass composition (fatness on SSC3 and muscle mass on SSC15) and six QTL influencing meat quality (tenderness on SSC4 and SSC14; colour on SSC5, SSC6 and SSCX; and conductivity on SSC16). All but one of these coincided with previously reported QTL. In addition, we present evidence for 78 suggestive QTL with a combined false discovery rate of 40%.  相似文献   

18.
A three-generation full-sib resource family was constructed by crossing two commercial pig lines. Genotypes for 37 molecular markers covering chromosomes SSC1, SSC6, SSC7 and SSC13 were obtained for 315 F2 animals of 49 families and their parents and grandparents. Phenotypic records of traits including carcass characteristics measured by the AutoFOM grading system, dissected carcass cuts and meat quality characteristics were recorded at 140 kg slaughter weight. Furthermore, phenotypic records on live animals were obtained for chemical composition of the empty body, protein and lipid accretion (determined by the deuterium dilution technique), daily gain and feed intake during the course of growth from 30 to 140 kg body weight. Quantitative trait loci (QTL) detection was conducted using least-squares regression interval mapping. Highest significance at the 0.1% chromosome-wise level was obtained for five QTL: AutoFOM belly weight on SSC1; ham lean-meat weight, percentage of fat of primal cuts and daily feed intake between 60 and 90 kg live weight on SSC6; and loin lean-meat weight on SSC13. QTL affecting daily gain and protein accretion were found on SSC1 in the same region. QTL for protein and lipid content of empty body at 60 kg liveweight were located close to the ryanodine receptor 1 (RYR1) locus on SSC6. On SSC13, significant QTL for protein accretion and feed conversion ratio were detected during growth from 60 to 90 kg. In general, additive genetic effects of alleles originating from the Piétrain line were associated with lower fatness and larger muscularity as well as lower daily gain and lower protein accretion rates. Most of the QTL for carcass characteristics were found on SSC6 and were estimated after adjustment for the RYR1 gene. QTL for carcass traits, fatness and growth on SSC7 reported in the literature, mainly detected in crosses of commercial lines x obese breeds, were not obtained in the present study using crosses of only commercial lines, suggesting that these QTL are not segregating in the analysed commercial lines.  相似文献   

19.
20.
Feed efficiency (FE) is one of the most important traits in pig production. However, it is difficult and costly to measure it, limiting the collection of large amount of data for an accurate selection for better FE. Therefore, the identification of single-nucleotide polymorphisms (SNPs) associated with FE-related traits to be used in the genetic evaluation is of great interest of pig breeding programs for increasing the prediction accuracy and the genetic progress of these traits. The objective of this study was to identify SNPs significantly associated with FE-related traits: average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR). We also aimed to identify potential candidate genes for these traits. Phenotypic information recorded on a population of 2386 three-way crossbreed pigs that were genotyped for 51 468 SNPs was used. We identified three loci of quantitative trait (QTL) regions associated with ADG and three QTL regions associated with ADFI; however, no significant association was found for FCR. A false discovery rate (FDR) ≤ 0.005 was used as the threshold for declaring an association as significant. The QTL regions associated with ADG on Sus scrofa chromosome (SSC) 1 were located between 177.01 and 185.47 Mb, which overlaps with the QTL regions for ADFI on SSC1 (173.26 and 185.47 Mb). The other QTL region for ADG was located on SSC12 (2.87 and 3.22 Mb). The most significant SNPs in these QTL regions explained up to 3.26% of the phenotypic variance of these traits. The non-identification of genomic regions associated with FCR can be explained by the complexity of this trait, which is a ratio between ADG and ADFI. Finally, the genes CDH19, CDH7, RNF152, MC4R, PMAIP1, FEM1B and GAA were the candidate genes found in the 1 Mb window around the QTL regions identified in this study. Among them, the MC4R gene (SSC1) has a well-known function related to ADG and ADFI. In this study, we identified three QTL regions for ADG (SSC1 and SSC12) and three for ADFI (SSC1). These regions were previously described in purebred pig populations; however, to our knowledge, this is the first study to confirm the relevance of these QTL regions in a crossbred pig population. The potential use of the SNPs and genes identified in this study in prediction models that combine genomic selection and marker-assisted selection should be evaluated for increasing the prediction accuracy of these traits in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号