首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
PKC对小鼠受精卵发育的调控作用   总被引:8,自引:0,他引:8  
为研究 TPA及 PKC的反义寡核苷酸对 1 -细胞期鼠受精卵发育的影响 ,采用免疫细胞化学法标记 PKC(α及 β亚型 ) ,并用激光扫描共聚焦显微镜测定卵内 PKC荧光强度 ;同时利用显微注射法注射 PKC的反义寡核苷酸 ,观察其对受精卵分裂的影响 . 1 0 0 μg/ L TPA对 1 -细胞期受精卵的发育具有完全抑制作用 .TPA处理 1 2 h后 ,对照组受精卵停留在 1 -细胞期 ,而未经 TPA处理的1 -细胞期卵可以分裂到 2 -细胞期 .共焦激光显示实验组与对照组相比 ,PKC(α、β亚型 )荧光强度均有下降 (P<0 .0 1 ) .显微注射 PKC antisenseα及 antisenseβ的受精卵 ,分别只有 1 4 .2 %和 3.33%的卵可以发育到 2 -细胞期 .与对照组 (注射 M2培养液 )差异显著 (P<0 .0 1 ) .结果表明 ,(1 ) TPA长期处理 1 -细胞期受精卵 ,抑制 1 -细胞期卵分裂到 2 -细胞期 ;(2 ) PKC的反义寡核苷酸 (α及β亚型 )可以抑制小鼠 1 -细胞期卵的发育  相似文献   

2.
张立凤  桂永浩  王跃祥  蒋璆  宋后燕 《中国实验动物学报》2009,17(5):321-325,F0002,I0001
目的采用吗啡啉修饰反义寡核苷酸显微注射方法下调斑马鱼Tbx1基因表达,研究斑马鱼Tbx1基因功能下调对其他两个T盒基因Tbx20和Tbx2表达的影响。方法采用吗啡啉修饰的反义寡核苷酸显微注射方法抑制斑马鱼Tbx1基因表达,分别将2.5、5、8、10 ng吗啡啉反义寡核苷酸在斑马鱼0-4细胞期注入胚胎,并构建Tbx20,骨形成蛋白2b(Bmp2b)和Tbx2反义RNA探针,进行整体原位杂交,观察Tbx1基因下调对Tbx20、Bmp2b及Tbx2表达的影响。结果Tbx1吗啡啉寡核苷酸显微注射组胚胎表现出鳃弓、耳囊、心血管系统和胸腺的发育异常。Tbx1基因下调导致Tbx20的表达出现改变,Tbx20在心脏的表达与对照组相比明显下调,神经元的表达范围明显缩小;Tbx1基因功能下调会导致Bmp2b在心脏和咽囊的表达减低,Bmp2b在后部咽囊的表达较前部咽囊减低得更为明显;Tbx1基因功能下调胚胎,Tbx2在鳃弓的表达模式发生改变,48 hpf,Tbx2在鳃弓的表达出现从后向前逐渐减低,鳃弓的表达范围较对照组明显缩小。结论Tbx1在发育过程中,会对其他T盒基因,如Tbx20和Tbx2具有激活或抑制的调控作用。Tbx1对Tbx20的作用可能是通过影响Bmp2b的途径,继发地影响Tbx20的表达。Tbx1基因功能下调,会改变Tbx2在鳃弓的表达模式。  相似文献   

3.
本文介绍了近年来植物中反义寡核苷酸的研究现状,它包括反义DNA、反义RNA和Ribozyme。反义寡核苷酸能特异地桔抗内源或外源基因的表达,这为研究某特定基因功能提供了更为有效的方法。此外也为培育抗病植株、建立植物反向筛选系统,次生代谢调控及农艺性状改良提供了可能途径。  相似文献   

4.
何萌萌  薛良义 《生物学杂志》2012,29(6):77-79,83
吗啉反义寡核苷酸属于第三代反义寡核苷酸,主要通过阻断mRNA的剪接过程来抑制目的基因的功能。吗啉反义寡核苷酸技术现已广泛应用于发育过程中基因功能的研究;鉴于吗啉反义寡核苷酸能与病毒特异mRNA结合,形成的双链物可有效阻断病毒RNA的转录,从而抑制病毒的复制,所以该技术已应用于医学研究,如治疗病毒感染、癌症、肌营养不良症和早老综合症等疾病。主要阐述了吗啉反义寡核苷酸的结构特点、作用机制、与其它反义技术的比较,以及该技术的应用与展望。  相似文献   

5.
黏性卵鱼类受精卵遇水后产生的黏性和卵壳变硬的现象严重影响着大批量显微注射操作的速度和随后的取材。研究建立了一种高效的黏性受精卵快速脱黏显微注射方法, 并利用荧光标记葡聚糖Alex-Fluor488-dextran评估了消化脱黏、直接注射和脱壳注射三种方法的技术特点和适用范围。结果表明: 在23℃, 用0.25%胰蛋白酶(pH=7.1-7.4)消化4min可获得脱黏受精卵。与直接注射和脱壳注射方法相比, 研究建立的消化脱黏方法兼具二者的优点: 在受精后5min可以开始显微操作, 无黏性, 容易进针, 胚盘清晰便于观察、注射后容易培养和取材。实验方法适用于研究与黏性卵鱼类卵子发生、卵-胚转换和早期胚胎发育密切相关基因的功能, 亦可满足追踪受精过程中核质细微变化研究的需要。  相似文献   

6.
王勇  郎刚华 《动物学报》2000,46(4):431-437
研究了青岛文昌鱼LIM类同源框基因Bblim反义寡核苷酸对文昌鱼胚胎发育的影响。根据已克隆的Bblim基因序列,设计并合成了对应于该基因同源框区的两条反义寡核苷酸链,用电脉冲方法将其导入文昌鱼受精卵。结果表明:反义寡核苷酸与随机序列寡核苷酸都不影响胚胎细胞分裂,而反义寡核苷酸能掏胚胎细胞Bblim基因的表达。还发现只存在于导入反义寡核苷酸的幼体中的两种畸形-一是在幼体的腹侧近咽部有一圆形突起的结构  相似文献   

7.
目的:观察RyR(Ryanodme受体)反义寡核苷酸(ASODN)对大鼠ASMCs(airway smooth muscle cells,气道平滑肌细胞)增殖的抑制作用及对细胞内钙离子浓度的影响.方法:采用胶原酶消化法培养大鼠ASMCs,利用LipofectamineTM2000将正义、反义RyR寡核苷酸导入大鼠ASMCs,MTS/PES法检测不同寡核苷酸对大鼠ASMCs增殖的抑制作用,RT-PCR检测大鼠ASMCs中RyR的mRNA表达,流式细胞仪测定不同寡核苷酸对细胞内钙离子浓度的影响.结果:RyR反义寡核苷酸可抑制大鼠ASMCs的增殖,降低其RyR受体mRNA的表达,并能降低兴奋后的细胞内钙离子浓度的升高.结论:RyR反义寡核苷酸可能通过降低兴奋后的细胞内钙离子浓度来抑制大鼠ASMCs的增殖.  相似文献   

8.
运用逆转录-多聚酶联反应(RT-PCR)、鞘内注射和反义技术,研究脊髓水平一氧化氮(NO)对大鼠吗啡戒断反应和脊髓及脑干NMDA1A受体mRNA(NMDA1AR mRNA)表达的影响。结果表明,鞘内注射NOS反义寡核苷酸能明显减轻吗啡戒断反应,且脑型NOS(nNOS)反义寡苷酸的作用强于内皮型NOS(eNOS)反义寡核苷酸,吗啡依赖大鼠脊髓和脑干NMDA1AR mRNA表达增加,纳洛酮催促戒断,使其进一步增加;鞘内注射nNOS反义寡核苷酸,能明显抑制吗啡戒断大鼠脊髓和脑干NMDA1AR mRNA表达的增加;eNOS反义寡核苷酸也可抑制吗戒断大鼠脊髓NMDA1AR mRNA表达的增加,但作用弱于nNOS反义寡核苷酸,对脑干NMDA1AR mRNA表达无明显影响,上述结果提示:脊髓水平NO参与介导吗啡戒断反庆和NMDA受体表达的调控。  相似文献   

9.
植物反义寡核苷酸的研究进展   总被引:1,自引:0,他引:1  
本文介绍了近年来植物中反义寡核苷酸的研究现状,它包括反义DNA、反应RNA和Ribozyme。反义寡核苷酸能特异地拮抗内源或外源基因表达,这为研究某特定基因功能提供了更有效的方法,此外也为培育抗病植株,建立植物反向筛选系统,次生代谢调控及农艺性状改良提供了可能途径。  相似文献   

10.
母源基因在动物胚胎早期发育中的功能是发育生物学研究领域的难点之一。在过去二十多年里,反义寡核苷酸介导的反向遗传学技术在多种模式生物中均得到广泛应用,在非洲爪蛙母源基因功能分析中,反义寡核苷酸介导的mRNA降解和受体转移(host transfer)技术的联合使用,确立了以转录因子VegT和Wnt信号分子家族成员Wnt11为代表的母源基因在非洲爪蛙胚胎早期图式建成中的重要功能。目前,非洲爪蛙仍然是研究脊椎动物母源基因功能最为方便的模式系统,因此,该文将在简要叙述VegT和Wnt11调控胚胎三胚层的决定与分化和背方组织者中心诱导过程中的作用的基础上,较为详细地介绍反义脱氧寡核苷酸降解母源mRNA的原理和其与受体转移技术结合使用,分析非洲爪蛙母源基因功能的详细技术流程。  相似文献   

11.
A wide variety of modified oligonucleotides have been tested as antisense agents. Each chemical modification produces a distinct profile of potency, toxicity, and specificity. Novel cationic phosphoramidate-modified antisense oligonucleotides have been developed recently that have unique and interesting properties. We compared the relative potency and specificity of a variety of established antisense oligonucleotides, including phosphorothioates (PS), 2'-O-methyl (2'OMe) RNAs, locked nucleic acids (LNAs), and neutral methoxyethyl (MEA) phosphoramidates with new cationic N,N-dimethylethylenediamine (DMED) phosphoramidate-modified antisense oligonucleotides. A series of oligonucleotides was synthesized that targeted two sites in the Xenopus laevis survivin gene and were introduced into Xenopus embryos by microinjection. Effects on survivin gene expression were examined using quantitative real-time PCR. Of the various modified oligonucleotide designs tested, LNA/PS chimeras (which showed the highest melting temperature) and DMED/phosphodiester chimeras (which showed protection of neighboring phosphate bonds) were potent in reducing gene expression. At 40 nM, overall specificity was superior for the LNA/PS-modified compounds compared with the DMED-modified oligonucleotides. However, at 400 nM, both of these compounds led to significant degradation of survivin mRNA, even when up to three mismatches were present in the heteroduplex.  相似文献   

12.
Phosphorothioate (PS) antisense oligonucleotides are currently used to inhibit many cell functions both in vivo and in vitro. However, these modified oligos provide reasonable sequence specificity only within a narrow concentration range. To overcome such a limitation we synthesized antisense oligomers, partially phosphorothioated, targeted against the human N-myc mRNA. We utilized such modified oligomers in a human neuroblastoma cell line where the N-myc gene expression was very high, and compared them to full phosphorothioate oligonucleotides. Both full PS and partial PS antisense oligos produced a maximum reduction in target mRNA after 6 h of treatment. They were able to maintain a good level of inhibition for 20 h only at high concentration. While partial PS oligos produced a dose dependent and sequence specific inhibition of N-myc mRNA, full PS molecules suffer from some disadvantages at the highest concentration used. Our results showed that partial PS molecules were capable of reducing gene expression showing a greater sequence specificity over a far broader concentration range. For this reason we conclude that partial PS antisense oligos, with respect to full PS antisense oligos, might be particularly useful for studying gene function.  相似文献   

13.
We have used microinjection of antisense oligonucleotides, monoclonal antibody, and the dominant negative Ras N-17 mutant to interfere with Ras expression and function in mouse oocytes and early embryos. Microinjection of either ras antisense oligonucleotides or anti-Ras monoclonal antibody Y13-259 did not affect normal progression of oocytes through meiosis and arrest at metaphase II. However, microinjection of fertilized eggs with constructs expressing Ras N-17 inhibited subsequent development through the two-cell stage. The inhibitory effect of Ras N-17 was overcome by simultaneous injection of a plasmid expressing an active raf oncogene, indicating that it resulted from interference with the Ras/Raf signaling pathway. In contrast to the inhibition of two-cell embryo development resulting from microinjection of pronuclear stage eggs, microinjection of late two-cell embryos with Ras N-17 expression constructs did not affect subsequent cleavages and development to morulae and blastocysts. It thus appears that the Ras/Raf signaling pathway, presumably activated by autocrine growth factor stimulation, is specifically required at the two-cell stage, which is the time of transition between maternal and embryonic gene expression in mouse embryos.  相似文献   

14.
A biological reporter gene assay was employed to determine the crucial parameters for maximizing selective targeting of a Ha-ras codon 12 point mutation (G----T) using phosphorothioate antisense oligonucleotides. We have tested a series of oligonucleotides ranging in length between 5 and 25 bases, each centered around the codon 12 point mutation. Our results indicate that selective targeting of this point mutation can be achieved with phosphorothioate antisense oligonucleotides, but this selectivity is critically dependent upon oligonucleotide length and concentration. The maximum selectivity observed in antisense experiments, 5-fold for a 17-base oligonucleotide, was closely predicted by a simple thermodynamic model that relates the fraction of mutant to wild type target bound as a function of oligonucleotide concentration and affinity. These results suggest thermodynamic analysis of oligonucleotide/target interactions is useful in predicting the specificity that can be achieved by an antisense oligonucleotide targeted to a single base point mutation.  相似文献   

15.
Previous studies showed that the cardiac sympathetic afferent reflex (CSAR) is enhanced in dogs and rats with chronic heart failure (CHF) and that central ANG II type 1 receptors (AT(1)R) are involved in this augmented reflex. The aim of this study was to determine whether intracerebroventricular administration and microinjection of antisense oligodeoxynucleotides targeted to AT(1)R mRNA would attenuate the enhanced CSAR and decrease resting renal sympathetic nerve activity (RSNA) in rats with coronary ligation-induced CHF. The CSAR was elicited by application of bradykinin to the epicardial surface of the left ventricle. Reflex responses to epicardial administration of bradykinin were enhanced in rats with CHF. The response to bradykinin was determined every 50 min after intracerebroventricular administration (lateral ventricle) or microinjection (into paraventricular nucleus) of antisense or scrambled oligonucleotides to AT(1)R mRNA. AT(1)R mRNA and protein levels in the paraventricular nucleus were significantly reduced 5 h after administration of antisense. Antisense significantly decreased resting RSNA and normalized the enhanced CSAR responses to bradykinin in rats with CHF. Scrambled oligonucleotides did not alter resting RSNA or the enhanced responses to bradykinin in rats with CHF. No significant effects were found in sham-operated rats after administration of either antisense or scrambled oligonucleotides. These results strongly suggest that central AT(1)R mRNA antisense reduces expression of AT(1)R protein and normalizes the augmentation of this excitatory sympathetic reflex and that genetic manipulation of protein expression can be used to normalize the sympathetic enhancement in CHF.  相似文献   

16.
Mouse oocytes have proven useful in experiments aimed at studying gene function. They have been used to analyze the gain-of-function acquired after microinjection of RNA transcribed in vitro from specific gene constructs, and for establishing loss-of-function mutation obtained by injecting in vitro transcribed antisense RNA and/or synthetic oligonucleotides. This article presents protocols utilized in these studies. Specifically, the acquisition of mouse oocytes and/or embryos, the genesis of the necessary DNA and/or RNA to be used, and procedures for microinjection.  相似文献   

17.
Antisense oligonucleotides are an attractive therapeutic option to modulate specific gene expression. However, not all antisense oligonucleotides are effective in inhibiting gene expression, and currently very few methods exist for selecting the few effective ones from all candidate oligonucleotides. The lack of quantitative methods to rapidly assess the efficacy of antisense oligonucleotides also contributes to the difficulty of discovering potent and specific antisense oligonucleotides. We have previously reported the development of a prediction algorithm for identifying high affinity antisense oligonucleotides based on mRNA-oligonucleotide hybridization. In this study, we report the antisense activity of these rationally selected oligonucleotides against three model target mRNAs (human lactate dehydrogenase A and B and rat gp130) in cell culture. The effectiveness of oligonucleotides was evaluated by a kinetic PCR technique, which allows quantitative evaluation of mRNA levels and thus provides a measure of antisense-mediated decreases in target mRNA, as occurs through RNase H recruitment. Antisense oligonucleotides that were predicted to have high affinity for their target proved effective in almost all cases, including tests against three different targets in two cell types with phosphodiester and phosphorothioate oligonucleotide chemistries. This approach may aid the development of antisense oligonucleotides for a variety of applications.  相似文献   

18.
Glucose is the basic source of energy for mammalian cells. The energy-independent transport of glucose down its concentration gradient is mediated by the facilitative glucose transporter family (GLUT). It has long been recognised that glucose transporter genes are overexpressed in many human cancer cells, to help provide extra energy for the rapid growth of cancer cells. In the present study, antisense oligonucleotides and plasmid-derived antisense RNA against GLUT-1 gene were synthesized and transfected into human leukemia HL-60 cells to investigate the effect of these antisense nucleic acids on tumour growth. Our results show that antisense nucleic acids inhibited the proliferation of HL-60 cells by 50-60% and the mRNA expression of GLUT-1 gene was suppressed as detected by Northern hybridization.  相似文献   

19.
Treatment with insulin or progesterone or microinjection of the transforming protein product of Ha-rasVal-12,Thr-59 (p21) is known to induce germinal vesicle breakdown in Xenopus oocytes. We have investigated the effect of p21 on S6 kinase and the H1 histone kinase of maturation-promoting factor in the presence and absence of antisense oligonucleotides against the c-mosxe proto-oncogene. Injection of p21 led to a rapid increase in S6 phosphorylation, with kinetics similar to those previously observed with insulin. Microinjection of c-mosxe antisense oligonucleotides inhibited germinal vesicle breakdown induced by p21 and totally abolished S6 kinase activation by insulin or progesterone but only partially inhibited activation by p21. However, the activation of p34cdc2 protein kinase by all three stimuli was blocked by antisense oligonucleotides. The results suggest that in oocyte maturation c-mosxe functions downstream of p21 but upstream of p34cdc2 and S6 kinase activation, although not all p21-induced events require c-mosxe.  相似文献   

20.
Several groups have reported the use of antisense oligonucleotides to inhibit c-myc gene expression and study its biological role. However high concentrations of free oligonucleotides were generally needed. To lower their concentration and stabilize the antisense effect against c-myc, oligonucleotides were covalently linked to poly(L-lysine) and administered in ternary complexes formed with heparin (100 micrograms/ml). A sequence specific growth inhibition was observed at concentrations lower than 1 microM, while oligonucleotide-poly(L-lysine) conjugates alone were inefficient. Similar results occurred with other polyanionic compounds. Inhibition of proliferation was correlated to a reduction of c-myc protein and to a transient decrease in c-myc mRNA level. However, implication of RNase H in this process could not be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号