首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Gossypol, a polyphenolic compound found in cotton plants, has many potential uses, including use as a male antifertility drug and spermicide. Gossypol affects a variety of cell processes and many of these effects may be explained by a common underlying mechanism. Here we report that gossypol promotes the formation of oxygen radicals when incubated with rat liver microsomes and human sperm suggesting that oxygen radical production may be the underlying basis of its biological activity.  相似文献   

2.
It has previously been shown that human cytomegalovirus (HCMV) can exert immunosuppressive effects, and it has been suggested that these may be mediated by monocytes, although the mechanism is unclear. We showed that infection of human monocytes with the AD169 strain of HCMV abrogates their production of interleukin 1 (IL-1) activity. This was associated with the release from infected monocytes of an inhibitor of IL-1 activity which was also released after HCMV infection of the U937 macrophage-like cell line. The inhibitor of IL-1 activity is a protein with an apparent molecular weight of ca. 95,000. This action of HCMV strain AD169 was virus specific and required infectious virus but occurred without virus replication or detectable expression of viral proteins. This effect may account, at least in part, for the previously observed immunosuppressive properties of HCMV.  相似文献   

3.
The action of 1 mM solutions of L-amino acids in 5 mM phosphate buffer, pH 7.4, on the production of hydrogen peroxide and hydroxyl radicals under the action of X-rays and heating has been studied. Hydrogen peroxide was estimated by the method of enhanced luminescence in a system luminol-paraiodophenol-peroxidase and hydroxyl radicals were determined by using the fluorescence probe coumarin-3-carboxylic acid. It was shown that amino acids can be divided by their influence on H202 formation into three groups: those that reduce the yield of H202, that do not influence it, and that increase it. A similar action of amino acids was observed upon heating, but the composition of the groups was different. All amino acids lowered the formation of hydroxyl radicals under the action of X-rays, and the most effective among them were Cys > His > Phe = Met = Trp > Tyr. Met, His and Phe lowered the amount of hydroxyl radicals by heating, Ser raised it, whereas Tyr and Pro did not change it. Thus, amino acids differently influence the formation of reactive oxygen species by the action of X-rays and heat, and some of amino acids reveal themselves as effective natural antioxidants.  相似文献   

4.
《Free radical research》2013,47(9):1103-1110
Abstract

Lipid-derived radicals and peroxides are involved in the pathogenesis of oxidative stress diseases and, although lipid peroxide production is a required reaction between a lipid radical and molecular oxygen, a useful lipid radical detection method has remained tentative. Also, the effect of oxygen concentration on lipid peroxide production must be considered because of the hypoxic conditions in cancer and ischemic regions. In this study, the focus was on nitroxide reactivity, which allows spin trapping with carbon-centred radicals via radical–radical reactions and fluorophore quenching through interactions with nitroxide's unpaired electron. Thus, the aim here was to demonstrate a useful detection method for lipid-derived radicals as well as to clarify the effects of oxygen concentration on lipid peroxide production using profluorescent nitroxide. This latter compound reacted with lipid-derived radicals in a manner inversely dependent on oxygen concentration, resulting in fluorescence due to alkoxyamine formation and, conversely, lipid peroxide concentrations decreased with lower oxygen in the reaction system. Furthermore, nitroxide inhibited lipid peroxide production and stopped oxygen consumption in the same solution. These results suggested that the novel application of profluorescent nitroxide could directly and sensitively detect lipid-derived radicals and that radical and peroxide production were dependent on oxygen concentration.  相似文献   

5.
Studies on the autoxidation of dopamine: interaction with ascorbate   总被引:2,自引:0,他引:2  
An oxygen electrode was used to monitor the reaction between dopamine (DA, 1-20 mM) and oxygen at pH 7.4 and 37 degrees C, in both the presence and absence of ascorbate (10 mM). The selected concentrations approximate levels within DA neurons. Diethylenetriaminepentaacetic acid (DTPA, 0.1 mM) was used to suppress catalysis by trace metals in the reagents. Separate experiments with catalase showed that oxygen consumption could be equated with the formation of hydrogen peroxide. Depending upon the experimental conditions, ascorbate acted either as an antioxidant, suppressing oxygen consumption (H2O2 production) to 6-8% of the expected rate, or as a prooxidant, amplifying oxygen consumption by 640%. The antioxidant action is consistent with the scavenging of superoxide radicals by ascorbate. The prooxidant action is probably the result of redox cycling of a pre-melanin oxidation product derived from DA. Analyses conducted by high-performance liquid chromatography with electrochemical detection revealed formation of a product with a very low oxidation potential; the product was not 6-hydroxydopamine. These observations may be relevant to concepts of toxicity mediated by DA within neuronal systems.  相似文献   

6.
The anti-inflammatory effect of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with inhibition of cyclooxygenase (COX), the rate-limiting enzyme responsible for the synthesis of prostaglandins. Since oxygen free radicals can act as second cellular messengers, especially to modulate the metabolism of arachidonic acid and the prostaglandin tract, it seems plausible that antioxidants might affect the production of prostaglandin by activated cells. This research is focused on the effect of the antioxidant N-acetylcysteine (NAC) on the inhibition of prostaglandin E(2) formation in activated monocytes by specific and non-specific COX inhibitors. We found that lipopolysaccharide-induced prostaglandin E(2) formation was significantly reduced by rofecoxib and by diclofenac, two NSAIDs. Addition of NAC to each of these drugs enhanced the effect of the NSAIDs. These results suggest that one might expect either a potentiation of the anti-inflammatory effect of COX inhibitors by their simultaneous administration with NAC, or obtaining the same anti-inflammatory at lower drug levels.  相似文献   

7.
The concentration of substrate expressed as hypoxanthine capable of reacting with xanthine oxidase to release superoxide free radicals (O2-) was measured in control and Dupuytren''s contracture palmar fascia. In Dupuytren''s contracture palmar fascia the concentration of hypoxanthine was six times that of control and was greatest in "nodular" areas. Xanthine oxidase activity was also detected in Dupuytren''s contracture palmar fascia. These results suggest a greater potential for hypoxanthine-xanthine oxidase generated oxygen free radical formation in Dupuytren''s contracture than in control palmar fascia. Production of free radicals may be an important factor in the pathogenesis of Dupuytren''s contracture. The benefit of allopurinol in the management of Dupuytren''s contracture and other fibrotic conditions may thus be explained, as allopurinol binds to xanthine oxidase and prevents release of free radicals.  相似文献   

8.
Summary

A new mechanism of oxygen radical formation in dopaminergic neurons is proposed, based on the oxidative mechanism of tyrosine hydroxylase. The cofactor (6R,6S)-5,6,7,8-tetrahydrobiopterin can rearrange in solution which allows an autoxidation reaction producing O2.-, H2O2 and HO.. The combination of tyrosine hydroxylase and the cofactor produces more oxygen radicals than does the autoxidation of the cofactor. This production of oxygen radicals could be damaging to dopaminergic neurons. In the presence of tyrosine, the enzyme produces less radicals than it does in the absence of tyrosine. Mechanisms are proposed for the generation of reactive oxygen species during the autoxidation of the cofactor and during enzymatic catalysis. The generation, by tyrosine hydroxylase, of very small amounts of oxygen radicals over the period of 65 years could contribute to the oxidative stress that causes Parkinson's disease.  相似文献   

9.
Phagocytosis of quartz dust by alveolar macrophages and monocytes of rabbits and human monocytes and granulocytes is accompanied by stimulation of substrateless recovery of nitroblue tetrazolium to formazan. It reflects activation of oxygen-dependent bactericidal phagocyte system and generation of active oxygen forms. Less fibrogenic and cytotoxic dust of aluminium oxide increased formazan formation insignificantly. Extracellular generation of superoxide radicals and hydrogen peroxide was not discovered during phagocytosis of quartz by alveolar macrophages and monocytes. Incubation of human granulocytes with silica caused, on contrary, considerable increase in exogenous generation of superoxide radicals and hydrogen peroxide. Less fibrogenic dust of aluminium oxide under the conditions had no effect on generation of hydrogen peroxide and induced acute decrease in generation of superoxide radicals by granulocytes. The obtained results testify both to the essential part of active oxygen form during pathologic processes with pneumoconiosis, and also to a great similarity among biochemical processes, characterizing interaction of alveolar macrophages and monocytes with mineral dust.  相似文献   

10.
Certain anticancer agents form free radical intermediates during enzymatic activation. Recent studies have indicated that free radicals generated from adriamycin and mitomycin C may play a critical role in their toxicity to human tumor cells. Furthermore, it is becoming increasingly apparent that reduced drug activation and or enhanced detoxification of reactive oxygen species may be related to the resistance to these anticancer agents by certain tumor cell lines. The purposes of this review are to summarize the evidence pointing toward the significance of free radicals formation in drug toxicity and to evaluate the role of decreased free radical formation and enhanced free radical scavenging and detoxification in the development of anticancer drug resistance by a spectrum of tumor cell types. Studies failing to support the participation of oxyradicals in the cytotoxicity and resistance of adriamycin are also discussed.  相似文献   

11.
The effect of hydralazine on the oxygen free radical production was studied in whole cultured murine liver fibroblasts and mitochondrial and microsomal fractions of the cells by ESR spin trapping with DMPO and measurement of Tiron semiquinone formation. Hydralazine itself was found to generate free radicals in phosphate buffer and especially in Eagle's Minimal Essential Medium. Most of the adduct of the spin trap DMPO was due to its reaction with hydralazine-induced hydroxyl radical. Moreover, this compound stimulated free radical formation in fibroblasts. These data suggest that hydralazine alters the cellular free radical metabolism which may have implications for the biological activity of this drug.  相似文献   

12.
Prevention of lens protein glycation by taurine   总被引:5,自引:0,他引:5  
Modifications in lens protein structure and function due to nonenzymic glycosylation and oxidation have been suggested to play a significant role in the pathogenesis of sugar and senile cataracts. The glycation reaction involves an initial Schiff base formation between the protein NH2 groups and the carbonyl group of a reducing sugar. The Schiff base then undergoes several structural modifications, via some oxidative reactions involving oxygen free radicals. Hence certain endogenous tissue components that may inhibit the formation of protein-sugar adduct formation may have a sparing effect against the cataractogenic effects of sugars and reactive oxygen. The eye lens is endowed with significant concentration of taurine, a sulfonated amino acid, and its precursor hypotaurine. It is hypothesized that taurine and hypotaurine may have this purported function of protecting the lens proteins against glycation and subsequent denaturation, in addition to their other functions. The results presented herein suggest that these compounds are indeed capable of protecting glycation competitively by forming Schiff bases with sugar carbonyls, and thereby preventing the glycation of lens proteins per se. In addition, they appear to prevent oxidative damage by scavenging hydroxyl radicals. This was apparent by their preventive effect against the formation of the thiobarbituric acid reactive material generated from deoxy-ribose, when the later was exposed to hydroxyl radicals generated by the action of xanthine oxidase on hypoxanthine in presence of iron.  相似文献   

13.
In vitro natural killer (NK) activity expressed by blood mononuclear cells from patients with chronic granulomatous disease of childhood (CGD) was equivalent to that expressed by cells from normal, healthy volunteers. Because neutrophils and monocytes from these same donors exhibited extremely depressed oxidative functions, our data could be interpreted to show that a) NK cells derived from a unique and separate cellular lineage unaffected by the disease-related oxidative defect, or b) the in vitro cytolytic mechanism(s) of NK cells were not dependent on oxygen metabolites. These hypotheses were examined by using as NK effector cells large granular lymphocytes (LGL) from healthy donors whose monocytes and neutrophils had normal oxidative functions. Such functions were measured in the nitroblue tetrazolium dye reduction assay, which is a qualitative measurement of superoxide anion production; by reduction of ferric cytochrome c, a more specific and quantitative measurement of superoxide anion production; and in the luminol-enhanced chemiluminescence assay, an extremely sensitive measure of several reactive oxygen radicals, including superoxide anion, hydroxyl radical, and singlet oxygen. Whereas monocytes and neutrophils from healthy donors were readily stimulated with zymosan or phorbol myristate acetate (PMA) in each of these assays. LGL produced no detectable amounts of oxygen metabolites when co-incubated either with K562 erythroleukemia cells, PMA, E. coli endotoxin, or the calcium ionophore A23187. Thus, because NK cell activity is normal in CGD patients with major oxidative defects, and because no reactive oxygen metabolites could be detected in LGL that simultaneously exhibited potent NK activity, we conclude that in vitro NK activity by human mononuclear cells involves a lytic mechanism(s) independent of oxygen metabolites.  相似文献   

14.
Free radicals and diabetes   总被引:38,自引:0,他引:38  
The role of active oxygen species in diabetes is discussed in this review. Type I diabetes is caused by destruction of the pancreatic beta cells responsible for producing insulin. In humans, the diabetogenic process appears to be caused by immune destruction of the beta cells; part of this process is apparently mediated by white cell production of active oxygen species. Diabetes can be produced in animals by the drugs alloxan and streptozotocin; the mechanism of action of these two drugs is different, but both result in the production of active oxygen species. Scavengers of oxygen radicals are effective in preventing diabetes in these animal models. Not only are oxygen radicals involved in the cause of diabetes, they also appear to play a role in some of the complications seen in long-term treatment of diabetes. Changes in antioxidants in the diabetic state and their consequences are discussed.  相似文献   

15.
It is widely accepted that oxygen radicals and other activated oxygen species are potent mediators or modulators of acute and chronic inflammation. They are common products of cellular metabolism, where their concentrations are controlled by different protective mechanisms such as superoxide dismutase, catalase etc. In addition to their destructive effects on various macromolecules, oxygen radicals or their products are beneficial e.g., in killing bacteria. Oxygen radicals are also closely related to arachidonic acid metabolism, prostanoids (cyclo-oxygenase pathway) and leukotrienes (lipoxygenase pathway) as well as to lipid peroxidation in general. Also, the classical mediators of inflammation, histamine and bradykinin, may be connected with the release of oxygen radicals. In addition to the earlier described inhibition of formation of prostanoids, non-steroidal anti-inflammatory drugs can inhibit production of free radicals or scavenge those already formed. Antirheumatic penicillamine and allopurinol used in the treatment of gout also act on oxygen radicals. New anti-inflammatory compounds with antioxidant properties will be developed in the near future.  相似文献   

16.
The deposition of beta-amyloid in the brain is the key pathogenetic event in Alzheimer's disease. Among the various mechanisms proposed to explain the neurotoxicity of beta-amyloid deposits, a new one, recently identified in our and other laboratories, suggests that beta-amyloid is indirectly neurotoxic by activating microglia to produce toxic inflammatory mediators such as cytokines, nitric oxide, and oxygen free radicals. Three findings presented here support this mechanism, showing that beta-amyloid peptides (25-35), (1-39), and (1-42) activated the classical NADPH oxidase in rat primary culture of microglial cells and human phagocytes: 1) The exposure of the cells to beta-amyloid peptides stimulates the production of reactive oxygen intermediates; 2) the stimulation is associated with the assembly of the cytosolic components of NADPH oxidase on the plasma membrane, the process that corresponds to the activation of the enzyme; 3) neutrophils and monocytes of chronic granulomatous disease patients do not respond to beta-amyloid peptides with the stimulation of reactive oxygen intermediate production. Data are also presented that the activation of NADPH oxidase requires that beta-amyloid peptides be in fibrillary state, is inhibited by inhibitors of tyrosine kinases or phosphatidylinositol 3-kinase and by dibutyryl cyclic AMP, and is potentiated by interferon-gamma or tumor necrosis factor-alpha.  相似文献   

17.
《Free radical research》2013,47(1):751-757
The prevention of cancer by agents in our diet has led to the concept that oxygen radicals are a necessary component of a variety of human cancers including breast, colon and prostatic cancer. These cancers are putatively promoted by estradiol, bile acids and androgens. Epidemiological studies have shown that these cancers are suppressed in vegetarian populations. Vegetable components that may be responsible for this cancer prevention are Vitamin A, retinoids and protease inhibitors (PIS). These agents have been shown to suppress the formation of hydrogen peroxide in promoter-induced neutrophils. They also have been shown to block two-stage carcinogenesis and breast cancer when fed to animals. PIS also suppress experimentally-induced colon cancer and spontaneous liver cancer. Moreover, a new series of cancer-preventive agents, Sarcophytols (isolated by Fujiki and co-workers), are capable of suppressing two-stage carcinogenesis, breast and colon cancers in rodents when given in low concentrations. Sarcophytols were also active suppressors of H2O2 formation of 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced neutrophils. These observations point to an essential role of oxygen radicals in carcinogenesis. Suppression of the oxygen radical response of neutrophils in relation to cancer preventive agents is a facile assay of these important substances. The mechanism of action of oxygen radicals in promoting carcinogenesis is a multiple one. including: (1) activation of oncogenes, (2) modification of DNA bases, and (3) formation of single-strand breaks leading to poly(ADP)ribose polymerase activation.  相似文献   

18.
The formation of reactive oxygen intermediates (ROI) during redox cycling of newly synthesized potential antitumor 2,5-bis (1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives has been studied by assaying the production of ROI (superoxide, hydroxyl radical, and hydrogen peroxide) by xanthine oxidase in the presence of BABQ derivatives. At low concentrations (< 10 microM) some BABQ derivatives turned out to inhibit the production of superoxide and hydroxyl radicals by xanthine oxidase, while the effect on the xanthine-oxidase-induced production of hydrogen peroxide was much less pronounced. Induction of DNA strand breaks by reactive oxygen species generated by xanthine oxidase was also inhibited by BABQ derivatives. The DNA damage was comparable to the amount of hydroxyl radicals produced. The inhibiting effect on hydroxyl radical production can be explained as a consequence of the lowered level of superoxide, which disrupts the Haber-Weiss reaction sequence. The inhibitory effect of BABQ derivatives on superoxide formation correlated with their one-electron reduction potentials: BABQ derivatives with a high reduction potential scavenge superoxide anion radicals produced by xanthine oxidase, leading to reduced BABQ species and production of hydrogen peroxide from reoxidation of reduced BABQ. This study, using a unique series of BABQ derivatives with an extended range of reduction potentials, demonstrates that the formation of superoxide and hydroxyl radicals by bioreductively activated antitumor quinones can in principle be uncoupled from alkylating activity.  相似文献   

19.
Gel filtration and SDS-PAGE separation of hemoglobin (Hb) irradiated under argon or N2O show formation of covalent-aggregated Hb molecules. The production of covalent bonds is attributed mainly to the action of hydroxyl radicals, because addition of ethanol, a scavenger of these radicals, suppresses this reaction to a great extent. The oxidized heme iron forming metHb or hemichromes is found in all the separated fractions of irradiated Hb. It is also found that the radiation-modified Hb molecules exhibit a decrease of co-operative binding of oxygen.  相似文献   

20.
Studies using animal models of stroke have demonstrated that free radicals are highly reactive molecules generated predominantly during cellular respiration and normal metabolism. Imbalance between cellular production of free radicals and the ability of cells to defend against them is referred to as oxidative stress. After ischemic brain damage introduced by ischemic stroke or reperfusion, production of reactive oxygen species may increase, sometimes drastically, leading to tissue damage via several different cellular molecular pathways. The damage can become more widespread due to weakened cellular antioxidant defense systems after ischemic stroke. These experimental findings have important implications for the treatment of human cerebral ischemia. Agents directed at eliminating oxygen radicals must be administered before, or in the early stages of, reperfusion after ischemia. The therapeutic window seems to be narrow and limited to, at most, a few hours. Future research may clarify the current hypothesis that the accuracy of gene expression could account for the recovery of cellular function after ischemic stroke. This may open the window to the future use of drug combinations that may be rationally administered sequentially. If the phenomenon of ischemic tolerance plays a role in this concept is still a matter of debate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号