首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: Binding of [3H]glutamate, [3H]glycine, and the glutamate antagonist [3H]CGS-19755 to NMDA-type glutamate receptors was examined in homogenates of rat forebrain and cerebellum. Most glutamate agonists had a higher affinity at the [3H]glutamate binding site of cerebellar NMDA receptors as compared with forebrain, whereas all the glutamate antagonists examined showed the reverse relationship. The [3H]glycine binding site of forebrain and cerebellar NMDA receptors showed a similar pharmacology in both brain regions. In the cerebellum, however, [3H]glycine bound to a second site with a 10-fold lower affinity and with a pharmacology that resembled that of the glycine/strychnine chloride channel. [3H]Glutamate binding was not affected by glycine agonists or antagonists, nor was [3H]glycine binding affected by glutamate agonists in either forebrain or cerebellum. Both CGS-19755 and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, glutamate antagonists, reduced [3H]glycine binding in cerebellum, whereas only CGS-19755 was effective in forebrain. Glycine agonists and antagonists modulated [3H]CGS-19755 binding in forebrain and cerebellum to different extents in the two brain regions. From these studies we conclude that the cerebellar NMDA receptor has a different pattern of modulation at glutamate and glycine sites and that glycine may play a more important role in the control of NMDA function in the cerebellum as compared with forebrain.  相似文献   

2.
Abstract: Spermine and other polyamines both stimulate and inhibit N -methyl- d -aspartate receptor function, probably by interacting with two separate sites. To characterize these two actions, the effect of spermine on the binding kinetics of the channel blocker [3H]dizocilpine was studied in the presence of glutamate and glycine. Low concentrations (10 µ M ) of spermine increased the association and dissociation rates without modifying equilibrium binding, indicating that spermine increases the accessibility of [3H]dizocilpine to the channel by interacting with a high-affinity, stimulatory site. At higher concentrations (1 m M ), spermine markedly decreased equilibrium [3H]-dizocilpine binding by decreasing both affinity and B max, indicating that spermine allosterically inhibits binding by interacting with a second, low-affinity site. The presumed polyamine antagonists arcaine, diethylenetriamine, and 1,10-diaminodecane completely inhibited equilibrium [3H]dizocilpine binding, probably by interacting with the inhibitory polyamine site or other sites, but not with the stimulatory polyamine site. Low concentrations (10 µ M ) of ifenprodil completely reversed the increase in association rate produced by spermine, whereas higher concentrations (IC50 = 123 µ M ) inhibited equilibrium binding, indicating that ifenprodil is both a potent antagonist of the stimulatory site and a low-affinity ligand of the inhibitory site. The polyamine agonists spermine, spermidine, and neomycin interacted with the inhibitory site, but produced only partial inhibition of equilibrium [3H]dizocilpine binding.  相似文献   

3.
Abstract: The kinetics and pharmacology of N G-nitro- l -[2,3,4,5-3H]arginine ( l -[3H]NOARG) binding to rat cerebellum were investigated using in vitro radioligand binding. Specific l -[3H]NOARG binding in cerebellum was of nanomolar affinity, reversible, saturable, and best fit to a single-site model. Specific binding was Ca2+ dependent and sensitive to pH (with an optimum of 5.5–7.0). Added calmodulin (1.5–40 µg/ml) had no influence on specific l -[3H]NOARG binding. However, the calmodulin antagonists W-5, W-13, and calmidazolium inhibited l -[3H]NOARG binding with IC50 values in the micromolar range, and calmodulin (10 µg/ml) competitively reversed this inhibition. Nitric oxide synthase (NOS) inhibitors ( N G-nitro- l -arginine methyl ester and N G-monomethyl- l -arginine acetate) and l -arginine displaced l -[3H]NOARG binding with IC50 values in the nanomolar range, whereas d -arginine and basic amino acids ( l -lysine and l -histidine) displaced l -[3H]NOARG binding with IC50 values in the millimolar range. A comparison of the NOS functional assay with l -[3H]NOARG binding in rat cerebellum showed similar profiles of Ca2+ dependency and inhibitory kinetics. Quantitative autoradiographic distribution of l -[3H]NOARG binding sites was significantly higher in the molecular layer than in the granular layer of cerebellum. These studies confirm the potential use of l -[3H]NOARG binding to study the regional distribution and functional properties of NOS.  相似文献   

4.
Abstract: N -Methyl- d -asparate receptors (NMDARs) are a major target of ethanol effects in the nervous system. Haloperidol-insensitive, but dizocilpine (MK-801)-sensitive, binding of N -[1-(2-[3H]thienyl)cyclohexyl]piperidine ([3H]TCP) to synaptic membranes has the characteristics of ligand interaction with the ion channel of NMDARs. In the present studies, ethanol produced a concentration-dependent decrease in the maximal activation of [3H]TCP binding to synaptic membranes by NMDA and Gly, but a moderate change in the activation by l -Glu when l -Glu was present at concentrations < 100 µ M . However, ethanol (100 m M ) inhibited completely the activation of [3H]TCP binding produced by high concentrations of l -Glu (200–400 µ M ). It also inhibited strongly the activation of [3H]TCP binding by spermidine or spermidine plus Gly. In a purified complex of proteins that has l -Glu-, Gly-, and [3H]TCP-binding sites, ethanol (100 m M ) decreased significantly the maximal activation of [3H]TCP binding produced by either l -Glu or Gly. Activation constants ( K act) for l -Glu and Gly acting on the purified complex were 12 and 28 µ M, respectively. Ethanol had no significant effect on the K act of l -Glu but caused an increase in the K act of Gly. These studies have identified at least one protein complex in neuronal membranes whose response to both l -Glu and Gly is inhibited by ethanol. These findings may explain some of the effects of acute and chronic ethanol treatment on the function and expression of the subunits of this complex in brain neurons.  相似文献   

5.
Abstract: cis -4-Aminocrotonic acid (CACA; 100 µ M ), an analogue of GABA in a folded conformation, stimulated the passive release of [3H]GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of β-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 µ M ) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of d -[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]taurine from the cerebellum and spinal cord and d -[3H]aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and β-alanine release are due to CACA acting as a substrate for a β-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of β-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed K i for CACA against β-[3H]alanine uptake in the cerebellum was 750 ± 60 µ M . CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and β-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, β-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, β-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.  相似文献   

6.
Abstract: A photolabile trifluoromethyldiazoketone derivative of kainate (KA), (2' S ,3' S ,4' R )-2'-carboxy-4'-(2-diazo-1-oxo-3,3,3-trifluoropropyl)-3'-pyrrolidinyl acetate (DZKA), was synthesized and evaluated as an irreversible inhibitor of the high-affinity KA site on rat forebrain synaptic plasma membranes (SPMs). In the absence of UV irradiation, DZKA preferentially blocked [3H]KA binding with an IC50 of 0.63 µ M , a concentration that produced little or no inhibition at AMPA or NMDA sites. At 100 µ M , however, DZKA inhibited [3H]AMPA and l -[3H]glutamate binding by ∼50%. When examined electrophysiologically in HEK293 cells expressing human KA (GluR6) or AMPA (GluR1) subtypes, DZKA acted preferentially at KA receptors as a weak agonist. DZKA also exhibited little or no excitotoxic activity in mixed rat cortical cultures. Irreversible inhibition was assessed by pretreating SPMs with DZKA (50 µ M ) in the presence of UV irradiation, removing unbound DZKA, and then assaying the reisolated SPMs for radioligand binding. This protocol produced a selective and irreversible loss of ∼50% of the [3H]KA sites. The binding was recoverable in SPMs pretreated with DZKA or UV alone. Coincubation with l -glutamate prevented the loss in [3H]KA binding, suggesting that the inactivation occurred at or near the ligand binding site. These results are consistent with the action of DZKA as a photoaffinity ligand for the KA site and identify the analogue as a valuable probe for future investigations of receptor structure and function.  相似文献   

7.
Abstract: Binding of 1-[1-(2-[3H]thienyl)cyclohexyl]piperidine ([3H]TCP) to mouse brain and spinal cord membranes was studied using compounds selective for the NMDA-coupled 1-(1-phenylcyclohexyl)piperidine (PCP) and/or σ recognition sites. In both tissues, [3H]TCP labeled two populations of binding sites. Density of the low-affinity sites was approximately the same in both tissues, but the population of the high-affinity [3H]TCP sites was three times bigger in the brain than in the spinal cord. Self- and cross-displacement studies showed that the high-affinity [3H]TCP binding sites could be identical with NMDA receptor-coupled PCP sites, whereas the low-affinity [3H]TCP sites may be associated with σ binding sites in both tissues. The NMDA-coupled PCP sites labeled in the presence of 6.25 n M [3H]TCP constituted a much higher percentage of the total binding in the brain (75%) than in the spinal cord (44%). Consistent with this, reintroduction of glycine and glutamate significantly increased, but DA antagonists significantly inhibited [3H]TCP binding in the brain but not in the spinal cord. Together, these data suggest that a large component of [3H]TCP-labeled binding sites in the spinal cord may be associated with σ but not the NMDA receptor-coupled PCP sites.  相似文献   

8.
Abstract: The effect of lindane administration on the specific binding of ligands to different sites on the GABAA receptor-ionophore complex was studied in the rat brain by receptor mapping autoradiography. [3H]Muscimol (Mus), [3H]flunitrazepam (Flu), and t -[35S]butylbicyclophosphorothionate (TBPS) were used as specific ligands of GABA, benzodiazepine, and picrotoxinin binding sites, respectively. Rats received a single oral dose of 30 mg/kg lindane and they were classified into two groups according to the absence or presence of convulsions. Vehicle-treated groups acted as controls. The effect of the xenobiotic on ligand binding was measured in different brain areas and nuclei 12 min or 5 h after its administration. Lindane induced a generalized decrease in [35S]TBPS binding, which was present shortly after dosing. In addition, [3H]Flu binding was increased in lindane-treated animals, this modification also appearing shortly after administration but diminishing during the studied time. Finally, lindane induced a decrease in [3H]Mus binding, which became more evident over time. These modifications were observed both in the presence and in the absence of convulsions. However, an increase in [3H]-Mus binding was detected shortly after lindane-induced convulsions. The observed decrease in [35S]TBPS binding is in agreement with the postulated action of lindane at the picrotoxinin binding site of the GABAA receptor chloride channel. The effects observed on the binding of [3H]Flu and [3H]Mus may be secondary to the action of lindane as an allosteric antagonist of the GABAA receptor.  相似文献   

9.
Abstract: Quantitative autoradiography of [3H]MK-801 binding was used to characterize regional differences in N -methyl- d -aspartate (NMDA) receptor pharmacology in rat CNS. Regionally distinct populations of NMDA receptors were distinguished on the basis of regulation of [3H]MK-801 binding by the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). CPP inhibited [3H]MK-801 binding in outer cortex (OC) and medial cortex (MC) with apparent K i values of 0.32-0.48 μ M , whereas in the medial striatum (MS), lateral striatum (LS), CA1, and dentate gyrus (DG) of hippocampus, apparent K i values were 1.1-1.6 μ M . In medial thalamus (MT) and lateral thalamus (LT) the apparent K i values were 0.78 μ M . In the presence of added glutamate (3 μ M ), the relative differences in apparent K i values between regions maintained a similar relationship with the exception of the OC. Inhibition of [3H]MK-801 binding by the glycine site antagonist 7-chlorokynurenic acid (7-ClKyn) distinguished at least two populations of NMDA receptors that differed from populations defined by CPP displacement. 7-ClKyn inhibited [3H]MK-801 binding in OC, MC, MS, and LS with apparent K i values of 6.3-8.6 μ M , whereas in CA1, DG, LT, and MT, K i values were 11.4-13.6 μ M . In the presence of added glycine (1 μ M ), the relative differences in apparent K i values were maintained. Under conditions of differential receptor activation, regional differences in NMDA receptor pharmacology can be detected using [3H]MK-801 binding.  相似文献   

10.
Abstract: We synthesized a potent and selective antagonist radioligand for the neurokinin (NK)-1 receptor and characterized its binding to guinea pig striatal membranes. ( R ) - N - [2 - [Acetyl[3H3][(2 - methoxyphenyl) - methyl]amino] - 1 - (1 H - indol - 3 - ylmethyl)ethyl][1,4' - bipiperidine]-1'-acetamide ([3H]LY303870) binds to a single class of sites with an equilibrium K D of 0.22 n M and a B max of 723 fmol/mg of protein. Unlabeled LY303870 potently inhibited the binding with an IC50 of 0.56 n M , whereas the less active ( S )-enantiomer (LY306155) was substantially less potent. The nonpeptide NK-1 antagonists (±)-CP96,345 and (±)-RP 67580 had IC50 values of 0.74 and 49 n M , respectively. Substance P (SP) was also a potent inhibitor with with an IC50 of 3.1 n M . The inhibition by SP could be separated into two components: a high-affinity component with a K i of 0.53 n M and a lower-affinity component with a K i of 155 n M . Addition of 100 µ M guanylyl 5'-imidodiphosphate [Gpp(NH)p] in the incubation increased the relative amount of the low-affinity agonist state of the receptor. Consistent with the antagonist properties of LY303870, the dissociation rate of [3H]LY303870 was not changed by the presence of 100 µ M Gpp(NH)p. The distribution of [3H]LY303870 binding sites in the guinea pig brain closely matched the distribution of NK-1 receptors labeled by [3H]SP. Therefore, [3H]LY303870 is a potent and selective antagonist radioligand for NK-1 receptors in guinea pig brain. In addition, regulation of NK-1 agonist affinity by guanine nucleotides is similar to that seen for monoaminergic receptors.  相似文献   

11.
Abstract: In contrast to striatal membranes of adult rats, where high- ( K D1= 34 n M ) and low- ( K D2= 48,400 n M ) affinity binding sites for [3H]WIN 35,428 are present, in primary cultures of ventral mesencephalon neurons (CVMNs) only low-affinity binding sites were found ( K D= 336,000 n M ). The binding of [3H]WIN 35,428 in CVMNs prepared from rat embryos was reversible, saturable, and located in cytosol. Although dopamine (DA) uptake blockers inhibited [3H]DA uptake at nanomolar concentrations in CVMNs, the displacement of [3H]WIN 35,428 binding in CVMNs by DA uptake inhibitors required 100-8,000 times higher concentrations than were needed to displace [3H]WIN 35,428 binding in striatal membranes. Piperazine derivatives, e.g., GBR-12909, GBR-12935, and rimcazole, inhibited [3H]WIN 35,428 binding in CVMNs more effectively than did cocaine, WIN 35,428, mazindol, nomifensine, or benztropin. A positive correlation ( r = 0.779; p < 0.001) was found between drug affinities for the striatal membrane sites labeled by [3H]WIN 35,428 and their abilities to inhibit DA uptake in CVMNs, whereas no correlation existed between the IC50 values of drugs that inhibited [3H]WIN 35,428 binding and [3H]DA uptake in CVMNs. The cytosolic [3H]WIN 35,428 binding sites may be a piperazine acceptor and may not be involved in the regulation of the DA transporter.  相似文献   

12.
Abstract: 3-(1,2,5,6-Tetrahydro-4-pyridyl)-5- n -propoxyindole (CP-96,501) was found to be a more selective ligand at the serotonin 5-HT1B receptor than the commonly used 5-HT1B agonist, 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-methoxyindole (RU 24969). In rat brain membranes, the tritiated derivative, [3H]CP-96,501, was found to bind with a high affinity ( K D, 0.21 n M ) to a single binding site ( n H, 1.0). The receptor density of this site ( B max, 72 fmol/mg of protein) matched that of the 5-HT1B receptor determined with [3H]5-HT. Competition curves of 16 serotonergic compounds in [3H]CP-96,501 binding also indicated a single binding site. The rank order of their binding affinities with this new radioligand showed a high degree of correlation with their affinities at the 5-HT1B receptor determined with [3H]5-HT or [125I]iodocyanopindolol. Serotonergic compounds displayed competitive inhibition of [3H]CP-96,501 binding. In the presence of 5'-guanylylimidodiphosphate [Gpp(NH)p], [3H]CP-96,501 binding was reduced, while the potency of CP-96,501 to displace [125I]iodocyanopindolol binding was also decreased. These findings are consistent with the agonist nature of CP-96,501. The results of this study suggest that [3H]CP-96,501 is a useful agonist radioligand for the 5-HT1B receptor.  相似文献   

13.
Abstract: The nature of [3H]imipramine binding to human platelets was investigated. Desipramine and 5-hydroxytryptamine (5-HT) displaced the same amount of binding and the binding was sensitive to protease treatment. The nature of pharmacological inhibition of [3H]imipramine binding was investigated in saturation experiments. Increases in K d without changes in B max were noted with the addition of 5-HT, desipramine, norzimeldine, or 5-methoxytryptoline. Reductions in B max without alterations in K D were obtained when citalopram or clomipramine was added. It is concluded that the [3H]imipramine binding site in human platelets is of protein nature and that this binding site contains the substrate recognition site for 5-HT uptake. In addition, [3H]imipramine and other 5-HT uptake inhibitors have bonds to other parts of the 5-HT uptake carrier or to the surrounding lipid membrane. This additional binding outside the substrate recognition site is not one single site but most likely represents sites that are specific for the chemical structure of each uptake inhibitor, respectively.  相似文献   

14.
Abstract: We have characterized the new potent and selective nonxanthine adenosine A2A receptor antagonist SCH 58261 as a new radioligand for receptor autoradiography. In autoradiographic studies using agonist radioligands for A2A receptors ([3H]CGS 21680) or A1 receptors ( N 6-[3H]cyclohexyladenosine), it was found that SCH 58261 is close to 800-fold selective for rat brain A2A versus A1 receptors ( K i values of 1.2 n M versus 0.8 µ M ). Moreover, receptor autoradiography showed that [3H]SCH 58261, in concentrations below 2 n M , binds only to the dopamine-rich regions of the rat brain, with a K D value of 1.4 (0.8–1.8) n M . The maximal number of binding sites was 310 fmol/mg of protein in the striatum. Below concentrations of 3 n M , the nonspecific binding was <15%. Three adenosine analogues displaced all specific binding of [3H]SCH 58261 with the following estimated K i values (n M ): 2-hex-1-ynyl-5'- N -ethylcarboxamidoadenosine, 3.9 (1.8–8.4); CGS 21680, 130 (42–405); N 6-cyclohexyladenosine, 9,985 (3,169–31,462). The binding of low concentrations of SCH 58261 was not influenced by either GTP (100 µ M ) or Mg2+ (10 m M ). The present results show that in its tritium-labeled form, SCH 58261 appears to be a good radioligand for autoradiographic studies, because it does not suffer from some of the problems encountered with the currently used agonist radioligand [3H]CGS 21680.  相似文献   

15.
Potential desensitization of brain nicotinic receptors was studied using a [3H]dopamine release assay. Nicotine-stimulated [3H]dopamine release from mouse striatal synaptosomes was concentration-dependent with an EC50 of 0.33 ± 0.13 μ M and a Hill coefficient of 1.44 ± 0.18. Desensitization by activating concentrations of nicotine had a similar EC50 and a half-time of 35 s. Concentrations of nicotine that evoked little release also induced a concentration-dependent desensitization (EC50=6.9 plusmn; 3.6 n M , t1/2= 1.6-2.0 min, n H=1.02 ± 0.01). Both types of desensitization produced a maximum 75% decrease in [3H]dopamine release. Recovery from desensitization after exposure to low or activating concentrations of nicotine was time-dependent with half-times of 6.1 min and 12.4 min, respectively. Constants determined for binding of [3H]nicotine to striatal membrane at 22°C included a K Dof 3.7 ± 0.5 n M , Bmax of 67.5 ± 2.2 fmol/mg, and Hill coefficient of 1.07 ± 0.06. Association of nicotine with membrane binding sites was biphasic with half-times of 9 s and 1.8 min. The fast rate process contributed 37% of the total reaction. Dissociation was a uniphasic process with a half-time of 1.6 min. Comparison of constants determined by the release and binding assays indicated that the [3H]-nicotine binding site could be the presynaptic receptor involved in [3H]dopamine release in mouse striatal synaptosomes.  相似文献   

16.
Abstract: High-affinity binding sites (apparent K D= 1.5 nM) for [3H]desipramine have been demonstrated and characterized in membranes prepared from rat brain. The binding of [3H]desipramine was found to be saturable, reversible, heat-sensitive, sodium-dependent, and regionally distributed among various regions of the brain. High concentrations of [3H]desipramine binding sites were found in the septum, cerebral cortex, and hypothalamus, whereas lower concentrations were found in the medulla, cerebellum, and corpus striatum. A very good correlation ( r = 0.81, P < 0.001) was observed between the potencies of a series of drugs in inhibiting high-affinity [3H]desipramine binding and their capacity to block norepinephrine uptake into synaptosomes. In 6-hydroxydopamine-lesioned rats there was a marked decrease in [3H]norepinephrine uptake and [3H]desipramine binding with no significant alterations in either [3H]serotonin uptake or [3H]imipramine binding. These results suggest that the high-affinity binding of [3HJdesipramine to rat brain membranes is pharmacologically and biochemically distinct from the high-affinity binding of [3H]imipramine, and that there is a close relationship between the high-affinity binding site for [3H]desipramine and the uptake site for norepinephrine.  相似文献   

17.
Abstract: The present study addresses the possibility that there are different cocaine-related and mazindol-related binding domains on the dopamine transporter (DAT) that show differential sensitivity to cations. The effects of Zn2+, Mg2+, Hg2+, Li+, K+, and Na+ were assessed on the binding of [3H]mazindol and [3H]WIN 35,428 to the human (h) DAT expressed in C6 glioma cells under identical conditions for intact cell and membrane assays. The latter were performed at both 0 and 21°C. Zn2+ (30–100 µ M ) stimulated binding of both radioligands to membranes, with a relatively smaller effect for [3H]mazindol; Mg2+ (0.1–100 µ M ) had no effect; Hg2+ at ∼3 µ M stimulated binding to membranes, with a relatively smaller effect for [3H]mazindol than [3H]WIN 35,428 at 0°C, and at 30–100 µ M inhibited both intact cell and membrane binding; Li+ and K+ substitution (30–100 m M ) inhibited binding to membranes more severely than to intact cells; and Na+ substitution was strongly stimulatory. With only a few exceptions, the patterns of ion effects were remarkably similar for both radioligands at both 0 and 21°C, suggesting the involvement of common binding domains on the hDAT impacted similarly by cations. Therefore, if there are different binding domains for WIN 35,428 and mazindol, these are not affected differentially by the cations studied in the present experiments, except for the stimulatory effect of Zn2+ at 0 and 21°C and Hg2+ at 0°C.  相似文献   

18.
Abstract: D,L-(E)-2-Amino-4-propyl-5-phosphono-3-pen-tenoic acid (CGP 39653). a new, high-affinity, selective NMDA receptor antagonist, interacts with rat cortical membranes in a saturable way and apparently to a single binding site, with a KD of 10.7 nM and a receptor density of 2.6 pmol/mg of protein. Displacement analysis of [3H]CGP 39653 binding shows a pharmacological profile similar to that reported for another NMDA antagonist, 3-[(±)-2-carboxypiperazin-4-yI]propyl-1-phosphonic acid (CPP). Glycine, however, is able to discriminate between the two ligands; in fact, it does not affect [3H]CPP binding but inhibits [3H]CGP 39653 binding in a biphasic way. D-Serine, another agonist at the strychnine-insensitive glycine binding site of the NMDA receptor complex, inhibits [3H]CGP 39653 binding in the same way as glycine, with a potency that correlates with its binding affinity at the glycine site. In addition, 7-chlorokynurenic acid, an antagonist at the glycine site, is able to reverse the displacement of [3H]CGP 39653 by glycine in a dose-dependent manner. Furthermore, the dissociation rate constant of [3H]CGP 39653 is enhanced in the presence of glycine, whereas the presence of NMDA receptor ligands does not modify the rate of dissociation of [3H]CGP 39653 from the receptor. These results indicate that part of the binding of the NMDA antagonist CGP 39653 can be potently modified by glycine through an allosteric mechanism, and suggest the existence of two antagonist preferring NMDA receptor subtypes that are differentially modulated through the glycine binding site.  相似文献   

19.
Abstract: [3H]Imipramine binds with high affinity to membranes from different regions of the human brain. The highest density of binding sites was observed in the hypothalamus and substantia nigra and the lowest density in the white matter and cerebellum. As found in rat brain, tricyclic antidepressant drugs are potent inhibitors of [3H]imipramine binding. Atypical antidepressants are, however, much weaker at inhibiting the specific binding. The [3H]imipramine binding site in human cortex is apparently identical to the site already described in the rat brain and in human platelets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号