首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
嗜冷产甲烷菌及其在废水厌氧处理中的应用   总被引:6,自引:0,他引:6  
左剑恶  邢薇 《应用生态学报》2007,18(9):2127-2132
嗜冷产甲烷菌对于自然界的碳素循环具有非常重要的意义,近年来引起了国内外学者的广泛关注.利用嗜冷产甲烷菌实现低温厌氧生物处理过程,可从本质上突破低温厌氧工艺的技术瓶颈,进而大大拓展厌氧生物处理技术的应用范围并降低废水处理的成本.本文针对研究者广泛关注的热点问题,从分离培养及生理生化特性、适冷机制和分子生物学研究几个方面,对嗜冷产甲烷菌的研究进展进行了全面的综述,并对其在低温厌氧生物处理技术中的应用前景进行了分析和展望.  相似文献   

2.
采用Hungate厌氧技术,对处理屠宰和咛檬酸废水的两个实验室厌氧消化器中的丁酸降解蓖和氢营养菌进行了研究。观察到两个消化器中的丁酸盐降解菌的组成相同。丁酸盐转化为甲烷的过理由四种细菌共同完成。其中包括一种降解丁酸盐的产氢产乙酸细菌和一种利用乙酸盐的产甲烷菌,以及两种形态完全不同的利用H2/CO2的产甲烷菌。对分离到的一株丁酸盐降解菌SBI 菌株的鉴定表明,该菌应属沃而夫氏互营单胞菌(Syntrophomonas walfei)。  相似文献   

3.
瘤胃中的产甲烷菌为严格厌氧微生物,很难通过分离培养的方法进行研究。现已经培养并公布的瘤胃产甲烷菌只有4种,成千上万种类的瘤胃产甲烷菌不能培养出来。未培养技术的发展与应用突破了传统分离培养检测方法的限制,使瘤胃产甲烷菌的研究有了较大的进展。综述了实时定量PCR、16S rDNA文库、DGGE和高通量测序技术等6项具有代表性的未培养技术及其在瘤胃产甲烷菌研究中的应用,为以后瘤胃产甲烷菌的研究提供方法上的参考。  相似文献   

4.
电化学发光PCR技术检测转基因植物   总被引:13,自引:0,他引:13       下载免费PDF全文
随着转基因植物种类的增多,转基因植物的检测也成了当今的热门话题.电化学发光法是将电化学与化学发光两种高灵敏度方法相结合,实现了检测的高效、准确、无毒害.电化学发光PCR法首次将电化学发光技术、PCR技术和双探针杂交技术结合起来,用于检测CaMV(cauliflower mosaic virus)35 S启动子,从而判断其是否含有转基因成分.PCR产物与生物素标记的探针杂交,可以起到筛选的作用;与三联吡啶钌标记的探针杂交则可用于电化学发光检测.两种探针同时与转基因样品PCR产物杂交,使结果避免假阳性的影响而更加准确.实验表明:此方法可以准确地检测到35 S启动子的存在.该方法灵敏度高,可靠性强,操作简便,结果准确,有望成为一种高效的转基因检测方法.  相似文献   

5.
不同成熟度煤样产甲烷潜力   总被引:4,自引:2,他引:2  
何乔  丁晨  李贵中  陈浩  承磊  张辉 《微生物学报》2013,53(12):1307-1317
摘要:【目的】评估不同类型煤炭生物降解转化为甲烷的潜力,研究原位煤层的微生物群落结构特征。【方法】分别在原位模拟、补加烃降解产甲烷菌系和补加碳源下厌氧培养煤样,利用气相色谱监测甲烷产生趋势,及高通量测序技术研究原位煤层的细菌和古菌群落。【结果】10个样品中有3个高成熟度煤样可以被厌氧降解转化为甲烷。通过生物强化和添加外源底物可以促进HF煤样的产甲烷潜力。其中SL 煤样中的古菌类群主要是氢营养型产甲烷菌Methanoculleus和乙酸营养型产甲烷菌Methanosaeta为主,细菌类群主要 属于Firmicutes(54.4%)、Proteobacteria(30.9%)、未培养微生物(10.8%)、Caldiserica(1.5%)及Thermotogae(1.3%)。【结论】不同成熟度煤样降解产气潜力不同,在部分原位煤层中可能存在参与烃降解与甲烷产生的功能菌。  相似文献   

6.
目的:用简便易行的产甲烷优势菌群的筛选方法,筛选出能够人工培养的且高效产甲烷的复合微生物.方法:用乙酸钠除氧培养基驯化富含产甲烷菌的厌氧活性污泥,逐渐增加驯化体系中培养基和菌液的比率,使驯化体系中微生物菌群适应人工培养条件.结果:筛选出4个产甲烷优势菌群.筛选出的1号、2号、3号、5号菌群在培养7d后均产甲烷量分别达到46mL、38mL、51mL、38mL,在短时间内4个菌群产甲烷量能持续稳定上升.结论:验证表明建立的方法筛选高效产甲烷菌群简便易行,为沼气工作者提供了一定的参考.  相似文献   

7.
嗜酸产甲烷菌及其在厌氧处理中的应用   总被引:1,自引:0,他引:1  
Guo XH  Wu WX  Han ZY  Shi DZ 《应用生态学报》2011,22(2):537-542
产甲烷菌在自然界碳素循环过程中发挥着重要作用.酸性泥炭沼泽环境中存在着多种未知的产甲烷古菌,其中嗜酸产甲烷菌因其特殊的生长代谢特征近年来引起学者的广泛关注.若将嗜酸产甲烷菌应用于高浓度有机废物或废水的厌氧消化过程中,可从本质上克服因酸积累造成的产甲烷抑制,减少运行成本,扩展厌氧消化处理技术的应用范围.本文综述了嗜酸产甲烷菌的富集分离培养方法、生理生化特性、代谢特征及相关分子生物学研究等内容,并对其在厌氧处理中的应用前景进行了分析和展望,提出了未来研究的方向.  相似文献   

8.
摘要:【目的】建立厌氧真菌多样性分析方法,并研究厌氧真菌与产甲烷菌共培养液在传代过程中厌氧真菌的区系变化及共培养液中去除产甲烷菌条件下厌氧真菌多样性的变化。【方法】根据厌氧真菌ITS1序列长度多态性,设计厌氧真菌特异性引物,然后PCR扩增样品中厌氧真菌ITS1序列,在基因分析仪中分析PCR产物序列长度多态性,分析共培养液在传代过程中及共培养液中去除产甲烷菌后厌氧真菌多样性的变化。【结果】对瘤胃厌氧真菌Caecomyces属YC301菌株、Neocallimastix属菌株(YC501与YC502)的ARI  相似文献   

9.
产甲烷菌广泛分布在淹水水稻土等各种厌氧环境中,在全球气候变化、碳循环和能源等领域都发挥着重要的作用。研究发现,厌氧条件下,水稻土中铁氧化物的生物还原会抑制产甲烷菌的甲烷合成作用。然而,目前关于铁氧化物对产甲烷菌群落结构的影响报道较少。通过泥浆厌氧培养实验,向采集的水稻土中添加甲酸盐作为甲烷合成的底物(Control,CK处理),并设置添加水铁矿作为体系中唯一电子受体的处理组(Ferrihydrite,Fh处理)。培养结束后,与CK相比,添加水铁矿显著降低了古菌在总微生物群落中的占比,但对古菌群落的物种多样性和均一度没有显著影响;且两组处理中优势种均为操作分类单元(Operational taxonomic unit,OTU)2056和OTU 911(76%—80%)。这说明碳源相同时,产甲烷菌的群落结构不受铁氧化物的影响。本研究为探索土壤中微生物铁还原与碳循环耦合的分子机制奠定基础。  相似文献   

10.
【目的】揭示芦岭煤田微生物群落组成,并分析其潜在的产甲烷类型及产甲烷途径。【方法】采集芦岭煤田的煤层气样品和产出水样品,分别分析样品的地球化学性质特征;利用Illumina HiSeq高通量测序技术分析产出水中的微生物群落结构;采用添加不同底物的厌氧培养实验进一步证实芦岭煤田生物成因气的产甲烷类型。【结果】该地区煤层气为生物成因和热成因的混合成因气;古菌16S rRNA基因分析表明在产出水中含有乙酸营养型、氢营养型和甲基营养型的产甲烷菌。丰度较高的细菌具有降解煤中芳香族和纤维素衍生化合物的潜力。厌氧富集培养结果表明,添加乙酸盐、甲酸盐、H2+CO2为底物的矿井水样均有明显的甲烷产生。【结论】芦岭煤田具有丰富的生物多样性,该地区同时存在三种产甲烷类型。本研究为利用微生物技术提高煤层气的采收率,实现煤层气的可持续开采提供科学依据。  相似文献   

11.
【目的】为开发高效的高浓度木质纤维素燃料乙醇蒸馏废水厌氧处理及资源化利用工艺,以活性炭为载体,在实验室规模上对高温厌氧流化床反应器处理木质纤维素燃料乙醇蒸馏废水进行研究。【方法】反应器经65 d梯度驯化后启动,对工艺参数进行一系列优化,并通过基于16S rRNA基因的分子生态学技术分析厌氧污泥中的优势菌群。【结果】实验获得了最优的反应条件和处理效果:厌氧流化床反应器(Anaerobic fluidized bed reactor,AFBR)在温度55±1°C、有机负荷率(OLR)13.8 g COD/(L·d)及水力停留时间(HRT)48 h操作时,COD去除率达到90%以上,同时甲烷产率达到290 mL/g COD;菌群鉴定分析结果显示高温厌氧活性污泥中Clostridia所占比例最大,产甲烷菌属以Methanoculleus和Methanosarcina为主,其它功能菌群主要为Alphaproteobacteria等。【结论】AFBR反应器可高效降解木质纤维素燃料乙醇蒸馏废水并产生生物能源甲烷,其反应体系内微生物种类丰富。  相似文献   

12.
自产沼气的厌氧消化器中分离到两株甲烷氧化菌。对这类菌在厌氧消化器中的数量变化及其对产甲烷菌生成甲烷活性的影响作了初步探讨。  相似文献   

13.
自产沼气的厌氧消化器中分离到两株甲烷氧化菌。对这类菌在厌氧消化器中的数量变化及其对产甲烷菌生成甲烷活性的影响作了初步探讨。  相似文献   

14.
厌氧消化过程的多功能性   总被引:11,自引:0,他引:11  
本文从厌氧消化的多菌群协同作用和代谢多样性的特征出发,提出了古细菌(产甲烷菌)的“古环境”是由非产甲烷菌代谢所保持和建立的;预示了厌氧消化系统的多功能性。  相似文献   

15.
921582采用生物膜反应器大规模厌级一好权处理复杂的工业废水〔英〕/Heijnen,J.J。…了Water Sei.Teehnol一1991,23(7~9)一142了一1436〔译自DBA,xggi,10(15),91一10832〕 在厌氧两段流化床消化器内,以中试规模和实际工业规模处理废水,产生甲烷,在好氧空气提升式悬浮发酵罐中处理厌氧排出液(含有镶和硫化物),生产硝酸盐和硫酸盐。处理过程的各阶段都在悬浮载体物上形成生物膜。厌氧消化器完全密封,避免有害物质的散发。消化器含分布、消化、分离以及气体积累各部分(在。.sbar压力下),产生的生物气排人锅炉房。载体是由砂状物构成。大观…  相似文献   

16.
阵列生物传感器技术作为一种高通量、快速、选择性高和集成化的分析技术,已在基因组学和蛋白质组学的研究和药物筛选、环境分析,食品分析,临床诊断等领域中得到广泛的应用.阵列生物传感器主要有阵列光学生物传感器和阵列电化学生物传感器.阵列电化学生物传感器是将生物分子识别物质如酶、抗原/抗体、DNA等固定在阵列电极上,以阵列中每根电极产生的电化学信号作为检测信号的电化学分析器件.阵列电化学生物传感器以灵敏度高、分析速度快、选择性好、易于微型化和集成化以及仪器价格低廉等特点受到了研究工作者的极大关注.本文简单介绍了阵列电化学生物传感器的原理和特点,重点评述了2005年以来阵列电化学生物传感器在单组份检测和多组份同时检测两方面的研究进展,简单讨论了阵列电化学生物传感器研究中存在的问题.  相似文献   

17.
大多数转基因植物中使用花椰菜花叶病毒(cauliflower mosaic virus,CaMV)35 S作为启动子,因此可通过检测该启动子来判断植物样品中是否含有转基因成分。实验将高灵敏度电化学发光PCR方法用于检测转基因烟草中的CaMV35 S启动子,将该启动子的PCR产物与生物素标记的探针杂交,可以起到特异性筛选产物的作用;与发光标记物——三联吡啶钌标记的探针杂交,从而实现电化学发光检测。两种探针同时与待测样品的PCR产物进行杂交,进一步对样品进行特异性筛选,从而提高了检测的准确性,避免了假阳性结果的产生。实验结果表明:该法可以准确的区分待测样品中是否含有35 S启动子,从而区别转基因烟草和非转基因烟草。电化学发光PCR方法灵敏度高,可靠性强,操作简便,结果准确,有望成为一种高效的转基因植物检测方法。  相似文献   

18.
中国科学院成都生物研究所主持承担的国家“863”计划“水污染控制技术与治理工程”重大专项中的“高效优良菌种选育及处理系统中微生物种群的优化调控”和“高效厌氧和好氧生物反应器研制与应用”两项课题近日通过验收。  相似文献   

19.
《生物技术通讯》2004,15(2):171-171
生物文库技术是针对特定靶标,从生物文库中筛选特异结合分子的方法,是近些年发展起来的新型平台操作技术,具有创建和使用方便、库容量大、高效特异等特点,已经广泛应用到筛选特异的配体或抗体,建立特异诊断方法,研制新型高效疫苗,研制新型治疗药物,探求生物分子之间相互作用规律等领域。在基础研究和应用研究方面的广泛应用使生物文库技术已成为生命科学最重要的研发技术之一。为普及生物文库技术,进一步交流和推广该技术的发展和应用,军事医学科学院基础医学研究所、西南交通大学生物工程系和北京市生物化学与分子生物学会将于2004年7月底…  相似文献   

20.
【背景】开发生物甲烷资源是减轻化石燃料供求紧张的有效措施,而秸秆类原料的预处理及甲烷生产方法需要不断创新,从而进一步满足可持续发展。厌氧真菌与甲烷菌共培养能够通过假根侵入及纤维降解酶双重预处理秸秆并生产甲烷,但目前全世界被报道的骆驼胃肠道来源的厌氧真菌分离培养物仅有1株。【目的】从新疆准噶尔双峰驼瘤胃内容物中分离出新型厌氧真菌和甲烷菌共培养物,研究其在降解秸秆并联合生产生物甲烷方面的应用潜力。【方法】采用Hungate滚管纯化技术将从骆驼胃肠道中分离的厌氧真菌和甲烷菌共培养,对其进行形态学及分子学鉴定,随后厌氧发酵5种底物(稻秸、芦苇、构树叶、苜蓿秆和草木樨),研究产甲烷量、降解效果及主要代谢产物等方面的特性。【结果】筛选到的共培养物中的厌氧真菌为Oontomyces sp. CR1,甲烷菌为Methanobrevibacter sp. CR1。其在降解稻秸时表现出最高的木聚糖酶酶活力(21.64 IU/mL)及甲烷产量(143.39 mL/g-DM),甲烷生产特性较分离自其他动物宿主的厌氧真菌共培养物更优。【结论】共培养厌氧真菌与甲烷菌菌株CR1是一种新型高效降解菌株资源,其在利用木质纤维素生物质生产生物甲烷方面具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号