首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
李祎  许艳婷 《微生物学通报》2019,46(5):1196-1203
微藻广泛分布于自然界,其易培养,生长快且应用价值高,普遍用于生物燃料、医学原料、优质食品源及畜牧养殖业等。近年来,通过对光生物反应器改造设计、高产藻株筛选、代谢通路基因改造等方法实现微藻产量的提高,而在微藻处理的下游过程的研究与创新不足,特别是微藻采收已经成为其产业发展的瓶颈。本文综述了絮凝法在微藻采收中的作用,重点讨论了絮凝微生物在微藻采收中的作用,并对絮凝微生物对微藻的絮凝机制进行广泛探讨,为絮凝微生物采收微藻提供理论依据。  相似文献   

2.
微藻作为一种有巨大应用前景的生物质资源,在环境保护、废水处理和清洁能源等领域广泛应用。但是微藻采收成本过高严重限制了微藻产业的发展,因此,寻找一种经济、环保、高效的采收技术对促进微藻产业的发展具有十分重要的意义。本文分析了常用微藻采收技术的优缺点,包括离心分离、沉降、过滤、浮选和絮凝技术,重点论述絮凝技术在微藻采收方面的研究进展,以期为微藻高效、低成本采收方案的选择及其研究方向提供参考。  相似文献   

3.
微藻的生产过程可以实现能源生产、废水净化和CO2减排的高度耦合,在能源危机日益紧张、环境问题日趋严峻的今天,微藻的开发利用具有重要的研究价值和经济、社会效益。制约微藻产业化的瓶颈问题是采收成本过高,一种经济合理的采收方法不但可以大大降低生产成本,还可以奠定微藻产业化发展的基础。本文对目前应用较为普遍的微藻采收方法进行了介绍,重点阐述了絮凝法采收微藻,以期对微藻的低成本高效率采收以及产业化发展提供帮助。  相似文献   

4.
微藻采收是微藻产业化应用过程中亟需解决的一个技术难题。在目前的微藻采收方法中,絮凝采收是常用且有效的方法之一。本文总结和分析了近年来有关利用化学絮凝、生物絮凝、物理絮凝等方法进行微藻采收的相关报道,概述了这些絮凝方法的原理和操作方法,并比较了这些絮凝方法在絮凝效率、成本、生物安全性等方面的优缺点,以期为进一步研究和应用絮凝法采收微藻提供理论基础和技术参考。  相似文献   

5.
藻类胞外聚合物(extracellular polymeric substances, EPS)是一种复杂的高分子聚合物,主要由多糖、蛋白质等物质组成。由于EPS具有独特的结构、大的比表面积及含有大量官能团等物理-化学特性,使其在污水处理及微藻生物质的絮凝回收等方面都有着非常重要的作用。本文系统介绍了EPS的组成及特性,重点论述了影响藻类EPS产生的生物因素及非生物因素,如光照、营养盐、pH及温度等,并对EPS在污水处理及生物絮凝方面的应用进行了总结。对藻类EPS产生机制及机理的深入研究有望为微藻提供更广阔的应用前景。  相似文献   

6.
三种絮凝剂对球等鞭金藻絮凝作用   总被引:1,自引:0,他引:1  
高伟  李倩  李林  贾兴军  崔志松  周文俊  郑立 《生态学杂志》2012,31(10):2631-2634
以3种絮凝剂对等鞭金藻的采收效果及其对藻体的影响为研究目标,以分光光度法、重量法以及显微镜观测为主要研究方法,测定了絮凝剂对藻细胞的絮凝效率、藻体总脂含量的影响以及藻细胞形态变化。结果表明:氯化铁和明矾的絮凝速率最快(<4h);氯化铁浓度≥20mg.L-1,明矾浓度≥80mg.L-1时,可以絮凝沉淀90%以上藻体;比较藻体的损伤程度和总脂产率发现,明矾浓度为80mg.L-1时,藻体总脂产率的最高,达29.9%,并且对细胞伤害最小;可采用80mg.L-1明矾作为絮凝剂对球等鞭金藻进行采收,为生物柴油制备生产提供基础原料。  相似文献   

7.
污水资源化、二氧化碳减排及微藻生物柴油是当前能源与环境领域的前沿课题。以下围绕污水及烟道气资源化培养产油微藻的培养体系,就藻种、营养条件、培养方式、培养环境及微藻生物反应器等影响产油微藻培养的因素研究进展进行了综述。在综述的基础上提出:由于微藻具有特殊营养方式,通过藻种筛选、微藻营养条件和培养环境的优化以及高效光生物反应器和生产工艺等的创新,可利用污水进行产油微藻生产,以获得生物柴油等高附加值产品,实现微藻生物能源、污水资源化处理和CO2减排三者高度耦合的产油微藻生产体系,从而减少微藻培养费用及污水处理费用,因此,该体系具有重要的环境、社会、经济价值和商业化应用前景。  相似文献   

8.
微藻因生长迅速、光合作用效率高、分布范围广和油脂积累能力强等优势,已被认为是生产生物柴油的理想原料。诱变育种可改善野生型微藻生长缓慢、油脂含量低和环境适应能力弱等缺陷,提高了以微藻生产生物柴油的可行性。概述了物理、化学和基因工程三类诱变育种方法的研究现状,介绍了低场核磁共振和荧光激活细胞分选两种富油脂微藻筛选技术以及一种测定诱变藻株致死率的方法,讨论了三种诱变方法的应用前景,供相关研究人员参考。  相似文献   

9.
微藻废水生物处理技术研究进展   总被引:1,自引:0,他引:1  
微藻因生长速率快、细胞脂质含量高及具有生物隔离二氧化碳能力,已作为新一代生物质能源受到广泛关注.然而,投入大量淡水资源并需在生长期间持续提供营养物质已成为规模化培育微藻的主要障碍.将微藻培育系统与废水处理相结合是经济可行的污水资源化方案.基于微藻生长期间对氮磷等营养物质的利用机制,本文综述了微藻在各类废水生物处理过程中的应用情况,着重分析了其对废水中有机与无机化合物、重金属以及病原体的去除或抑制能力.同时,考察了废水初始营养物浓度、光照、温度、pH与盐度以及气体交换量等环境因素对微藻生长代谢的影响.此外,结合微藻规模化应用所面临的问题,对微藻废水处理技术的应用前景及发展方向进行了展望,旨在为水生态系统的建设与管理提供参考.  相似文献   

10.
微藻规模化培养研究进展   总被引:2,自引:0,他引:2  
微藻作为地球上最古老的物种之一,其诞生可追溯到35亿多年前。微藻的种类十分丰富,形态也多种多样。微藻一般都含有叶绿体,因此可进行光合作用,有研究表明微藻固定CO_2的能力是陆地植物的10倍。微藻以其丰富的代谢产物及独特的生理特性在可再生能源、生物医药、食品工业和环境监测等方面有着广泛的应用。然而如何在控制成本的前提下对微藻进行规模化培养成为困扰微藻应用行业的一大难题。为此,本文将从微藻的生化特点及其在各领域中的应用、微藻的规模化培养和微藻的采收3个方面对微藻的规模化培养近十年的研究进展进行综述,旨在为微藻高效培养、低成本采收的研究开发提供参考。  相似文献   

11.
Harvesting of microalgae by bio-flocculation   总被引:2,自引:0,他引:2  
The high-energy input for harvesting biomass makes current commercial microalgal biodiesel production economically unfeasible. A novel harvesting method is presented as a cost and energy efficient alternative: the bio-flocculation by using one flocculating microalga to concentrate the non-flocculating microalga of interest. Three flocculating microalgae, tested for harvesting of microalgae from different habitats, improved the sedimentation rate of the accompanying microalga and increased the recovery of biomass. The advantages of this method are that no addition of chemical flocculants is required and that similar cultivation conditions can be used for the flocculating microalgae as for the microalgae of interest that accumulate lipids. This method is as easy and effective as chemical flocculation which is applied at industrial scale, however in contrast it is sustainable and cost-effective as no costs are involved for pre-treatment of the biomass for oil extraction and for pre-treatment of the medium before it can be re-used.  相似文献   

12.
With increasing concerns regarding energy and environment, algae biofuel is generating considerable interest around the world. Nevertheless, the harvesting step required before downstream biomass processing is a major bottleneck. Commonly employed methods include addition of chemicals or use of mechanical equipment that increase dramatically the biofuel production cost. This review deals with naturally occurring processes that can help offset those costs by causing microalgae flocculation. Interaction theories are briefly reviewed. In addition, operational parameters such as pH, irradiance, nutrients, dissolved oxygen, and temperature effect on microalgae flocculation are evaluated. Finally, microalgae flocculation is also considered from an ecological point of view by taking advantage of their interaction with other microorganisms.  相似文献   

13.
Microalgae harvesting via pH induced flocculation along with utilization of recovered medium after flocculation is one of the most economical methods for separating the microalgal biomass in order to reduce the dewatering cost. In this study, optimization of marine and freshwater microalgae flocculation by pH adjustment was investigated via central composite design methodology. One molar of KOH and NaOH solutions were used to increase the pH level of the microalgal culture. Increasing pH value of the medium provided the highest flocculation efficiency up to 92.63 and 86.18% with pH adjusted to 10.5 with KOH and NaOH solutions for marine microalgae Nannochloropsis oculata and freshwater microalgae Chlorella minutissima, respectively. Also, it was revealed that microalgae cells were still alive after flocculation process and their biochemical composition was not changed, and flocculated medium can be used again for the next microalgal production. According to the results, it can be said that this method is cheap and effective, simple to operate and provides the utilization of flocculated medium again.  相似文献   

14.
Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.  相似文献   

15.
Although microalgae are considered as a promising feedstock for biofuels, the energy efficiency of the production process needs to be significantly improved. Due to their small size and low concentration in the culture medium, cost‐efficient harvesting of microalgae is a major challenge. In this study, the use of electro‐coagulation–flocculation (ECF) as a method for harvesting a freshwater (Chlorella vulgaris) and a marine (Phaeodactylum tricornutum) microalgal species is evaluated. ECF was shown to be more efficient using an aluminum anode than using an iron anode. Furthermore, it could be concluded that the efficiency of the ECF process can be substantially improved by reducing the initial pH and by increasing the turbulence in the microalgal suspension. Although higher current densities resulted in a more rapid flocculation of the microalgal suspension, power consumption, expressed per kg of microalgae harvested, and release of aluminum were lower when a lower current density was used. The aluminum content of the harvested microalgal biomass was less than 1% while the aluminum concentration in the process water was below 2 mg L−1. Under optimal conditions, power consumption of the ECF process was around 2 kWh kg−1 of microalgal biomass harvested for Chlorella vulgaris and ca. 0.3 kWh kg−1 for Phaeodactylum tricornutum. Compared to centrifugation, ECF is thus more energy efficient. Because of the lower power consumption of ECF in seawater, ECF is a particularly attractive method for harvesting marine microalgae. Biotechnol. Bioeng. 2011;108: 2320–2329. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
In this study, shear‐induced flocculation modeling of Chlorella sp. microalgae was conducted by combination of population balance modeling and CFD. The inhomogeneous Multiple Size Group (MUSIG) and the Euler–Euler two fluid models were coupled via Ansys‐CFX‐15 software package to achieve both fluid and particle dynamics during the flocculation. For the first time, a detailed model was proposed to calculate the collision frequency and breakage rate during the microalgae flocculation by means of the response surface methodology as a tool for optimization. The particle size distribution resulted from the model was in good agreement with that of the jar test experiment. Furthermore, the subsequent sedimentation step was also examined by removing the shear rate in both simulations and experiments. Consequently, variation in the shear rate and its effects on the flocculation behavior, sedimentation rate and recovery efficiency were evaluated. Results indicate that flocculation of Chlorella sp. microalgae under shear rates of 37, 182, and 387 s?1 is a promising method of pre‐concentration which guarantees the cost efficiency of the subsequent harvesting process by recovering more than 90% of the biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:160–174, 2018  相似文献   

17.
There are two major energy and cost constraints to bulk production of single cell microalgae for biofuels or feed: expensive culture systems with high capital costs and high energy requirements for mixing and gas exchange; and the cost of harvesting using high-speed continuous centrifugation for dewatering. This report deals with the latter; harvesting by flocculation where theory states that alkaline flocculants neutralize the repelling surface charge of algal cells, allowing them to coalesce into a floc. It had been assumed that with such electrostatic flocculation, the more cells to be flocculated, the more flocculant needed, in a linear stoichiometric fashion, rendering flocculation overly expensive. Counter to theory of electrostatic flocculation, we find that the amount of alkaline flocculant needed is a function of the logarithm of cell density, with dense cultures requiring an order of magnitude less base than dilute suspensions, with flocculation occurring at a lower pH. Various other theories abound that flocculation can be due to multi-valent cross-linking, or co-precipitation with phosphate or with magnesium and calcium, but are clearly not relevant with the flocculants we used. Monovalent bases that cannot cross-link or precipitate phosphate work with the same log-linear stoichiometry as the divalent bases, obviating those theories, leaving electrostatic flocculation as the only tenable theory of flocculation with the materials used. The cost of flocculation of dense cultures with this procedure should be below $1.00/T algae for mixed calcium:magnesium hydroxides.  相似文献   

18.
The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet''s fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号