首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: To explore target sites for endogenous d -serine that are different from the glycine site of the N -methyl- d -aspartate (NMDA) type glutamate receptor, we have studied the binding of d -[3H]serine to the synaptosomal P2 fraction prepared from the rat brain and peripheral tissues in the presence of an excess concentration (100 µ M ) of the glycine site antagonist 5,7-dichlorokynurenate (DCK). Nonspecific binding was defined in the presence of 1 m M unlabeled d -serine. Association, dissociation, and saturation experiments indicated that d -[3H]serine bound rapidly and reversibly to a single population of recognition sites in the cerebellar P2 fraction in the presence of DCK, with a K D of 614 n M and a B max of 2.07 pmol/mg of protein. d -Serine, l -serine, and glycine produced a total inhibition of the specific DCK-insensitive d -[3H]serine binding to the cerebellum with similar K i values. Strychnine and 7-chlorokynurenate failed to inhibit the binding at 10 µ M . The profiles of displacement of the DCK-insensitive d -[3H]serine binding by various amino acids and glutamate and glycine receptor-related compounds differ from those of any other defined recognition sites. DCK-insensitive d -[3H]serine binding was at high levels in the cerebral cortex and cerebellum but very low in the kidney and liver. The present findings indicate that the DCK-insensitive d -[3H]serine binding site could be a novel candidate for a target for endogenous d -serine in mammalian brains.  相似文献   

2.
d -Serine, the endogenous ligand for the glycine modulatory binding site of the NMDA receptor, and serine racemase, the enzyme that converts l -serine to d -serine, have been reported in vertebrate retina; initial reports suggested that localization was restricted to Müller glial cells. Recent reports, in which d -serine and serine racemase were detected in neurons of the brain, prompted the present investigation of neuronal expression of d -serine and serine racemase in retina and whether expression patterns were developmentally regulated. RT-PCR, in situ hybridization, western blotting, immunohistochemistry, and immunocytochemical methods were used to localize d -serine and serine racemase in intact retina obtained from 1 to 3 day, 3 week, and 18 week mouse retinas and in primary ganglion cells harvested by immunopanning from neonatal mouse retina. Results of these analyses revealed robust expression of d -serine and serine racemase in ganglion cells, both in intact retina and in cultured cells. The levels appear to be developmentally regulated with d -serine levels being quite high in ganglion cells of neonatal retinas and decreasing rapidly postnatally. Serine racemase levels are also developmentally regulated, with high levels detected during the early postnatal period, but diminishing considerably in the mature retina. This represents the first report of neuronal expression of d -serine and serine racemase in the vertebrate retina and suggests an important contribution of neuronal d -serine during retinal development.  相似文献   

3.
Abstract: To obtain an insight into the metabolic pathways of endogenous d -serine in mammalian brains, we have investigated in the infant rat the effects of systemic administration of l -serine, d -serine, and related amino acids, including glycine and threonine, on the amino acid contents in the cerebral cortex. Intraperitoneal injection of l -serine induced a rapid and transient elevation of the levels of l -serine itself in the neocortex, with its peak at 3 h post injection, and a delayed and prolonged increase in d -serine contents from 1.5 h to at least 24 h thereafter. Similarly, a significant augmentation in cerebral d -serine contents was observed 6 h after intraperitoneal administration of glycine, which also elevated the cortical l -serine levels. In contrast, l -threonine injection affected the concentrations of neither d - nor l -serine in the cortex of the pups. d -Serine given systemically, in turn, increased the neocortical contents of l -serine as well as d -serine itself, but failed to alter those of glycine and l -threonine. These in vivo data suggest the possible link between metabolic pathways of d - and l -serine in the cerebral cortex of the rat.  相似文献   

4.
5.
Abstract— The calcium-dependent incorporation of l -[3-3H]serine and [1,2-14C]ethanol-amine into the phospholipid of isolated subcellular fractions from chick brain was studied and the properties of incorporation were examined. The microsomal fraction was found to possess the highest rate of incorporation and was able to convert under optimal conditions about 120 nmol of labelled serine and 220 nmol of ethanolamine/g of fresh brain microsomes/h. The requirement for Ca2+ ion appeared to be absolute. Mg2+ ion caused a gradual reduction in the existing enzymic activity, only when pre-incubated with microsomes and labelled bases before adding Ca2+ ion. The incorporation of serine and ethanolamine was actively inhibited by Hg2+, Co2+, Cu2+ and Mn2+ ions, and was abolished by ethylenediamine tetra-acetate treatment. Ethanolamine, but not choline, inositol or carnitine, competitively inhibited serine incorporation, while d -serine had slight effect. Conversely, l -serine inhibited competitively the incorporation of ethanolamine. The greater part of the incorporated serine (85 per cent) was localized in microsomal phosphatidylserine, while a small percentage was found in phosphatidylethanolamine. Similarly, 90 per cent of the incorporated ethanolamine was confined to phosphatidylethanolamine and a small percentage was found in the plasmalogen derivative. The mechanism of serine and ethanolamine incorporation was investigated. The results are compared with those published for similar mammalian and non-mammalian systems.  相似文献   

6.
l -Serine dehydratase (SD) was produced to the extent of only 0·04 international unit (iu) per mg dry weight by Aeromonos punctata NRRL B-928 when grown on a chemically defined medium. Addition of 2% (w/v) l -serine to this medium increased SD ten-fold or more, indicating a significant inductive effect. d -Serine was toxic to the organism, making weights and enzyme titres uncertain, but dl -serine induced a specific activity of SD at least equal to that from the l enantiomorph. With complex media containing beef extract, the toxic effect of d -serine was partially overcome, and sufficient growth was obtained to permit reliable analytical figures; d -serine induced slightly better specific activities than the l isomer. dl -Serine at 2% concentration induced a specific activity of 1·2 iu/mg, twice that of l -serine at that level.  相似文献   

7.
The role of serine as a precursor and metabolic regulator for phosphatidylethanolamine biosynthesis in the hamster heart was investigated. Hearts were perfused with 50 microM [1-3H]ethanolamine in the presence or absence of serine for up to 60 min. Ethanolamine uptake was attenuated by 0.05-10 mM serine in a noncompetitive manner, and the incorporation of labeled ethanolamine into phosphatidylethanolamine was also inhibited by serine. Analysis of the ethanolamine-containing metabolites in the CDP-ethanolamine pathway revealed that the conversion of ethanolamine to phosphoethanolamine was reduced. The reduction was a result of an inhibition of ethanolamine kinase activity by an elevated pool of intracellular serine. Perfusion of the heart with 1 mM serine caused a 5-fold increase in intracellular serine pool. In order to examine the action of serine on other phosphatidylethanolamine metabolic pathways, hearts were perfused with [1-3H]glycerol in the presence and absence of serine. Serine did not cause any enhancement of phosphatidylethanolamine hydrolysis. The base-exchange reaction for phosphatidylserine formation or the decarboxylation of phosphatidylserine was not affected by serine perfusion. We conclude that circulating serine plays an important role in the modulation of phosphatidylethanolamine biosynthesis via the CDP-ethanolamine pathway in the hamster heart but does not affect the contribution of the decarboxylase pathway for phosphatidylethanolamine formation.  相似文献   

8.
We have investigated the effects of various insults on extracellular glutamate and phosphoethanolamine levels as well as electrical activity alterations in the early period following these insults in organotypic hippocampal slice cultures. Cultures prepared from 7-day-old rats were maintained in vitro for 7-14 days and then metabolic inhibition was induced: cultures were briefly exposed to potassium cyanide to induce chemical anoxia, 2-deoxyglucose with glucose removal to produce hypoglycaemia, or a combination of both to simulate ischaemia. Chemical anoxia induced a small increase in glutamate and a reversible decrease in evoked field potentials and these were greatly potentiated following simulated ischaemia: high, biphasic glutamate efflux and irreversible field potential abolition as well as increase in phosphoethanolamine levels were observed. We have characterised the effects of treatments using NMDA-receptor antagonists and the L-type calcium channel blocker diltiazem. Anoxia-induced glutamate accumulation was prevented by MK-801 and diltiazem D-AP5. Following simulated ischaemia, diltiazem totally prevented glutamate and phosphoethanolamine accumulations, whereas MK-801 did not block the first phase of glutamate accumulation and D-AP5 prevented none. We demonstrated that glutamate and phosphoethanolamine ischaemic-evoked efflux as well as the recovery of electrical activity in organotypic hippocampal slice cultures are sensitive to both NMDA-receptor and calcium-channel blockade. This model thus represents a useful in vitro system for the study of ischaemic neurodegeneration paralleling results reported using in vivo models.  相似文献   

9.
The effect of MK-801 (0.25 or 0.5 mg/kg) on the extracellular concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in rat hippocampus and striatum was studied using intracerebral dialysis. The dialysate 5-HT concentration was dose-dependently increased by MK-801 in both regions. In the hippocampus, at the higher drug dose a slow increase in the 5-HIAA level was observed, and this became significant 3 h after treatment. In contrast to this, the extracellular 5-HIAA content in the striatum was significantly decreased 150 min after administration of both doses of MK-801. The data are discussed in the light of the known behavioural effects of MK-801 and possible N-methyl-D-aspartic acid receptor regulation of 5-HT release.  相似文献   

10.
Abstract: Intrastriatally infused ouabain (200 or 1,000 μ M ) markedly increased the extracellular levels of striatal spermidine and spermine in dialysis experiments in halothane-anesthetized rats. The effects of ouabain (1 m M ) on sper- midine release were rapid and unaffected by local infusion of the competitive N -methyl- d -aspartate (NMDA) antagonist 3-(2-carboxypiperazin-4-yl)propyl-1 -phosphonic acid (CPP; 100 μ M ) or by systemically administered MK-801 (0.3 mg/kg i.p.), both of which treatments markedly inhibit the effects of intrastriatally administered NMDA. The peak effects of ouabain (1 m M ) on spermine release were delayed with respect to those on spermidine release, or to the effects of NMDA, and were also insensitive to locally administered CPP (100 μ M ). However, systemically administered MK-801 (0.3 mg/kg i.p., 30 min before the striatal infusion of drugs), which totally inhibits the effects of NMDA, or CPP (10 mg/kg i.p.; 30 min before the striatal infusion of drugs) partially inhibited the effects of ouabain on spermine release, suggesting partial mediation of the delayed effects of ouabain on spermine release by indirect NMDA-receptor activation. Despite partial sensitivity of ouabain-induced spermine release to systemically administered NMDA antagonists, both spermidine and spermine can be released in vivo by sodium-pump inhibition, independently of NMDA-receptor activation.  相似文献   

11.
MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.  相似文献   

12.
Abstract: The effects of local perfusion with the glutamate receptor agonist NMDA and the noncompetitive NMDA receptor antagonist dizolcipine (MK-801) on extracellular dopamine (DA), GABA, and glutamate (Glu) levels in the dorsolateral striatum were monitored using in vivo microdialysis in the halothane-anesthetized rat. In addition, the sensitivity of both the basal and NMDA-induced increases in levels of these neurotransmitter substances to perfusion with tetrodotoxin (TTX; 10?5 M) and a low Ca2+ concentration (0.1 mM) was studied. The results show that the local perfusion (10 min) with both the 10?3 and 10?4 M dose of NMDA increased striatal DA and GABA outflow, whereas only the (10?3 M) dose of NMDA was associated with a small and delayed increase in extracellular Glu levels. The NMDA-induced effects were dose-dependently counteracted by simultaneous perfusion with MK-801 (10?6 and 10?5 M). Both the basal and NMDA (10?3 M)-induced increase in extracellular striatal DA content was reduced in the presence of TTX and a low Ca2+ concentration, whereas both basal and NMDA-stimulated GABA levels were unaffected by these treatments. Both the basal and NMDA-stimulated Glu levels were enhanced following TTX treatment, whereas perfusion with a low Ca2+ concentration reduced basal Glu levels and enhanced and prolonged the NMDA-induced stimulation. These data support the view that NMDA receptor stimulation plays a role in the regulation of extracellular DA, GABA, and Glu levels in the dorsolateral neostriatum and provide evidence for a differential effect of NMDA receptor stimulation on these three striatal neurotransmitter systems, possibly reflecting direct and indirect actions mediated via striatal NMDA receptors.  相似文献   

13.
Rabbit synaptosomes have been used to study the effect of the base-exchange reaction in membrane phospholipids on -aminobutyric acid (GABA) transport in vitro. The uptake of GABA was measured after a base-exchange reaction with ethanolamine, choline, orl-serine and after subsequent displacement of these exchanged moieties from lipid by bases of similar or different structures which were added to the synaptosomal medium. Serine incorporation stimulated GABA transport, but its displacement from membrane lipid by choline or ethanolamine induced an inhibition of GABA transport. Ethanolamine incorporation inhibited GABA transport, but its displacement by serine or choline resulted in stimulation of GABA uptake. Choline incorporation also inhibited GABA transport, although less than ethanolamine. The pool size of synaptosomal phospholipids, presumably involved in GABA uptake, accounted for 0.2 to 10% of the total content of membrane phospholipid. Thus, alteration of phospholipid compositior by exchange of the lipid hydrophilic head-groups influences the extent GABA uptake into rabbit synaptosomes.  相似文献   

14.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   

15.
Abstract: The effects of mild stress on nonoxidative glucose metabolism were studied in the brain of the freely moving rat. Extracellular lactate levels in the hippocampus and striatum were monitored at 2.5-min intervals with microdialysis coupled with an enzyme-based flow injection analysis system. Ten minutes of restraint stress led to a 235% increase in extracellular lactate levels in the striatum. A 5-min tail pinch caused an increase of 193% in the striatum and 170% in the hippocampus. Local application of tetrodotoxin in the striatum blocked the rise in lactate following tail pinch and inhibited the subsequent clearance of lactate from the extracellular fluid. Local application of the noncompetitive N -methyl- d -aspartate receptor antagonist MK-801 had no effect on the tail pinch-stimulated increase in lactate in the striatum. These results show that mild physiological stimulation can lead to a rapid increase in nonoxidative glucose metabolism in the brain.  相似文献   

16.
Spasticity is a frequent and complex sequel to spinal cord injury. The neurochemical basis for the origin of spasticity is largely unknown. Glycine is among the most abundant neurotransmitters in the spinal cord. However, the role of glycine and related compounds in spasticity have received little attention. An ischemic spinal cord injury was created in rabbits, by an intraaortic balloon occlusion technique, which produced lower limb spasticity. A catheter was inserted into the cisterna magna and the spinal cord was bathed with 100 M solutions of glycine, strychnine,d-serine, -alanine, MK-801, or artificial CSF for 4 hours at a rate of 10 l/min. H-reflexes were monitored before and during infusion by stimulating the posterior tibial nerve and recording from the plantar surface of the foot. Glycine,d-serine, and MK-801 depressed the H wave, strychnine produced a heightened H wave, and -alanine caused no significant changes. These results indicate that glycine and related compounds may influence spasticity.  相似文献   

17.
The Effect of Magnesium on Oxidative Neuronal Injury In Vitro   总被引:7,自引:0,他引:7  
Abstract: The effect of magnesium on the oxidative neuronal injury induced by hemoglobin was assessed in murine cortical cell cultures. Exposure to 5 µ M hemoglobin in physiologic (1 m M ) magnesium for 26 h resulted in the death of about one-half the neurons and a sixfold increase in malondialdehyde production; glia were not injured. Increasing medium magnesium to 3 m M reduced neuronal death by about one-half and malondialdehyde production by about two-thirds; neuronal death and lipid peroxidation were approximately doubled in 0.3 m M magnesium. Comparable results were observed in spinal cord cultures. The NMDA antagonist MK-801 weakly attenuated hemoglobin neurotoxicity in low-magnesium medium, but tended to potentiate injury in physiologic magnesium. Incubation in low-magnesium medium alone for 24 h reduced cellular glutathione by ∼50% in mixed neuronal and glial cultures but by only 10% in pure glial cultures. The iron-dependent oxidation of phosphatidylethanolamine liposomes was attenuated in a concentration-dependent fashion by 2.5–10 m M magnesium; a similar effect was provided by 0.01–0.1 m M cobalt. However, oxidation was weakly enhanced by 0.5–1 m M magnesium. These results suggest that the vulnerability of neurons to iron-dependent oxidative injury is an inverse function of the extracellular magnesium concentration. At high concentrations, magnesium inhibits lipid peroxidation directly, perhaps by competing with iron for phospholipid binding sites. At low concentrations, enhancement of cell death may be due to the combined effect of increased NMDA receptor activity, glutathione depletion, and direct potentiation of lipid peroxidation.  相似文献   

18.
The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.  相似文献   

19.
Ethanolamine and choline are major components of the trypanosome membrane phospholipids, in the form of GPEtn (phosphatidylethanolamine) [corrected] and GPCho (phosphatidylcholine) [corrected] . Ethanolamine is also found as an integral component of the GPI (glycosylphosphatidylinositol) anchor that is required for membrane attachment of cell-surface proteins, most notably the variant-surface glycoproteins. The de novo synthesis of GPEtn and GPCho starts with the generation of phosphoethanolamine and phosphocholine by ethanolamine and choline kinases via the Kennedy pathway. Database mining revealed two putative C/EKs (choline/ethanolamine kinases) in the Trypanosoma brucei genome, which were cloned, overexpressed, purified and characterized. TbEK1 (T. brucei ethanolamine kinase 1) was shown to be catalytically active as an ethanolamine-specific kinase, i.e. it had no choline kinase activity. The K(m) values for ethanolamine and ATP were found to be 18.4+/-0.9 and 219+/-29 microM respectively. TbC/EK2 (T. brucei choline/ethanolamine kinase 2), on the other hand, was found to be able to phosphorylate both ethanolamine and choline, even though choline was the preferred substrate, with a K(m) 80 times lower than that of ethanolamine. The K(m) values for choline, ethanolamine and ATP were 31.4+/-2.6 microM, 2.56+/-0.31 mM and 20.6+/-1.96 microM respectively. Further substrate specificity analysis revealed that both TbEK1 and TbC/EK2 were able to tolerate various modifications at the amino group, with the exception of a quaternary amine for TbEK1 (choline) and a primary amine for TbC/EK2 (ethanolamine). Both enzymes recognized analogues with substituents on C-2, but substitutions on C-1 and elongations of the carbon chain were not well tolerated.  相似文献   

20.
Synthesis of Ethanolamine and Its Regulation in Lemna paucicostata   总被引:2,自引:2,他引:0       下载免费PDF全文
Mudd SH  Datko AH 《Plant physiology》1989,91(2):587-597
The metabolism of ethanolamine and its derivatives in Lemna paucicostata has been investigated, with emphasis on the path-way for synthesis of phosphoethanolamine, a precursor of phosphatidylcholine in higher plants. In experiments involving labeling of intact plants with radioactive serine, ambiguities of interpretation due to entry of radioactivity into methyl groups of methylated ethanolamine derivatives were mitigated by pregrowth of plants with methionine. Difficulties due to labeling of diacylglyceryl moieties of phospholipids were avoided by acid hydrolysis of crucial samples and determination of radioactivity in isolated serine or ethanolamine moieties. The results obtained from such experiments are most readily reconciled with the biosynthetic sequence: serine → ethanolamine → phosphoethanolamine → phosphatidylethanolamine. A possible alternative is: serine → phosphatidylserine → phosphatidylethanolamine → ethanolamine → phosphoethanolamine. Cell-free extracts of L. paucicostata were shown to produce CO2 from the carbon originating as C-1 of serine at a rate sufficient to satisfy the demand for ethanolamine moieties. A number of experiments produced no support for a hypothetical role for phosphoserine in phosphoethanolamine formation. Uptake of exogenous ethanolamine commensurately down-regulates the synthesis of ethanolamine moieties (considered as a whole, and regardless of their state of derivatization at the time of their formation). In agreement with previous observations, uptake of exogenous choline down-regulates the methylation of phosphoethanolamine, without being accompanied by secondary accumulation of a marked excess of ethanolamine derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号