首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microglial interaction with extracellular beta-amyloid fibrils (fAbeta) is mediated through an ensemble of cell surface receptors, including the B-class scavenger receptor CD36, the alpha(6)beta(1)-integrin, and the integrin-associated protein/CD47. The binding of fAbeta to this receptor complex has been shown to drive a tyrosine kinase-based signaling cascade leading to production of reactive oxygen species and stimulation of phagocytic activity; however, little is known about the intracellular signaling cascades governing the microglial response to fAbeta. This study reports a direct mechanistic link between the fAbeta cell surface receptor complex and downstream signaling events responsible for NADPH oxidase activation and phagosome formation. The Vav guanine nucleotide exchange factor is tyrosine-phosphorylated in response to fAbeta peptides as a result of the engagement of the microglia fAbeta cell surface receptor complex. Co-immunoprecipitation studies demonstrate an Abeta-dependent association between Vav and both Lyn and Syk kinases. The downstream target of Vav, the small GTPase Rac1, is GTP-loaded in an Abeta-dependent manner. Rac1 is both an essential component of the NADPH oxidase and a critical regulator of microglial phagocytosis. The direct role of Vav in fAbeta-stimulated intracellular signaling cascades was established using primary microglia obtained from Vav(-/-) mice. Stimulation of Vav(-/-) microglia with fAbeta failed to generate NADPH oxidase-derived reactive oxygen species and displayed a dramatically attenuated phagocytic response. These findings directly link Vav phosphorylation to the Abeta-receptor complex and demonstrate that Vav activity is required for fAbeta-stimulated intracellular signaling events upstream of reactive oxygen species production and phagosome formation.  相似文献   

2.
Activation of D1-like receptors (D1 and/or D5) induces antioxidant responses; however, the mechanism(s) involved in their antioxidant actions are not known. We hypothesized that stimulation of the D5 receptor inhibits NADPH oxidase activity, and thus the production of reactive oxygen species (ROS). We investigated this issue in D5 receptor-deficient (D5-/-) and wild-type (D5+/+) mice. NADPH oxidase protein expression (gp91(phox), p47(phox), and Nox 4) and activity in kidney and brain, as well as plasma thiobarbituric acid-reactive substances (TBARS) were higher in D5-/- than in D5+/+ mice. Furthermore, apocynin, an NADPH oxidase inhibitor, normalized blood pressure, renal NADPH oxidase activity, and plasma TBARS in D5-/- mice. In HEK-293 cells that heterologously expressed human D5 receptor, its agonist fenoldopam decreased NADPH oxidase activity, expression of one of its subunits (gp91(phox)), and ROS production. The inhibitory effect of the D5 receptor activation on NADPH oxidase activity was independent of cAMP/PKA but was partially dependent on phospholipase D2. The ability of D5 receptor stimulation to decrease ROS production may explain, in part, the antihypertensive action of D5 receptor activation.  相似文献   

3.
Alzheimer's disease is a major illness of dementia characterized by the presence of amyloid plaques, neurofibrillary tangles, and extensive neuronal apoptosis. However, the mechanism behind neuronal apoptosis in the Alzheimer's-diseased brain is poorly understood. This study underlines the importance of neutral sphingomyelinase in fibrillar Abeta peptide-induced apoptosis and cell death in human primary neurons. Abeta1-42 peptides induced the activation of sphingomyelinases and the production of ceramide in neurons. Interestingly, neutral (N-SMase), but not acidic (A-SMase), sphingomyelinase was involved in Abeta1-42-mediated neuronal apoptosis and cell death. Abeta1-42-induced production of ceramide was redox-sensitive, as reactive oxygen species were involved in the activation of N-SMase but not A-SMase. Abeta1-42 peptides induced the NADPH oxidase-mediated production of superoxide radicals in neurons that was involved in the activation of N-SMase, but not A-SMase, via hydrogen peroxide. Consistently, superoxide radicals generated by hypoxanthine and xanthine oxidase also induced the activation of N-SMase, but not A-SMase, through a catalase-sensitive pathway. Furthermore, antisense knockdown of p22phox, a subunit of NADPH oxidase, inhibited Abeta1-42-induced neuronal apoptosis and cell death. These studies suggest that fibrillar Abeta1-42 peptides induce neuronal apoptosis through the NADPH oxidase-superoxide-hydrogen peroxide-NS-Mase-ceramide pathway.  相似文献   

4.
NADPH oxidase has been considered a major source of reactive oxygen species in phagocytic and non-phagocytic cells. Apoptosis linked to oxidative stress has been implicated in pancreatitis. Recently, we demonstrated that NADPH oxidase subunits Nox1, p27phox, p47phox, and p67phox are constitutively expressed in pancreatic acinar cells, which are activated by cerulein, a cholecystokinin analogue. Cerulein induces an acute and edematous form of pancreatitis. We investigated whether inhibition of NADPH oxidase by diphenyleneiodonium suppresses the production of reactive oxygen species and apoptosis by determining viable cell numbers, DNA fragmentation, TUNEL staining, caspase-3 activity, and the expression of apoptosis-inducing factor in pancreatic acinar AR42J cells stimulated with cerulein. Inhibition on NADPH oxidase by diphenyleneiodonium was assessed by the alterations in NADPH oxidase activity and translocation of the cytosolic subunits p67phox and p47phox to the membrane. Intracellular Ca2+ level was monitored to investigate the relationship between NADPH oxidase and Ca2+ in cells stimulated with cerulein. As a result, cerulein induced the activation of NADPH, increased production of reactive oxygen species, and apoptotic indices determined by the expression of apoptosis-inducing factor, caspase-3 activation, TUNEL staining, DNA fragmentation, and cell viability. Treatment with DPI inhibited cerulein-induced activation of NADPH oxidase, the production of reactive oxygen species, and apoptosis, but not the increase of intracellular Ca2+ levels in pancreatic acinar cells. These results demonstrate that the cerulein-induced increase in intracellular Ca2+ level may be an upstream event of NADPH oxidase activation. Diphenyleneiodonium, an NADPH oxidase inhibitor, inhibits the expression of apoptosis-inducing factor and caspase-3 activation, and thus apoptosis in pancreatic acinar cells.  相似文献   

5.
To extend our previous report, which showed the production of the reactive oxygen species (ROS) after the CD40 ligation in the B cells, we further examined the possible mechanisms for ROS production and the involvement of CD40-induced ROS in p38 activation. Our research shows that the stimulation of WEHI 231 B lymphomas with anti-CD40 induced ROS production and p38 activation. An antioxidant N-acetyl-L-cysteine or an inhibitor for NADPH oxidase blocked both of these, but the inhibitors for 5-lipoxygenase did not. We also show that the treatment of cells with inhibitors for the phosphatidylinositol 3-kinase (PI3-K) interfered with the CD40-induced ROS production and p38 activation. In addition, when overexpressed with a dominant negative form of either Rac1 (N17Rac1) or the TNFR-associated factor (TRAF) 3, the WEHI 231 B cells did not show a full response to the CD40 stimulation to produce ROS. Molecular association studies further revealed that the TRAF3 association with p40(phox), a cytosolic subunit of NADPH oxidase and p85 (a subunit of PI3-K), may possibly be responsible for the production of ROS by CD40 stimulation in WEHI 231 B cells. Collectively, these data suggest that the CD40-induced ROS production by NADPH oxidase in WEHI 231 requires the role of TRAF3, as well as activities of PI3-K and Rac1.  相似文献   

6.
Superoxide (O(2)(-)) production by nonphagocytes, similar to phagocytes, is by activation of the NADPH oxidase multicomponent system. Although activation of neutrophil NADPH oxidase involves extensive serine phosphorylation of p47(phox), the role of tyrosine phosphorylation of p47(phox) in NADPH oxidase-dependent O(2)(-) production is unclear. We have shown recently that hyperoxia-induced NADPH oxidase activation in human pulmonary artery endothelial cells (HPAECs) is regulated by mitogen-activated protein kinase signal transduction. Here we provided evidence on the role of nonreceptor tyrosine kinase, Src, in hyperoxia-induced tyrosine phosphorylation of p47(phox) and NADPH oxidase activation in HPAECs. Exposure of HPAECs to hyperoxia for 1 h resulted in increased O(2)(-) and reactive oxygen species (ROS) production and enhanced tyrosine phosphorylation of Src as determined by Western blotting with phospho-Src antibodies. Pretreatment of HPAECs with the Src kinase inhibitor PP2 (1 mum) or transient expression of a dominant-negative mutant of Src attenuated hyperoxia-induced tyrosine phosphorylation of Src and ROS production. Furthermore, exposure of cells to hyperoxia enhanced tyrosine phosphorylation of p47(phox) and its translocation to cell peripheries that were attenuated by PP2. In vitro, Src phosphorylated recombinant p47(phox) in a time-dependent manner. Src immunoprecipitates of cell lysates from control cells revealed the presence of immunodetectable p47(phox) and p67(phox), suggesting the association of oxidase components with Src under basal conditions. Moreover, exposure of HPAECs to hyperoxia for 1 h enhanced the association of p47(phox), but not p67(phox), with Src. These results indicated that Src-dependent tyrosine phosphorylation of p47(phox) regulates hyperoxia-induced NADPH oxidase activation and ROS production in HPAECs.  相似文献   

7.
8.
Professional phagocytes (neutrophils, eosinophils, monocytes and macrophages) possess an enzymatic complex, the NADPH oxidase, which is able to catalyze the one-electron reduction of molecular oxygen to superoxide, O2-. The NADPH oxidase is dormant in non-activated phagocytes. It is suddenly activated upon exposure of phagocytes to the appropriate stimuli and thereby contributes to the microbicidal activity of these cells. Oxidase activation in phagocytes involves the assembly, in the plasma membrane, of membrane-bound and cytosolic components of the oxidase complex, which were diassembled in the resting state. One of the membrane-bound components in resting phagocytes has been identified as a low-potential b-type cytochrome, a heterodimer composed of two subunits of 22-kDa and 91-kDa. The link between NADPH and cytochrome b is probably a flavoprotein whose subcellular localization in resting phagocytes remains to be determined. Genetic defects in the cytochrome b subunits and in the cytosolic factors have been shown to be the molecular basis of chronic granulomatous disease, a group of inherited disorders in the host defense, characterized by severe, recurrent bacterial and fungal infections in which phagocytic cells fail to generate O2- upon stimulation. The present review is focused on recent data concerning the signaling pathway which leads to oxidase activation, including specific receptors, the production of second messengers, the organization of the oxidase complex and the molecular defects responsible for granulomatous disease.  相似文献   

9.
We previously reported that the role of reactive oxygen intermediates (ROIs) in NF-kappaB activation by proinflammatory cytokines was cell specific. However, the sources for ROIs in various cell types are yet to be determined and might include 5-lipoxygenase (5-LOX) and NADPH oxidase. 5-LOX and 5-LOX activating protein (FLAP) are coexpressed in lymphoid cells but not in monocytic or epithelial cells. Stimulation of lymphoid cells with interleukin-1beta (IL-1beta) led to ROI production and NF-kappaB activation, which could both be blocked by antioxidants or FLAP inhibitors, confirming that 5-LOX was the source of ROIs and was required for NF-kappaB activation in these cells. IL-1beta stimulation of epithelial cells did not generate any ROIs and NF-kappaB induction was not influenced by 5-LOX inhibitors. However, reintroduction of a functional 5-LOX system in these cells allowed ROI production and 5-LOX-dependent NF-kappaB activation. In monocytic cells, IL-1beta treatment led to a production of ROIs which is independent of the 5-LOX enzyme but requires the NADPH oxidase activity. This pathway involves the Rac1 and Cdc42 GTPases, two enzymes which are not required for NF-kappaB activation by IL-1beta in epithelial cells. In conclusion, three different cell-specific pathways lead to NF-kappaB activation by IL-1beta: a pathway dependent on ROI production by 5-LOX in lymphoid cells, an ROI- and 5-LOX-independent pathway in epithelial cells, and a pathway requiring ROI production by NADPH oxidase in monocytic cells.  相似文献   

10.
In this work, we report that type IV collagen, mainly via alpha2beta1-integrin ligation, was able to induce cyclin expression and G1/S transition in a colic adenocarcinoma cell line (Caco-2) cultured without soluble growth factors or fetal bovine serum. This process involved Erk 1/2 activation and the production of reactive oxygen species (ROS) by a membrane-bound NADPH oxidase. Data presented here show that NADPH oxidase-dependent production of ROS increased following alpha2beta1-integrin ligation with type IV collagen or with a specific monoclonal antibody (Gi9 mAb). NADPH oxidase activation and, therefore, the production of ROS were shown to be involved in the increase of alpha2beta1-integrin plasma membrane expression, p38 MAPK phosphorylation, cyclin expression, and G1/S transition. We thus identified in this work a new integrin-signaling pathway in colon tumor cells involved in cell cycle regulation by the extracellular matrix.  相似文献   

11.
Hyperhomocysteinaemia is an independent risk factor for cardiovascular diseases due to atherosclerosis. The development of atherosclerosis involves reactive oxygen species-induced oxidative stress in vascular cells. Our previous study [Wang and O (2001) Biochem. J. 357, 233-240] demonstrated that Hcy (homocysteine) treatment caused a significant elevation of intracellular superoxide anion, leading to increased expression of chemokine receptor in monocytes. NADPH oxidase is primarily responsible for superoxide anion production in monocytes. In the present study, we investigated the molecular mechanism of Hcy-induced superoxide anion production in monocytes. Hcy treatment (20-100 microM) caused an activation of NADPH oxidase and an increase in the superoxide anion level in monocytes (THP-1, a human monocytic cell line). Transfection of cells with p47phox siRNA (small interfering RNA) abolished Hcy-induced superoxide anion production, indicating the involvement of NADPH oxidase. Hcy treatment resulted in phosphorylation and subsequently membrane translocation of p47phox and p67phox subunits leading to NADPH oxidase activation. Pretreatment of cells with PKC (protein kinase C) inhibitors Ro-32-0432 (bisindolylmaleimide XI hydrochloride) (selective for PKCalpha, PKCbeta and PKCgamma) abolished Hcy-induced phosphorylation of p47phox and p67phox subunits in monocytes. Transfection of cells with antisense PKCbeta oligonucleotide, but not antisense PKCalpha oligonucleotide, completely blocked Hcy-induced phosphorylation of p47phox and p67phox subunits as well as superoxide anion production. Pretreatment of cells with LY333531, a PKCbeta inhibitor, abolished Hcy-induced superoxide anion production. Taken together, these results indicate that Hcy-stimulated superoxide anion production in monocytes is regulated through PKC-dependent phosphorylation of p47phox and p67phox subunits of NADPH oxidase. Increased superoxide anion production via NADPH oxidase may play an important role in Hcy-induced inflammatory response during atherogenesis.  相似文献   

12.
During the "respiratory burst," the NADPH oxidase complex of phagocytes produces reactive oxygen species that kill bacteria and other invaders (Babior, B. M. (1999) Blood 93, 1464-1476). Electron efflux through NADPH oxidase is electrogenic (Henderson, L. M., Chappell, J. B., and Jones, O. T. G. (1987) Biochem. J. 246, 325-329) and is compensated by H(+) efflux through proton channels that reportedly are contained within the gp91(phox) subunit of NADPH oxidase. To test whether gp91(phox) functions as a proton channel, we studied H(+) currents in granulocytes from X-linked chronic granulomatous disease patients lacking gp91(phox) (X-CGD), the human myelocytic PLB-985 cell line, PLB-985 cells in which gp91(phox) was knocked out by gene targeting (PLB(KO)), and PLB-985 knockout cells re-transfected with gp91(phox) (PLB(91)). H(+) currents in unstimulated PLB(KO) cells had amplitude and gating kinetics similar to PLB(91) cells. Furthermore, stimulation with the phorbol ester phorbol 12-myristate 13-acetate increased H(+) currents to a similar extent in X-CGD, PLB(KO), and PLB(91) cells. Thus, gp91(phox) is not the proton channel in unstimulated phagocytes and does not directly mediate the increase of proton conductance during the respiratory burst. Changes in H(+) channel gating kinetics during NADPH oxidase activity are likely crucial to the activation of H(+) flux during the respiratory burst.  相似文献   

13.
Until recently, the production of reactive oxygen species by NADPH oxidase has been considered only in the context of the oxidative damage to pathogens inside the phagosome. However, homologues of phagocytic NADPH oxidase have been found in almost all cell types, where they produce hydrogen peroxide and thereby regulate the initial intracellular stages of MAP kinase cascades. In the present work, the activation of two MAP kinase cascades, p38 and Erk1/2, during phagocytosis has been studied. It was found that phagocytosis activates both cascades. The activation of Erk1/2 is dependent, and the activation of p38 is not dependent, on the activity of NADPH oxidase. Therefore, the activation of MAP kinases in phagocytes during phagocytosis occurs by a mechanism similar to that operating in nonphagocytic cells, indicating the universality of the function of NADPH oxidases in different cell types.  相似文献   

14.
Recent studies have shown that oligomeric amyloid-β (oAβ) peptide can potentially activate microglia in addition to inducing more potent neurotoxicity compared with fibrillar Aβ (fAβ); however, its mechanisms of action remain unclear. This study was designed to investigate the possible mechanisms involved in the microglial activation induced by oAβ in BV-2 microglial cells. The results showed that oAβ induced activated properties of microglia, including higher proliferative capacity as well as increased production of reactive oxygen species, nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). NADPH oxidase inhibitors [diphenylene iodonium (DPI) and apocynin (4-hydroxy-3-methoxy-acetophenone)] prevented the microglial activation induced by oAβ, suggesting that NADPH oxidase activation was involved in microglial activation. In addition, TNF-α and IL-1β, which are massively released by activated microglia, significantly induced the activation of microglia, thereby resulting in the production of NO and proliferation of microglia, respectively. These effects could be inhibited by diphenylene iodonium and apocynin, indicating a self-cycle regulated by NADPH oxidase in microglial activation in response to oAβ. In conclusion, microglial activation induced by oAβ is possibly mediated by NADPH oxidase, suggesting that oAβ, which is normally considered a neurotoxin, may also lead to indirect neuronal damage through the pro-inflammation activation of microglia in Alzheimer’s disease and that NADPH oxidase could be a potential target to prevent oAβ-induced inflammatory neurodegeneration.  相似文献   

15.
Although arsenic is a human carcinogen, the molecular mechanisms of its action remain to be understood. The present study reports that exposure to arsenic induced actin filament reorganization, resulting in lamellipodia and filopodia structures through the activation of Cdc42 in SVEC4-10 endothelial cells. It was also found that arsenic induced the formation of the superoxide anion (O2*) in SVEC4-10 cells. Immunoprecipitation and Western blotting analysis demonstrated that arsenic stimulation induced serine phosphorylation of p47phox, a key component of NADPH oxidase, indicating that arsenic induces O2* formation through NADPH oxidase activation. Inhibition of arsenic-induced actin filament reorganization by either overexpression of a dominant negative Cdc42 or pretreatment of an actin filament stabilizing regent, jasplakinolide, abrogated arsenic-induced NADPH oxidase activation, showing that the activation of NADPH oxidase was regulated by Cdc42-mediated actin filament reorganization. This study also showed that overexpression of a dominant negative Rac1 was sufficient to abolish arsenic-induced O2*- production, implying that Rac1 activities are required for Cdc42-mediated NADPH oxidase activation in response to arsenic stimulation. Furthermore, arsenic stimulation induced cell migration, which can be inhibited by the inactivation of either Cdc42 or NADPH oxidase. Taken together, the results indicate that arsenic is able to activate NADPH oxidase through Cdc42-mediated actin filament reorganization, leading to the induction of an increase in cell migration in SVEC4-10 endothelial cells.  相似文献   

16.
The extracellular matrix (ECM) facilitates pancreatic cancer cells survival, which is of central importance for pancreatic adenocarcinoma that is highly fibrotic. Here, we show that reactive oxygen species (ROS) mediate the prosurvival effect of ECM in human pancreatic cancer cells. Fibronectin and laminin stimulated ROS production and NADPH oxidase activation in pancreatic cancer cells. Both pharmacological and molecular approaches show that fibronectin stimulated ROS production through activation of NADPH oxidase and NADPH oxidase-independent pathways and that 5-lipoxygenase (5-LO) mediates both these pathways. Analyses of the mechanisms of ROS production by ECM proteins and growth factors indicate that activation of NADPH oxidase (Nox4) is a common mechanism employed both by ECM proteins and growth factors to increase ROS in pancreatic cancer cells. We also found that Nox4 is present in human pancreatic adenocarcinoma tissues and that these tissues display membrane NADPH oxidase activity. ECM proteins and growth factors activate NADPH oxidase through different mechanisms; in contrast to ECM proteins, growth factors activate NADPH oxidase through 5-LO-independent mechanisms. Inhibition of 5-LO or NADPH oxidase with pharmacological inhibitors of these enzymes and with Nox4 or 5-LO antisense oligonucleotides markedly stimulated apoptosis in cancer cells cultured on fibronectin. Our results indicate that ROS generation via 5-LO and downstream NADPH oxidase mediates the prosurvival effect of ECM in pancreatic cancer cells. These mechanisms may play an important role in pancreatic cancer resistance to treatments and thus represent novel therapeutic targets.  相似文献   

17.
18.
The innate immune response to bacterial infections includes neutrophil chemotaxis and activation, but regulation of inflammation is less well understood. Formyl peptides, byproducts of bacterial metabolism as well as mitochondrial protein biosynthesis, induce neutrophil chemotaxis, the generation of reactive oxygen intermediates (ROI), and the production of the neutrophil chemoattractant, IL-8. Patients with chronic granulomatous disease (CGD) exhibit deficient generation of ROI and hydrogen peroxide and susceptibility to bacterial and fungal pathogens, with associated dysregulated inflammation and widespread granuloma formation. We show in this study that in CGD cells, fMLF induces a 2- to 4-fold increase in IL-8 production and a sustained IL-8 mRNA response compared with normal neutrophils. Moreover, normal neutrophils treated with catalase (H(2)O(2) scavenger) or diphenyleneiodonium chloride (NADPH oxidase inhibitor) exhibit IL-8 responses comparable to those of CGD neutrophils. Addition of hydrogen peroxide or an H(2)O(2)-generating system suppresses the sustained IL-8 mRNA and increased protein production observed in CGD neutrophils. These results indicate that effectors downstream of the activation of NADPH oxidase negatively regulate IL-8 mRNA in normal neutrophils, and their absence in CGD cells results in prolonged IL-8 mRNA elevation and enhanced IL-8 levels. ROI may play a critical role in regulating inflammation through this mechanism.  相似文献   

19.
The plasma membrane NADPH oxidase and its regulatory role in the production of reactive oxygen species (ROS) in tobacco (Nicotiana tabacum L. )-tobacco mosaic virus (TMV) interaction was examined by using tobacco cv. "Samsun NN" (incompatible with TMV, containing the N gene for resistance to TMV) and tobacco cv. "3002" (compatible with TMV) as experimental materials. Plasma membrane (PM) vesicles were isolated from leaves of tobacco by a biphasic aqueous system. The membrane preparations were sealed, highly purified and largely in right-side-out orientation as detected by marker enzyme assays and latency studies of the PM marker, vanadate-sensitive ATPase with non-ionic detergent Triton X-100. The oxidase activity was assayed by the rate of SOD-sensitive Cyt c reduction in PM system. The oxidase activity could be increased about 80% when adding 0.01% Triton X-100 in the reactive system. This result showed that the binding-site of NADPH was on the cytosolic side of the plasma membrane and the production of O2- is on the apoplastic side. DPI (diphenylene iedonium), a specific inhibitor of the NADPH oxidase in neutrophils, also inhibited the NADPH oxidase activity in tobacco. Furthermore, the oxidase activity increased in incompatible interaction, but not in compatible interaction. The role of NADPH oxidase in the production of reactive oxygen species and stimulation of hypersensitive reaction were discussed.  相似文献   

20.
Taurine has been shown to prevent cardiomyocyte apoptosis. This study investigated the effects of taurine on NADPH oxidase and calpain activation in mediating apoptosis in cardiomyocytes. Apoptosis was induced by norepinephrine (NE) in cultured adult rat ventricular cardiomyocytes. NE (5 microM) increased NADPH oxidase activation and reactive oxygen species (ROS) production and induced apoptosis. These effects of NE on cardiomyocytes were diminished by taurine (0.5 mg/kg) but not beta-alanine. Inhibition of gp91(phox)-NADPH oxidase or ROS production protected cardiomyocytes from apoptosis. NE also induced calpain-1 activation in cardiomyocytes. This effect of NE on calpain was abrogated by gp91(phox)-NADPH oxidase inhibition or ROS scavengers and was mimicked by H(2)O(2) (25 microM) in cardiomyocytes. Pharmacological inhibitors of calpain or overexpression of calpastatin, a specific calpain inhibitor, blocked calpain activation and prevented cardiomyocyte apoptosis during NE stimulation. Furthermore, taurine treatment inhibited NE- or H(2)O(2)-induced calpain activation in cardiomyocytes. In conclusion, NADPH oxidase induces calpain activation, leading to apoptosis in NE-induced cardiomyocytes. Taurine inhibits NADPH oxidase and calpain activation. Thus, inhibition of NADPH oxidase-mediated calpain activation may be an important mechanism for taurine's antiapoptotic action in cardiomyocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号