首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Feng H  Lu LM  Huang Y  Zhu YC  Yao T 《生理学报》2005,57(5):537-544
高浓度的皮质酮可引起海马形态与功能的损伤,其中脑源性神经营养因子(brain-derived neurotrophic factor,BDNF) 表达的改变在海马形态与功能损伤中扮演重要角色。本实验的目的是观察单次皮下注射皮质酮后海马内BDNF-mRNA、前 体蛋白及成熟型蛋白表达的改变,并观察N-甲基-D-天冬氨酸(N-methyl-D-aspartate NMDA)受体阻滞剂MK801对皮质酮 作用的影响。实验结果显示,单次皮下注射皮质酮2 mg/kg,3 h后海马内BDNF mRNA、前体蛋白及成熟型蛋白的表达 均降低;MK801(0.1 mg/kg)对皮质酮的这一作用有增强效果。单独给予皮质酮或注射MK801 30 min后再给予皮质酮, 均能明显降低海马中cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)的磷酸化水平,MK801与 皮质酮联用时CREB的磷酸化水平降低更为显著(与单独给予皮质酮相比,P<0.05)。实验结果提示,CREB磷酸化水平降 低可能是皮质酮引起海马BDNF表达减少的重要中间环节,阻断NMDA受体可加强皮质酮降低BDNF表达的效应。  相似文献   

2.
The regulatory mechanisms of neuropeptide-metabolizing enzymes often play a critical role in the pathogenesis of neuronal damage. A systemic administration of pentylenetetrazol (PTZ), an antagonist of GABA(A) receptor ion channel binding site, causes generalized epilepsy in an animal model. In the present study, we examined the involvement of prolyl oligopeptidase (POP), thimet oligopeptidase/neurolysin (EP 24.15/16) and glial proteins in PTZ-treated rat brain regions, and the suppressive effect of MK-801, a non-competitive NMDA receptor antagonist, pretreatment for their proteins. The activity of POP significantly decreased in the hippocampus at 30min and 3h, and in the frontal cortex at 3h after PTZ treatment, and pretreatment with MK-801 recovered the activity in the cortex at 3h. The activity of EP 24.15/16 significantly decreased in the hippocampus at 3h and 1 day, and in the cortex at 3h after the PTZ administration, whereas pretreatment with MK-801 recovered the change of the activity. The Western blot analysis of EP 24.15 showed significant decrease of the protein level in the hippocampus 3h after the PTZ treatment, whereas pretreatment with MK-801 recovered. The expression of GFAP and CD11b immunohistochemically increased in the hippocampus of the PTZ-treated rat as compared with controls. Pretreatment with MK-801 also recovered the GFAP and CD11b expression. These data suggest that PTZ-induced seizures of the rats cause indirect activation of glutamate NMDA receptors, then decrease POP and EP 24.15/16 enzyme activities and EP 24.15 immunoreactivity in the neuronal cells of the hippocampal formation. We speculate that changes of those peptidases in the brain may be related to the levels of the neuropeptides regulating PTZ-induced seizures.  相似文献   

3.
Neurotrophins, including the brain-derived neurotrophic factor (BDNF), are essential for regulating neuronal differentiation in developing brains. BDNF and its receptor tyrosine kinase receptor B (TrkB) are involved in neuronal signaling, survival and plasticity. Cyclosporine A (CsA) is a potent immunosuppressive agent which prevents allograft rejection in organ transplantation and various immunological diseases. We investigated whether chronic administration of CsA decreases BDNF gene expression in rats, and the influence of CsA on mRNA levels of TrkB receptors was also examined. For 30 days of CsA (10 mg/kg/day) administration, the expression of BDNF and TrkB mRNA was significantly decreased in the hippocampus and midbrain, but there was no significant difference in the cortex. CsA (0, 1, 5 10, 15 ug/ml) down-regulated BDNF and TrkB gene expression through cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA), and there was no effect on cell viability. These experimental results indicate that suppression of the BDNF and TrkB mRNA, protein level of BDNF expression in the hippocampus and midbrain may be related to altered behavior observed following chronic administration of CsA. A common mechanism of adverse effects of CsA induced depressive symptoms may involve neurotoxicity mediated by down-regulation of brain BDNF and TrkB.  相似文献   

4.
In the present study, we have shown that IL-1beta increased BDNF mRNA expression in hypothalamic neuron-enriched cultures whereas it reduced this expression in mixed cultures, i.e. containing astrocytes and neurons. Because functional relationships between stress and immunity signals are well documented we investigated the possible interaction between BDNF and IL-1beta in hypothalamic neurons. Notably, we investigated whether IL-1beta affected BDNF expression in vitro either on hypothalamic mixed cultures or on neuron-enriched cultures. We found that the response to IL-1beta was stimulatory when directly examined in neurons but was inhibitory when astrocytes were present in the cultures. Since it has been documented that astrocytes release PGE2 in response to IL-1beta, we examined the effect of indomethacin (a PGE2 synthesis inhibitor) on mixed or neuron-enriched cultures treated with IL-1beta. Indomethacin blocked both stimulatory and inhibitory IL-1beta effects on BDNF mRNA expression whereas picrotoxin (a GABA(A) blocker) or MK-801 (a NMDA receptor blocker) had no effect on BDNF mRNA levels. About 3 and 6h treatments of cells with exogenous PGE2 reproduced the effects of IL-1beta on neuron-enriched or on mixed cultures suggesting that PGE2 was involved in BDNF mRNA regulation. Analysis of PGE2 receptors mRNA expression revealed that the PGE2 receptor pattern was changed when neuron-enriched cultures were treated with conditioned medium produced by astrocytes treated with IL-1beta. Thus, EP3 mRNA levels were increased while EP1 and EP4 messengers were unchanged. This increased expression of the inhibitory prostaglandin receptor under astrocyte influence can explain the inhibition of BDNF mRNA levels observed in mixed cultures following IL-1beta or PGE2 treatment. Finally, we demonstrated by immunocytochemistry that EP3 receptors had a neuronal localization in the hypothalamic cultures. Taken together, these data contribute to underline an emerging physiological concept postulating that a same molecule may have opposite effects as a function of the cellular context.  相似文献   

5.
Zhu D  Lipsky RH  Marini AM 《Amino acids》2002,23(1-3):11-17
Summary.  Neuroprotective concentrations of N-methyl-D-aspartate (NMDA) promote survival of cerebellar granule cell neurons against glutamate excitotoxicity through a TrkB receptor-mediated brain-derived neurotrophic factor (BDNF) autocrine loop. However, the intracellular signaling pathway(s) are not clear. Our results show that PI-3 kinase/Akt is activated by either NMDA or BDNF displaying differential kinetics. BDNF and NMDA increased Akt phosphorylation within 5 minutes but maximal activation by NMDA was observed at 3 hours. Akt phosphorylation was completely blocked by the PI-3 kinase inhibitor LY294002. NMDA-mediated activation of Akt was completely blocked by MK-801 and partially blocked by the TrkB receptor inhibitor, K252a, indicating the requirement of TrkB receptors for maximal activation by NMDA. In contrast, BDNF-induced Akt phosphorylation was abolished by K252a, but not by the addition of MK-801. Therefore, the PI-3 kinase/Akt pathway is co-activated by NMDA and TrkB receptors. The kinetics of BDNF and NMDA-mediated activation of PI-3 kinase/Akt suggests that they have different roles in intraneuronal time-related events. Received June 29, 2001 Accepted August 6, 2001 Published online June 3, 2002  相似文献   

6.
为了考察miR-103a对癫痫大鼠海马组织星形胶质细胞活化的影响。本研究通过腹腔注射氯化锂和毛果芸香碱诱导癫痫大鼠模型,对大鼠脑室内注射miR-103a抑制剂来敲低miR-103a的表达;采用免疫组织化学染色检测大鼠海马组织中胶质纤维酸性蛋白(GFAP)的阳性表达;采用RT-qPCR和Western blotting方法检测大鼠海马组织中miR-103a、脑源性神经营养因子(BDNF)、GFAP、TNF-α和IL-6的m RNA和蛋白表达;苏木精-伊红(HE)染色评价海马组织病变程度;Nissl染色检测神经元存活情况;TUNEL染色检测神经元的凋亡。结果显示,癫痫大鼠海马组织中miR-103a被上调。下调miR-103a抑制癫痫大鼠海马组织中GFAP的mRNA和蛋白表达,且抑制癫痫大鼠海马神经元的病理损伤,但能促进癫痫大鼠海马神经元的存活并抑制其凋亡。此外,下调miR-103a还抑制癫痫大鼠海马组织中IL-6和TNF-α的表达,并促进癫痫大鼠海马组织中BDNF的表达。本研究表明,靶向沉默miR-103a可以抑制癫痫大鼠海马组织中星形胶质细胞的活化并改善神经元的病理损伤。  相似文献   

7.
This study concerns effects of the testes on two macromolecules in the rat hippocampus that were previously not known to be responsive to this endocrine axis. Castration for 3 weeks elevated the expression of glial fibrillary acidic protein (GFAP) and sulfated glycoprotein-2 (SGP-2) in male rat hippocampus, as shown by Northern blots and immunocytochemistry. SGP-2 mRNA was colocalized with GFAP, implying increased prevalence in astrocytes after castration. During hippocampal responses to deafferentation by entorhinal cortex lesions that damage the perforant path and induce synaptic reorganization, both mRNA and protein for SGP-2 and GFAP increase. Moreover, prior castration had an additive effect with entorhinal cortex lesions in the increase in GFAP and SGP-2 mRNA. These data suggest that testicular hormones regulate hippocampal astrocyte activity in intact adult rats as well as during synaptic reorganization in response to deafferenting lesions.  相似文献   

8.
The neuroprotective effect and molecular mechanisms underlying preconditioning with N-methyl-D-aspartate (NMDA) in cultured hippocampal neurons have not been described. Pre-incubation with subtoxic concentrations of the endogenous neurotransmitter glutamate protects vulnerable neurons against NMDA receptor-mediated excitotoxicity. As a result of physiological preconditioning, NMDA significantly antagonizes the neurotoxicity resulting from subsequent exposure to an excitotoxic concentration of glutamate. The protective effect of glutamate or NMDA is time- and concentration-dependent, suggesting that sufficient agonist and time are required to establish an intracellular neuroprotective state. In these cells, the TrkB ligand, brain-derived neurotrophic factor (BDNF) attenuates glutamate toxicity. Therefore, we tested the hypothesis that NMDA protects neurons via a BDNF-dependent mechanism. Exposure of hippocampal cultures to a neuroprotective concentration of NMDA (50 microM) evoked the release of BDNF within 2 min without attendant changes in BDNF protein or gene expression. The accumulated increase of BDNF in the medium is followed by an increase in the phosphorylation (activation) of TrkB receptors and a later increase in exon 4-specific BDNF mRNA. The neuroprotective effect of NMDA was attenuated by pre-incubation with a BDNF-blocking antibody and TrkB-IgG, a fusion protein known to inhibit the activity of extracellular BDNF, suggesting that BDNF plays a major role in NMDA-mediated survival. These results demonstrate that low level stimulation of NMDA receptors protect neurons against glutamate excitotoxicity via a BDNF autocrine loop in hippocampal neurons and suggest that activation of neurotrophin signaling pathways plays a key role in the neuroprotection of NMDA.  相似文献   

9.
Gastrodin (GAS), a main constituent of a Chinese herbal medicine Tian ma, has been shown to be effective in treating various mood disorders. The purpose of the present study was to assess the effects of GAS on alleviating depressive-like behaviors in a rat model of chronic unpredictable stress (CUS) and regulating the expression of BDNF in the hippocampus and hippocampal-derived astrocyte from Sprague–Dawley (SD) rats. Following CUS, rats were intraperitoneally administered gastrodin (50, 100, or 200 mg/kg daily) or vehicle for 2 weeks. Rats were then experienced sucrose preference test and forced swim test. The expressions of GFAP and BDNF in the hippocampus were evaluated. In addition, hippocampal astrocytes were isolated from neonatal SD rats and exposed to different concentrations of GAS (sham, 5, 10, 20, 50 and 100 μg/mL) for 48 and 72 h before the cell viability and the levels of pERK1/2 and BDNF were analyzed. Furthermore, the cell viability was also tested after exposure to serum-free condition that contain different concentrations of GAS for 48 and 72 h. GAS administration (100 and 200 mg/kg daily) reversed depressive-like behaviors in rats exposed to CUS paradigm and restored the expression of GFAP and BDNF in the hippocampus. Moreover, in vitro experiments revealed that GAS did not increase the cell viability of astrocytes but protected it from 72 h’s serum-free damage at the dosage 20 μg/mL. Increased levels of ERK1/2 phosphorylation and BDNF protein were also observed after GAS (20 μg/mL) treatment for 72 h. These results indicate that gastrodin possesses antidepressant effect. The changes of the astrocyte activation and the level of BDNF may play a critical role in the pharmacological action of GAS.  相似文献   

10.
The modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect. PCP also increased hdc mRNA expression in the rat tuberomammillary nucleus. The enhancement of t-MeHA levels elicited by MK-801 (ED50 of approximately 0.1 mg/kg) was observed in the hypothalamus, cerebral cortex, striatum and hippocampus. Control t-MeHA levels and the t-MeHA response to MK-801 were not different in male and female mice. Double immunostaining for HDC and NMDA receptor subunits showed that histamine neurons of the rat tuberomammillary nucleus express NMDA receptor subunit 1 (NR1) with NMDA receptor subunit 2A (NR2A) and NMDA receptor 2B subunit (NR2B). In addition, immunoreactivity for the neuronal glutamate transporter EAAC1 was observed near most histaminergic perikarya. Hence, these findings support the existence of histamine/glutamate functional interactions in the brain. The increase in histamine neuron activity induced by NMDA receptor antagonists further suggests a role of histamine neurons in psychotic disorders. In addition, the decrease in MK-801-induced hyperlocomotion observed in mice after administration of ciproxifan further strengthens the potential interest of H3-receptor antagonist/inverse agonists for the symptomatic treatment of schizophrenia.  相似文献   

11.
Chronic in vivo or in vitro application of GABA(A) receptor agonists alters GABA(A) receptor peptide expression and function. Furthermore, chronic in vitro application of N-methyl-D-aspartate (NMDA) agonists and antagonists alters GABA(A) receptor function and mRNA expression. However, it is unknown if chronic in vivo blockade of NMDA receptors alters GABA(A) receptor function and peptide expression in brain. Male Sprague-Dawley rats were chronically administered the noncompetitive NMDA receptor antagonist MK-801 (0.40 mg/kg, twice daily) for 14 days. Chronic blockade of NMDA receptors significantly increased hippocampal GABA(A) receptor alpha4 and gamma2 subunit expression while significantly decreasing hippocampal GABA(A) receptor alpha2 and beta2/3 subunit expression. Hippocampal GABA(A) receptor alpha1 subunit peptide expression was not altered. In contrast, no significant alterations in GABA(A) receptor subunit expression were found in cerebral cortex. Chronic MK-801 administration also significantly decreased GABA(A) receptor-mediated hippocampal Cl- uptake, whereas no change was found in GABA(A) receptor-mediated cerebral cortical Cl- uptake. Finally, chronic MK-801 administration did not alter NMDA receptor NR1, NR2A, or NR2B subunit peptide expression in either the cerebral cortex or the hippocampus. These data demonstrate heterogeneous regulation of GABA(A) receptors by glutamatergic activity in rat hippocampus but not cerebral cortex, suggesting a new mechanism of GABA(A) receptor regulation in brain.  相似文献   

12.
13.
Abundant studies have shown possible links between low levels of brain-derived neurotrophic factor (BDNF) and neurological diseases such as Alzheimer's disease, Parkinson's disease, and depression, as well as stress and anxiety; therefore, BDNF could be a therapeutic target for neurological disorders. In the present study, a positional scanning-synthetic peptide combinatorial library was utilized to identify a peptide modulator of BDNF expression in the hippocampal neuronal cell line, H19-7. A novel tripeptide (Neuropep-1) induced a significant increase of BDNF mRNA and protein levels in H19-7 cells. Pre-treatment of TrkB inhibitor (K252a) did not block Neuropep-1-induced BDNF up-regulation. These results indicate that Neuropep-1 may up-regulate BDNF expression that might be independent of the TrkB receptor pathway. Tail vein injection of Neuropep-1 significantly up-regulated BDNF expression, TrkB phosphorylation, and its downstream signals including activation of Akt, ERK, and cAMP response element binding in the rat hippocampus. To evaluate improvement of spatial learning and memory (SLM) by Neuropep-1-induced BDNF up-regulation, the Y-maze and Morris water maze tests were performed. These results showed Neuropep-1 injection improved SLM performance with increase of BDNF and TrkB expression, activation of TrkB downstream signals in rat hippocampus compared with the control group. However, phosphorylation levels of TrkB were not changed when it was normalized to the level of TrkB expression. The difference on TrkB phosphorylation in Neuropep-1-injected rats may be affected by behavioral tests. These results suggest that Neuropep-1 may improve SLM via activation of the BDNF/TrkB signaling pathway in the rat hippocampus. Therefore, our findings represent that Neuropep-1 might be a potential candidate for treatment of learning and memory disorders as well as neurological diseases involving the abnormal expression of BDNF.  相似文献   

14.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   

15.
Noncompetitive NMDA receptor antagonist (+)MK-801 is known to induce neurotoxicity and schizophrenia-like symptomatology where atypical neuroleptic clozapine is effective in contrast to typical neuroleptic, haloperidol. Although neuropeptides are implicated in memory and cognition, their roles in schizophrenia are not well understood. In the present study, we therefore examined the possible roles of neuropeptides, cholecystokinin (CCK) and somatostatin (SS) in the posterior cingulate/retrosplenial cortices (PC/RSC), frontal cortex, and hippocampus of a MK-801-induced schizophrenia-like model rat brain. This study further investigated the pretreated effect of atypical versus typical neuroleptics on the peptidergic system. SS mRNA and peptide levels significantly decreased in the PC/RSC and hippocampus but not in the frontal cortex 3 days after 0.5 mg/kg MK-801 treatment whereas CCK mRNA and peptide levels significantly decreased in all of the brain regions examined. Pretreatment with clozapine but not haloperidol completely recovered the changes in both mRNA and peptide levels of SS and CCK in those brain regions. These data suggest that peptidergic system in the brain presumably plays an important role in the control of negative schizophrenia.  相似文献   

16.
Released TRH is inactivated by an ectopeptidase, pyroglutamyl aminopeptidase II (PPII). PPII expression and activity are stringently regulated in adenohypophysis, and in rat brain, during kindling stimulation that activates TRHergic neurons. To gain further insight into the possible regulation of PPII, we studied the effect of an acute intraperitoneal ethanol administration that affects TRH content and expression. PPII activity was determined by a fluorometric assay and PPII mRNA levels by semi-quantitative RT-PCR. Activity decreased in frontal cortex 1 h after ethanol injection and, after 6 h, in hippocampus, amygdala and n. accumbens. PPII mRNA levels decreased at 30 and 60 min in frontal cortex and n. accumbens while increased at longer times in these regions and, in hippocampus and hypothalamus. NMDA and GABA(A) receptors' agonists and antagonists were tested at 1 h (+/-ethanol) on PPII activity and mRNA levels, as well as on TRH content and its mRNA. In n. accumbens, PPII mRNA levels decreased by ethanol, MK-801, and muscimol while picrotoxin or NMDA reversed ethanol's inhibition. Ethanol decreased TRH content and increased TRH mRNA levels as MK-801 or muscimol did (NMDA or picrotoxin reverted the effect of ethanol). In frontal cortex, PPII activity was inhibited by ethanol, NMDA and MK-801 with ethanol; its mRNA levels were reduced by ethanol, MK-801 and muscimol (NMDA and picrotoxin reverted ethanol's inhibition). These results show that PPII expression and activity can be regulated in conditions where TRHergic neurons are modulated. Effects of ethanol on PPII mRNA levels as well as those of TRH and its mRNA may involve GABA or NMDA receptors in n. accumbens. Changes observed in frontal cortex suggest combined effects with stress. The response was region-specific in magnitude, tendency and kinetics. These results give further support for brain PPII regulation in conditions that modulate the activity of TRHergic neurons.  相似文献   

17.
We investigated whether the immunosuppressive drugs, FK506 and cyclosporine A, increase BDNF protein and/or mRNA expression in ischemic astrocytes and if an increase could be related to changes in the nuclear expression of p-CREB, p-Erk1/2 and p-Akt. The influence of these immunosuppressants on protein and mRNA levels of TrkB and p75NTR receptors was also examined. On day 21, cultures of rat astrocytes were subjected to ischemic conditions simulated in vitro (combined oxygen glucose deprivation, OGD) for 8 h and exposed to FK506 (10-1000 nM) and cyclosporine A (0.25-10 μM). FK506 and cyclosporine A (at 1000 nM and 0.25 μM, respectively) stimulated the expression and release of BDNF in cultured rat cerebral cortical astrocytes exposed to OGD. The immunosuppressants at these doses simultaneously increased p-CREB and p-Erk1/2 expression in the nuclear fraction of astrocytes. The results RT-PCR and Western blot analysis provided further evidence of a modulating influence of the drugs on the expression of trkB and p75NTR genes and their protein products in ischemic astrocytes.  相似文献   

18.
BackgroundHigh rates of co-morbidity have been reported in patients with diabetes mellitus with depression (DD). Danggui Buxue Decoction (DBD), a Traditional Chinese Medicine formula composed of Angelica and Astragalus, has been historically used for the treatment of diabetes.PurposeThis study aimed to investigated whether DBD and its main active component, ferulic acid (FA) from Angelica, could ameliorate depression-like behavior in DD and the underlying mechanisms.MethodsGoto-Kakizaki (GK) rats were administered DBD (4 or 8 g/kg) by oral gavage during a 4-week period of chronic unpredictable mild stress. After 4 weeks, blood glucose, glycated serum protein, serum insulin, oral glucose tolerance and depression-like behavior were examined, along with brain-derived neurotrophic factor (BDNF)-related signaling pathway proteins and the ultrastructure of hippocampal tissues. UPLC-QTOF-MS was adopted to detect the absorption of FA in the serum and hippocampus. Rat primary hippocampal cells were cultured in a DD model. Protein and mRNA levels of genes involved in BDNF-related signaling and neuroplasticity were analyzed.ResultsDBD effectively improved glucose tolerance in DD rats and relieved depression-like behavior. Upregulation of cAMP response element binding protein (CREB), BDNF, and tropomyosin receptor kinase B (TrkB) and improvement of the hippocampal neuron ultrastructure supported the antidepressant-Like effects of DBD on the hippocampal neurons. In addition, DBD enhanced the protein and mRNA levels of components of the CREB/BDNF/TrkB pathway in rat primary hippocampal cells induced by elevated glycemia and cortisol. Interestingly, FA, the main component of DBD absorbed in the blood and hippocampus, showed similar effects as DBD on primary hippocampal cells.Conclusion:This study suggests that the TCM formula DBD effectively serves as a potential therapeutic agent for prevention of DD through regulatory effects on the CREB/BDNF/TrkB pathway to protect and remodel hippocampal neurons. Moreover, FA contributes significantly to the treatment effects of DBD.  相似文献   

19.
While both 17β-estradiol (E2) and progesterone (P4) are neuroprotective in several experimental paradigms, P4 also counteracts E2 neuroprotective effects. We recently reported that a 4-h treatment of cultured hippocampal slices with P4 following a prolonged (20?h) treatment with E2 eliminated estrogenic neuroprotection against NMDA toxicity and induction of brain-derived neurotrophic factor (BDNF) expression. In the present study, we evaluated the effects of the same treatment on levels of estrogen receptors, ERα and ERβ, and BDNF using a similar paradigm. E2 treatment resulted in elevated ERβ mRNA and protein levels, did not modify ERα mRNA, but increased ERα protein levels, and increased BDNF mRNA levels. P4 reversed E2-elicited increases in ERβ mRNA and protein levels, in ERα protein levels, and in BDNF mRNA levels. Experiments with an ERβ-specific antagonist, PHTPP, and specific agonists of ERα and ERβ, propylpyrazoletriol and diarylpropionitrile, respectively, indicated that E2-mediated neuroprotection against NMDA toxicity was, at least in part, mediated via ERβ receptor. In support of this conclusion, E2 did not protect against NMDA toxicity in cultured hippocampal slices from ERβ-/- mice. Thus, E2-mediated neuroprotection against NMDA toxicity may be because of estrogenic induction of BDNF via its ERβ receptor, and P4-mediated inhibition of E2 neuroprotective effects treatment to P4-induced down-regulation of ERβ and BDNF.  相似文献   

20.
Effects of MK-801 (a NMDA receptor blocker) and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione; a non-NMDA receptor blocker) on several neurotoxic responses induced by kainic acid (KA) were examined in ICR mice. In a lethality test, intracerebroventricular (i.c.v.) pretreatment of MK-801 (1 microg), but not CNQX (0.5 microg), attenuated the time to lethality induced by KA (0.5 microg) administered i.c.v. In the memory test (a passive avoidance test), MK-801, but not CNQX, prevented the memory loss induced by KA (0.1 microg). The damage induced by KA (0.1 microg) administered i.c.v. in the hippocampus was markedly concentrated in the CA3 pyramidal neurons. Both MK-801 and CNQX blocked the pyramidal cell death in CA3 hippocampal region induced by KA. In the immunocytochemical study, KA dramatically increased the phosphorylated ERK (p-ERK) and decreased the phosphorylated CREB (p-CREB) in the hippocmapus. Both MK-801 and CNQX attenuated, in part, the increased p-ERK and the decreased p-CREB induced by KA. In addition, both MK-801 and CNQX partially reduced the increased c-Fos and c-Jun protein expression in hippocampus induced by KA. Our results suggest that both NMDA and non-NMDA receptors are involved in supraspinally administered KA-induced pyramidal cell death in CA3 region of hippocampus in the mouse and the p-ERK and the dephosphorylation of CREB protein may play an important role in CA3 region cell death of the hippocampus induced by KA administered supraspinally. Furthermore, c-Fos and c-Jun proteins may serve as third messengers responsible for CA3 pyramidal cell death induced by supraspinally administered KA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号