首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-enzymatic glycation of reactive amino groups in model proteins increased the rate of free radical production at physiologic pH by nearly fifty-fold over non-glycated protein. Superoxide generation was confirmed by electron paramagnetic resonance measurements with the spin-trap phenyl-t-butyl-nitrone. Both Schiff base and Amadori glycation products were found to generate free radicals in a ratio of 1:1.5. Free radicals generated by glycated protein increased peroxidation of membranes of linoleic/arachidonic acid vesicles nearly 2-fold over control, suggesting that the increased glycation of proteins in diabetes may accelerate vascular wall lipid oxidative modification.  相似文献   

2.
The subcellular location of taurine, and its precursor, hypotaurine, within human neutrophils has been examined by nitrogen cavitation, Percoll-gradient centrifugation and HPLC analysis. Hypotaurine and taurine were found to reside within the cytosolic compartment of the cell. The ratio of taurine to hypotaurine is approx 50:1. The cytosolic concentration of taurine is approx. 50 mM. The concentration of hypotaurine decreased by 80% when resting neutrophils were converted into actively respiring cells by exposure to opsonized zymosan. These results prompted in vitro studies on the antioxidant properties of hypotaurine. We demonstrate by EPR spectroscopy that hypotaurine competes with 5,5'-dimethyl-1-pyrroline N-oxide) (DMPO) for hydroxyl radicals, and that it is the sulfinyl group which confers hydroxyl radical scavenging activity to it. Following its exposure to hydroxyl radicals, two oxidation products were isolated by HPLC, one of which has been identified as taurine. The biological roles of hypotaurine and taurine in the neutrophil are discussed with respect to their antioxidant properties and subcellular location within the cell.  相似文献   

3.
The concentration of taurine is high in the lens. However, its function therein remains unknown. Studies from other tissues suggest that in addition to several other modes of action, it acts as an antioxidant. We therefore hypothesize that taurine may be a part of the antioxidant defense mechanisms involved in protecting the lens against oxidative stress and consequent cataract formation. In these studies, the protective effect of taurine was examined using lens culture system with menadione as an oxidant. Inclusion of this compound in the incubation medium was found to have several adverse effects on the lens, such as a decrease in its ability to accumulate rubidium against a concentration gradient and fall in the levels of glutathione, ATP and an increase in water insoluble proteins. All these deleterious effects were attenuated significantly by addition of physiological amounts of taurine to the menadione-containing medium.  相似文献   

4.
Post-translational modifications in lens crystallins due to glycation and oxidation have been suggested to play a significant role in the development of cataracts associated with aging and diabetes. We have previously shown that alpha-keto acids, like pyruvate, can protect the lens against oxidation. We hypothesize that they can also prevent the glycation of proteins competitively by forming a Schiff base between their free keto groups and the free -NH(2) groups of protein as well as subsequently inhibit the oxidative conversion of the initial glycation product to advanced glycation end products (AGE). The purpose of this study was to investigate these possibilities using purified crystallins. The crystallins isolated from bovine lenses were incubated with fructose in the absence and presence of pyruvate. The post-incubation mixtures were analyzed for fructose binding to the crystallins, AGE formation, and the generation of high molecular weight (HMW) proteins. In parallel experiments, the keto acid was replaced by catalase, superoxide dismutase (SOD), or diethylene triaminepentaacetic acid (DTPA). This was done to ascertain oxidative mode of pyruvate effects. Interestingly, the glycation and consequent formation of AGE from alpha-crystallin was more pronounced than from beta-, and gamma-crystallins. The changes in the crystallins brought about by incubation with fructose were prevented by pyruvate. Catalase, SOD, and DTPA were also effective. The results suggest that pyruvate prevents against fructose-mediated changes by inhibiting the initial glycation reaction as well as the conversion of the initial glycated product to AGE. Hence it is effective in early as well as late phases of the reactions associated with the formation of HMW crystallin aggregates.  相似文献   

5.
We examined the preventive activity of naturally occurring antioxidants against three reactive oxygen species using a protein degradation assay. The hydroxyl, hypochlorite, and peroxynitrite radicals are typical reactive oxygen species generated in human body. Previously, we found that hydrophobic botanical antioxidants exhibited specific antioxidant activity against hydroxyl radicals, whereas anserine and carnosine mixture, purified from chicken extract and vitamin C, exhibited antioxidant activities against hypochlorite and peroxynitrite radicals respectively. Since ethanol, used as a solvent in the experiments, also showed an antioxidant action against the hydroxyl radical, we re-assessed antioxidant activities using aqueous solutions of botanical antioxidants. Among the seven hydrophobic antioxidants examined, ferulic acid exhibited the strongest antioxidant activity against the hydroxyl radical. An antioxidant preparation of anserine-carnosine mixture, vitamin C, and ferulic acid prevented oxidative stress by reactive oxygen species. Loss of deformability in human erythrocytes and protein degradation caused by reactive oxygen species were completely inhibited.  相似文献   

6.
Glycation initiated changes in tissue proteins, which are triggered by the Schiff base formation between the sugar carbonyl and the protein -NH2, have been suggested to play an important role in the development of diabetes-related pathological changes such as the formation of cataracts. While the initial reaction takes place by the interaction of >C=O of the parent sugars with the -NH2 of proteins, reactive oxygen species (ROS) dependent generation of more reactive dicarbonyl derivatives from the oxidation of sugars also plays a significant role in these changes, altering the structural as well as functional properties of proteins. The purpose of this study was to examine whether the activities of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), catalase and superoxide dismutase (SOD) could be affected by the high levels of fructose prevalent in diabetic lenses. Incubation of the enzymes with this sugar led to a significant loss of their activities. GAPDH was inactivated within a day. This was followed by the inactivation of catalase (3-4 days) and SOD (6 days). The loss of the activities was prevented significantly by incorporation of pyruvate in the incubation mixture. The protective effect is ascribable to its ability to competitively inhibit glycation as well as to its ROS scavenging activity. Hence, it could play a significant role in the maintenance of lens physiology and cataract prevention.  相似文献   

7.
Glycation initiated changes in tissue proteins, which are triggered by the Schiff base formation between the sugar carbonyl and the protein -NH2, have been suggested to play an important role in the development of diabetes-related pathological changes such as the formation of cataracts. While the initial reaction takes place by the interaction of >C=O of the parent sugars with the -NH2 of proteins, reactive oxygen species (ROS) dependent generation of more reactive dicarbonyl derivatives from the oxidation of sugars also plays a significant role in these changes, altering the structural as well as functional properties of proteins. The purpose of this study was to examine whether the activities of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), catalase and superoxide dismutase (SOD) could be affected by the high levels of fructose prevalent in diabetic lenses. Incubation of the enzymes with this sugar led to a significant loss of their activities. GAPDH was inactivated within a day. This was followed by the inactivation of catalase (3–4 days) and SOD (6 days). The loss of the activities was prevented significantly by incorporation of pyruvate in the incubation mixture. The protective effect is ascribable to its ability to competitively inhibit glycation as well as to its ROS scavenging activity. Hence, it could play a significant role in the maintenance of lens physiology and cataract prevention.  相似文献   

8.
Free radicals and reactive oxygen or nitrogen species generated during oxidative stress and as by-products of normal cellular metabolism may damage all types of biological molecules. Proteins are major initial targets in cell. Reactions of a variety of free radicals and reactive oxygen and nitrogen species with proteins can lead to oxidative modifications of proteins such as protein hydroperoxides formation, hydroxylation of aromatic groups and aliphatic amino acid side chains, nitration of aromatic amino acid residues, oxidation of sulfhydryl groups, oxidation of methionine residues, conversion of some amino acid residues into carbonyl groups, cleavage of the polypeptide chain and formation of cross-linking bonds. Such modifications of proteins leading to loss of their function (enzymatic activity), accumulation and inhibition of their degradation have been observed in several human diseases, aging, cell differentiation and apoptosis. Formation of specific protein oxidation products may be used as biomarkers of oxidative stress.  相似文献   

9.
Nonenzymatic glycation of proteins has been implicated in various diabetic complications and age-related disorders. Proteins undergo glycation at the N-terminus or at the epsilon-amino group of lysine residues. Glycation of proteins proceeds through the stages of Schiff base formation, conversion to ketoamine product and advanced glycation end products. Gramicidin S, which has two ornithine residues, was used as a model system to study the various stages of glycation of proteins using electrospray ionization mass spectrometry. The proximity of two ornithine residues in the peptide favors the glycation reaction. Formation of advanced glycation end products and diglycation on ornithine residues in gramicidin S were observed. The formation of Schiff base adduct is reversible, whereas the Amadori rearrangement to the ketoamine product is irreversible. Nucleophilic amines and hydrazines can deglycate the Schiff base adduct of glucose with peptides and proteins. Hydroxylamine, isonicotinic acid hydrazide and aminoguanidine effectively removed glucose from the Schiff base adduct of gramicidin S. Hydroxylamine is more effective in deglycating the adduct compared with isonicotinic acid hydrazide and aminoguanidine. The observation that the hydrazines are effective in deglycating the Schiff base adduct even in the presence of high concentrations of glucose, may have a possible therapeutic application in preventing complications of diabetes mellitus. Hydrazines may be used to distinguish between the Schiff base and the ketoamine products formed at the initial stages of glycation.  相似文献   

10.
11.
Free radicals and other reactive oxygen species (ROS) are generated by all aerobic cells and are widely believed to play a significant role in aging as well as a number of degenerative or pathological diseases. This study compared the free radical-scavenging properties and antioxidant activity of YCP, a polysaccharide from the mycelium of a marine filamentous fungus Phoma herbarum YS 4108 and its two chemically sulfated derivatives YCP-S1 and YCP-S2. Sulfation, which masks hydroxyl groups of YCP polysaccharide molecule, could introduce new antioxidant activity, such as superoxide and hydroxyl radicals scavenging activity, metal chelating action, lipid peroxidation and linoleic acid oxidation inhibition capability. Furthermore, sulfated YCP was more potent than YCP at protecting erythrocytes against oxidative damage hemolysis. The current data suggest for the first time that sulfation of polysaccharide significantly increases its antioxidant activity and the chemical modification of polysaccharides may allow the preparation of derivatives with new properties and a variety of applications.  相似文献   

12.
《Free radical research》2013,47(11):1300-1310
Abstract

Hypotaurine and cysteine sulfinic acid are known to be readily oxidized to the respective sulfonates, taurine and cysteic acid, by several oxidative agents that may be present in biological systems. In this work, the relevance of both the carbonate anion and nitrogen dioxide radicals in the oxidation of hypotaurine and cysteine sulfinic acid has been explored by the peroxidase activity of Cu,Zn superoxide dismutase (SOD) and by pulse radiolysis. The extent of sulfinate oxidation induced by the system SOD/H2O2 in the presence of bicarbonate (CO3?– generation), or nitrite (?NO2 generation) has been evaluated. Hypotaurine is efficiently oxidized by the carbonate radical anion generated by the peroxidase activity of Cu,Zn SOD. Pulse radiolysis studies have shown that the carbonate radical anion reacts with hypotaurine more rapidly (k = 1.1 × 109 M?1s?1) than nitrogen dioxide (k = 1.6 × 107 M?1s?1). Regarding cysteine sulfinic acid, it is less reactive with the carbonate radical anion (k = 5.5 × 107 M?1s?1) than hypotaurine. It has also been observed that the one-electron transfer oxidation of both sulfinates by the radicals is accompanied by the generation of transient sulfonyl radicals (RSO2?). Considering that the carbonate radical anion could be formed in vivo at high level from bicarbonate, this radical can be included in the oxidants capable of performing the last metabolic step of taurine biosynthesis. Moreover, the protective effect exerted by hypotaurine and cysteine sulfinate on the carbonate radical anion-mediated tyrosine dimerization indicates that both sulfinates have scavenging activity towards the carbonate radical anion. However, the formation of transient reactive intermediates during sulfinate oxidation by carbonate anion and nitrogen dioxide radical may at the same time promote oxidative reactions.  相似文献   

13.
The formation of advanced glycation endproducts (AGEs) from glucose in vitro requires both oxygen and a transition metal ion, usually copper. These elements combine to produce reactive oxygen species (ROS) which degrade glucose to AGE-forming compounds. We measured the ability of Cu(2+) to accelerate ROS formation, and the effect of added lens proteins on these reactions. Increasing levels of Cu(2+) accelerated the formation of superoxide anion with glucose and fructosyl-lysine, but the addition of 2.0 mg/ml calf lens proteins completely blocked superoxide formation up to 100 microM of added Cu(2+). Lens proteins, however, had no effect on superoxide generated by the hypoxanthine/xanthine oxidase system. The oxidation of ascorbic acid was increased 170-fold by the addition of 10 microM Cu(2+), but was also completely prevented by added lens proteins. Hydroxyl radical formation, as measured by the conversion of benzoate to salicylate, was increased to 30 nmoles/ml after 18 h by the addition of 100 microM Cu(2+) and 2.5 mM H2O2. This increase was also blocked by the addition of lens proteins. However, hydroxyl radical formation, as estimated by the crosslinking and fragmentation of lens proteins, was observed in the presence of 100 microM Cu(2+), likely at the sites of Cu(2+) binding. Since the ratio of lens proteins to Cu(2+) in human lens is at least 1000-fold higher than those used here, the data argue that Cu(2+) in the lens would be tightly bound to protein, preventing ROS-mediated AGE formation from glucose in vivo.  相似文献   

14.
Mannitol Protects against Oxidation by Hydroxyl Radicals   总被引:27,自引:2,他引:25       下载免费PDF全文
Hydroxyl radicals may be responsible for oxidative damage during drought or chilling stress. We have shown that the presence of mannitol in chloroplasts can protect plants against oxidative damage by hydroxyl radicals (B. Shen, R.G. Jensen, H.J. Bohnert [1997] Plant Physiol 113: 1177-1183). Here we identify one of the target enzymes that may be protected by mannitol. Isolated thylakoids in the presence of physiological concentrations of Fe2+ generated hydroxyl radicals that were detected by the conversion of phenylalanine into tyrosine. The activity of phosphoribulokinase (PRK), a thiol-regulated enzyme of the Calvin cycle, was reduced by 65% in illuminated thylakoids producing hydroxyl radicals. Mannitol (125 mM) and sodium formate (15 mM), both hydroxyl radical scavengers, and catalase (3000 units mL-1) prevented loss of PRK activity. In contrast, superoxide dismutase (300 units mL-1) and glycine betaine (125 mM) were not effective in protecting PRK against oxidative inactivation. Ribulose-1,5-bisphosphate carboxylase/oxygenase activity was not affected by hydroxyl radicals. We suggest that the stress-protective role of mannitol may be to shield susceptible thiol-regulated enzymes like PRK plus thioredoxin, ferredoxin, and glutathione from inactivation by hydroxyl radicals in plants.  相似文献   

15.
Methylglyoxal (MG) can react with amino acids of proteins to induce protein glycation and consequently the formation of advanced glycation end-products (AGEs). Previous studies reported that ferulic acid (FA) prevented glucose-, fructose-, and ribose-induced protein glycation. In this study, FA (0.1–1 mM) inhibited MG-induced protein glycation and oxidative protein damage in bovine serum albumin (BSA). Furthermore, FA (0.0125–0.2 mM) protected against lysine/MG-mediated oxidative DNA damage, thereby inhibiting superoxide anion and hydroxyl radical generation during lysine and MG reaction. In addition, FA did not have the ability to trap MG. Finally, FA (0.1 mM) pretreatment attenuated MG-induced decrease in cell viability and prevented MG-induced cell apoptosis in pancreatic β-cells. The results suggest that FA is capable of protecting β-cells from MG-induced cell damage during diabetes.  相似文献   

16.
Non-enzymatic glycosylation (glycation) is a spontaneous set of reactions between reducing sugars and free amino groups in proteins or other biomolecules leading to the formation of fluorescent and coloured compounds known as advanced glycation end products (AGEs). AGEs cause structural changes of key proteins in humans, and therefore they are related with a number of physiological processes and diseases such as aging, atherosclerosis, cataract, arthritis, Alzheimer's disease. Two main strategies have been employed to prevent the formation of AGEs: a) low carbohydrate diet and b) pharmacological intervention. The latter includes treatment with reactive compounds which might be either sugar competitors (type A), carbonyl traps (type B) or free radical trapping antioxidants (type C). Acetylsalicylic acid (ASA, aspirin) is a good example of sugar competitor capable of inhibiting glycation by acetylating epsilon-amino groups of lysine residues in proteins. Taking into consideration the inhibiting effect of ASA on glycation we designed to study the antiglycation activity of other acetyl group-containing compounds (acetamides and acetyl esters) using the lysine-rich protein histone H1 as a model. The glycation of the histone H1 was carried out by either fructose or a complex mixture of glycating agents obtained from E. coli and monitored by fluorescent spectroscopy, SDS-PAGE and measurement of the content of reactive carbonyl groups in the target protein. Our results showed that the inhibitory effect of phenyl acetate, acetanilide, 4-acetamidophenylacetic acid and isopropenyl acetate was comparable to that of ASA. Based on the obtained results we conclude that these compounds act as free radical scavengers protecting proteins from the damaging effect of reactive oxygen species produced during the formation of AGEs.  相似文献   

17.
Antibodies directed against advanced glycation products formed during Maillard reaction have been generated and characterized. These antibodies reacted specifically with advanced glycation products in common among proteins incubated with glucose, but not early-stage compounds such as a Schiff base adduct and Amadori rearrangement products. Incubation of bovine serum albumin with glucose caused a time-related increase in immunoreactivity and a concomitant increase in fluorescence intensity. These antibodies may serve as a useful tool to elucidate pathophysiological roles of advanced Maillard reaction in diabetic complications and aging processes.  相似文献   

18.
Generation of hydrogen peroxide and hydroxyl radicals in L-amino acid solutions in phosphate buffer, pH 7.4, under X-ray irradiation was determined by enhanced chemiluminescence in the luminol-p-iodophenol-peroxidase system and using the fluorescent probe coumarin-3-carboxylic acid, respectively. Amino acids are divided into three groups according to their effect on the hydrogen peroxide formation under irradiation: those decreasing yield of H2O2, having no effect, and increasing its yield. All studied amino acids at 1 mM concentration decrease the yield of hydroxyl radicals in solution under X-ray irradiation. However, the highest effect is observed in the order: Cys > His > Phe = Met = Trp > Tyr. At Cys, Tyr, and His concentrations close to physiological, the yield of hydroxyl radicals decreases significantly. Immunoenzyme analysis using monoclonal antibodies to 8-oxoguanine (8-oxo-7,8-dihydroguanine) was applied to study the effect of amino acids with the most pronounced antioxidant properties (Cys, Met, Tyr, Trp, Phe, His, Lys, Arg, Pro) on 8-oxoguanine formation in vitro under X-ray irradiation. It is shown that amino acids decrease the content of 8-oxoguanine in DNA. These amino acids within DNA-binding proteins may protect intracellular DNA against oxidative damage caused by formation of reactive oxygen species in conditions of moderate oxidative stress.  相似文献   

19.
There is growing evidence that proteins are early targets of reactive oxygen species, and that the altered proteins can in turn damage other biomolecules. In this study, we measured the effects of proteins on the oxidation of liposome phospholipid membranes, and the formation of protein hydroperoxides in serum and in cultured cells exposed to radiation-generated hydroxyl free radicals. Lysozyme, which did not affect liposome stability, gave 50% protection when present at 0.3 mg/ml, and virtually completely prevented lipid oxidation at 10 mg/ml. When human blood serum was irradiated, lipids were oxidized only after the destruction of ascorbate. In contrast, peroxidation of proteins proceeded immediately. Protein hydroperoxides were also generated without a lag period in hybrid mouse myeloma cells, while at the same time no lipid peroxides formed. These results are consistent with the theory that, under physiological conditions, lipid membranes are likely to be effectively protected from randomly-generated hydroxyl radicals by proteins, and that protein peroxyl radicals and hydroperoxides may constitute an important hazard to biological systems under oxidative stress.  相似文献   

20.
Redox imbalance     
Substantial evidence implies that redox imbalance attributable to an overproduction of reactive oxygen species or reactive nitrogen species that overwhelm the protective defense mechanism of cells contributes to all forms of Parkinsons disease. Factors such as dopamine, neuromelanin, and transition metals may, under certain circumstances, contribute to the formation of oxygen species such as H2O2, superoxide radicals, and hydroxyl radicals and react with reactive nitrogen species such as nitric oxide or peroxinitrite. Mitochodrial dysfunction and excitotoxicity may be a cause and a result of oxidative stress. Consequences of this redox imbalance are lipid peroxidation, oxidation of proteins, DNA damage, and interference of reactive oxygen species with signal transduction pathways. These consequences become even more harmful when genetic variations impair the normal degradation of altered proteins. Therefore, therapeutic strategies must aim at reducing free-radical formation and scavenging free-radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号