首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Intermittent parathyroid hormone (PTH) administration shows an anabolic effect on bone. However, the mechanisms are not fully studied. Recent studies suggest that Wnt signaling is involved in PTH-induced bone formation. The current study was to examine if Wnt/β-catenin pathway is required during PTH-induced osteoblast differentiation. Osteoblastic MC3T3-E1 cells were treated with human PTH (1-34) (hPTH [1-34]) and expression levels of osteoblast differentiation markers were detected by real-time PCR. RNA levels of β-catenin, Runx2, Osteocalcin, Alkaline phosphatase, and Bone sialoprotein were significantly up-regulated after treatment with 10(-8) M of hPTH (1-34) for 6 h. Alkaline phosphatase activity and protein expression of β-catenin were also increased after 6 days of intermittent treatment with hPTH (1-34) in MC3T3-E1 cells. hPTH (1-34) significantly enhanced Topflash Luciferase activity after 6 h of treatment. More important, PTH-induced Alkaline phosphatase activity was significantly inhibited by knocking down β-catenin expression in cells using siRNA. Real-time RT-PCR results further showed down regulation of Runx2, Osteocalcin, Alkaline phosphatase, Bone sialoprotein gene expression in β-catenin siRNA transfected cells with/without PTH treatment. These results clearly indicate that PTH stimulates Wnt/β-catenin pathway in MC3T3-E1 cells and osteoblast differentiation markers expression was up-regulated by activation of Wnt/β-catenin signaling. Our study demonstrated that PTH-induced osteoblast differentiation mainly through activation of Wnt/β-catenin pathway in osteoblastic MC3T3-E1 cells.  相似文献   

4.
5.
6.
7.
Type 1 diabetes (T1D) is correlated with osteopenia primarily due to low bone formation. Parathyroid hormone (PTH) is a known anabolic agent for bone, the anabolic effects of which are partially mediated through the Wnt/β-catenin signaling pathway. In the present study, we first determined the utility of intermittent PTH treatment in a streptozotocin-induced T1D mouse model. It was shown that the PTH-induced anabolic effects on bone mass and bone formation were attenuated in T1D mice compared with nondiabetic mice. Further, PTH treatment failed to activate β-catenin signaling in osteoblasts of T1D mice and was unable to improve osteoblast proliferation and differentiation. Next, the Col1–3.2 kb-CreERTM; β-cateninfx(ex3) mice were used to conditionally activate β-catenin in osteoblasts by injecting tamoxifen, and we addressed whether or not preactivation of β-catenin boosted the anabolic action of PTH on T1D-related bone loss. The results demonstrated that pretreatment with activation of osteoblastic β-catenin followed by PTH treatment outperformed PTH or β-catenin activation monotherapy and led to greatly improved bone structure, bone mass, and bone strength in this preclinical model of T1DM. Further analysis demonstrated that osteoblast proliferation and differentiation, as well as osteoprogenitors in the marrow, were all improved in the combination treatment group. These findings indicated a clear advantage of developing β-catenin as a target to improve the efficacy of PTH in the treatment of T1D-related osteopenia.  相似文献   

8.
Intermittent administration stimulates bone formation, whereas sustained elevation of parathyroid hormone (PTH) as in hyperparathyroidism stimulates bone resorption. Even though PTH(1-34) is the only anabolic agent clinically approved for the treatment of osteoporosis, the molecular mechanism whereby PTH mediates these opposing effects depending on timing of administration is not well understood. In this study, we sought to determine the involvement of gap junctions and hemichannels, and the protein that forms them, connexin 43 (Cx43), in the effect of PTH(1-34) on osteoblast mineralization. The osteoblast-like cell line MLO-A5 that rapidly mineralizes in culture was used. Intermittent PTH enhances mineralization, whereas continuous PTH inhibits this process. The mineralization was significantly inhibited by 18 beta-glycyrrhetinic acid, an inhibitor known to block gap junctions and hemichannels. When the cells were treated with PTH(1-34), gap junctional coupling was increased; however, the degree of stimulation was similar between intermittent and continuous treatment. The permeabilization to dye was not detected under various intermittent or continuous PTH treatments. On the other hand, the overall level of Cx43 protein increased in response to continuous PTH treatment. In contrast, when the cells were subjected to intermittent treatment overall level of Cx43 was unchanged, but there was an increase of connexons associated with an increase in Cx43 expression on the cell surface. Our results suggest that Cx43 overall expression, connexon formation and cell surface expression are differentially regulated by intermittent and continuous PTH(1-34), implying the involvement of Cx43 and Cx43-forming channels in mediating the effects of PTH on bone formation.  相似文献   

9.
10.
The clinical findings that alendronate blunted the anabolic effect of human parathyroid hormone (PTH) on bone formation suggest that active resorption is involved and enhances the anabolic effect. PTH signals via its receptor on the osteoblast membrane, and osteoclasts are impacted indirectly via the products of osteoblasts. Microarray with RNA from rats injected with human PTH or vehicle showed a strong association between the stimulation of monocyte chemoattractant protein-1 (MCP-1) and the anabolic effects of PTH. PTH rapidly and dramatically stimulated MCP-1 mRNA in the femora of rats receiving daily injections of PTH or in primary osteoblastic and UMR 106-01 cells. The stimulation of MCP-1 mRNA was dose-dependent and a primary response to PTH signaling via the cAMP-dependent protein kinase pathway in vitro. Studies with the mouse monocyte cell line RAW 264.7 and mouse bone marrow proved that osteoblastic MCP-1 can potently recruit osteoclast monocyte precursors and facilitate receptor activator of NF-kappaB ligand-induced osteoclastogenesis and, in particular, enhanced fusion. Our model suggests that PTH-induced osteoblastic expression of MCP-1 is involved in recruitment and differentiation at the stage of multinucleation of osteoclast precursors. This information provides a rationale for increased osteoclast activity in the anabolic effects of PTH in addition to receptor activator of NF-kappaB ligand stimulation to initiate greater bone remodeling.  相似文献   

11.
12.
The mechanisms whereby the parathyroid hormone (PTH) exerts its anabolic action on bone are incompletely understood. We previously showed that inhibition of ERK1/2 enhanced Smad3-induced bone anabolic action in osteoblasts. These findings suggested the hypothesis that changes in gene expression associated with the altered Smad3-induced signaling brought about by an ERK1/2 inhibitor would identify novel bone anabolic factors in osteoblasts. We therefore performed a comparative DNA microarray analysis between empty vector-transfected mouse osteoblastic MC3T3-E1 cells and PD98059-treated stable Smad3-overexpressing MC3T3-E1 cells. Among the novel factors, Tmem119 was selected on the basis of its rapid induction by PTH independent of later increases in endogenous TGF-β. The levels of Tmem119 increased with time in cultures of MC3T3-E1 cells and mouse mesenchymal ST-2 cells committed to the osteoblast lineage by BMP-2. PTH stimulated Tmem119 levels within 1 h as determined by Western blot analysis and immunocytochemistry in MC3T3-E1 cells. MC3T3-E1 cells stably overexpressing Tmem119 exhibited elevated levels of Runx2, osteocalcin, alkaline phosphatase, and β-catenin, whereas Tmem119 augmented BMP-2-induced Runx2 levels in mesenchymal cells. Tmem119 interacted with Runx2, Smad1, and Smad5 in C2C12 cells. In conclusion, we identified a Smad3-related factor, Tmem119, that is induced by PTH and promotes differentiation in mouse osteoblastic cells. Tmem119 is an important molecule in the pathway downstream of PTH and Smad3 signaling in osteoblasts.  相似文献   

13.
Parathyroid hormone (PTH) plays a major role in bone remodeling and has the ability to increase bone mass if administered daily. In vitro, PTH inhibits the growth of osteoblastic cell lines, arresting them in G(1) phase. Here, we demonstrate that PTH regulates the expression of at least three genes to achieve the following: inducing expression of MAPK phosphatase 1 (MKP-1) and p21(Cip1) and decreasing expression of cyclin D1 at both mRNA and protein levels. The induction of MKP-1 causes the dephosphorylation of extracellular signal-regulated kinase and therefore the decrease in cyclin D1. Overexpression of MKP-1 arrests UMR cells in G(1) phase. The mechanisms involved in PTH regulation of these genes were studied. Most importantly, PTH administration produces similar effects on expression of these genes in rat femoral metaphyseal primary spongiosa. Analyses of p21(Cip1) expression levels in bone indicate that repeated daily PTH injections make the osteoblast more sensitive to successive PTH treatments, and this might be an important feature for the anabolic functions of PTH. In summary, our data suggest that one mechanism for PTH to exert its anabolic effect is to arrest the cell cycle progression of the osteoblast and hence increase its differentiation.  相似文献   

14.
15.
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) activate one single receptor (PTH1R) which mediates catabolic and anabolic actions in the bone. Activation of PTH1R modulates multiple intracellular signaling responses. We previously reported that PTH and PTHrP down-regulate pERK1/2 and cyclin D1 in differentiated osteoblasts. In this study we investigate the role of MAPK phosphatase-1 (MKP-1) in PTHrP regulation of ERK1/2 activity in relation to osteoblast proliferation, differentiation and bone formation. Here we show that PTHrP increases MKP-1 expression in differentiated osteoblastic MC3T3-E1 cells, primary cultures of differentiated bone marrow stromal cells (BMSCs) and calvarial osteoblasts. PTHrP had no effect on MKP-1 expression in proliferating osteoblastic cells. Overexpression of MKP-1 in MC-4 cells inhibited osteoblastic cell proliferation. Cell extracts from differentiated MC-4 cells treated with PTHrP inactivate/dephosphorylate pERK1/2 in vitro; immunodepletion of MKP-1 blocked the ability of the extract to dephosphorylate pERK1/2; these data indicate that MKP-1 is involved in PTHrP-induced pERK1/2 dephosphorylation in the differentiated osteoblastic cells. PTHrP regulation of MKP-1 expression is partially dependent on PKA and PKC pathways. Treatment of nude mice, bearing ectopic ossicles, with intermittent PTH for 3 weeks, up-regulated MKP-1 and osteocalcin, a bone formation marker, with an increase in bone formation. These data indicate that PTH and PTHrP increase MKP-1 expression in differentiated osteoblasts; and that MKP-1 induces growth arrest of osteoblasts, via inactivating pERK1/2 and down-regulating cyclin D1; and identify MKP-1 as a possible mediator of the anabolic actions of PTH1R in mature osteoblasts.  相似文献   

16.
17.
Intermittent administration of parathyroid hormone (PTH) activates new sites of bone formation by stimulating osteoblast differentiation and function resulting in an increase in bone mass. Because integrins have been shown to play a crucial role in osteoblast differentiation and bone formation, in the present study, we evaluated whether human PTH (1-34) upon administration to rats, influenced integrin expression in osteoblastic cells isolated from the metaphysis and the diaphysis of rat long bones. Initial immunohistochemical evaluation of bone sections demonstrated that the osteoblasts expressed at least alphav, alpha2, alpha3, and alpha5beta1 integrins. Immunocolocalization studies for integrins and vinculin established that alphav, alpha2, and alpha5beta1, but not alpha3 integrins were present in the focal adhesion sites of osteoblasts attached to FN coated surfaces. Osteoprogenitor cells isolated from metaphyseal (but not diaphyseal) marrow of rats injected with intermittent PTH (1-34) exhibited greater alphav and reduced alpha2 levels, with no apparent changes in alpha3, and alpha5beta1 integrin levels, as assessed by immunohistochemistry, Northern, and Western blot analyses. However, these changes were not observed on the same cells treated with PTH in vitro. These observations suggest that integrin modulation by PTH is likely to be indirect and that selective phenotypic expression of integrin subtypes is part of the cascade of events that lead to PTH (1-34) mediated osteoblast differentiation.  相似文献   

18.
Parathyroid hormone (PTH) significantly affects osteoblast function by altering gene expression. We have identified neuron-derived orphan receptor-1 (NOR-1) as a PTH-induced primary gene in osteoblastic cells. NOR-1, Nurr1, and Nur77 comprise the NGFI-B nuclear orphan receptor family and Nurr1 and Nur77 are PTH-induced primary osteoblastic genes. Ten nM PTH maximally induced NOR-1 mRNA at 2h in primary mouse osteoblasts and at 1h in mouse calvariae. Cycloheximide pretreatment did not inhibit PTH-induced NOR-1 mRNA. PTH activates cAMP-protein kinase A (PKA), protein kinase C (PKC), and calcium signaling. Forskolin (PKA activator) and PMA (PKC activator) mimicked PTH-induced NOR-1 mRNA. Ionomycin (calcium ionophore) and PTH(3-34), which do not activate PKA, failed to induce NOR-1 mRNA. PKA inhibition with H89 blocked PTH- and FSK-induced NOR-1 mRNA. PMA pretreatment to deplete PKC inhibited PMA-induced, but not PTH-induced, NOR-1 mRNA. We conclude that NOR-1 is a PTH-regulated primary osteoblastic gene that is induced mainly through cAMP-PKA signaling.  相似文献   

19.
Parathyroid hormone (PTH) stimulates both bone formation and resorption by activating diverse osteoblast signalling pathways. Upstream signalling for PTH stimulation of protein kinase C-alpha (PKCalpha) membrane translocation and subsequent expression of the pro-resorptive cytokine interleukin-6 (IL-6) was investigated in UMR-106 osteoblastic cells. PTH 1-34, PTH 3-34, PTHrP and PTH 1-31 stimulated PKCalpha translocation and IL-6 promoter activity. Pharmacologic intervention at the adenylyl cyclase (AC) pathway (forskolin, IBMX, PKI) failed to alter PTH 1-34- or PTH 3-34-stimulated PKCalpha translocation. The phosphoinositol-phospholipase C (PI-PLC) antagonist U73122 slightly decreased PTH 1-34-stimulated PKCalpha translocation; however, the control analogue U73343 acted similarly. Propranolol, an inhibitor of phosphatidic acid (PA) phosphohydrolase, decreased diacylglycerol (DAG) formation and attenuated PTH 1-34- and PTH 3-34-stimulated PKCalpha translocation and IL-6 promoter activity, suggesting a phospholipase D (PLD)-dependent mechanism. This is the first demonstration that PLD-mediated signalling leads to both PKC-alpha translocation and IL-6 promoter activation in osteoblastic cells.  相似文献   

20.
The Wnt signaling pathway has recently been demonstrated to play an important role in bone cell function. In previous studies using DNA microarray analyses, we observed a change in some of the molecular components of the canonical Wnt pathway namely, frizzled-1 (FZD-1) and axil, in response to continuous parathyroid hormone (PTH) treatment in rats. In the present study, we further explored other components of the Wnt signaling pathway in rat distal metaphyseal bone in vivo, and rat osteoblastic osteosarcoma cells (UMR 106) in culture. Several Wnt pathway components, including low-density lipoprotein-receptor-related protein 5 (LRP5), LRP6, FZD-1, Dickkopf-1 (Dkk-1), and Kremen-1 (KRM-1), were expressed in bone in vivo and in osteoblasts in vitro. Continuous exposure to PTH (1-38) both in vivo and in vitro upregulated the mRNA expression of LRP6 and FZD-1 and decreased LRP5 and Dkk-1. These effects in UMR 106 cells were associated with an increase in beta-catenin as measured by Western blots and resulted in functional activation (three to six-fold) of a downstream Wnt responsive TBE6-luciferase (TCF/LEF-binding element) reporter gene. Activation of the TBE6-luciferase reporter gene by PTH (1-38) in UMR 106 cells was inhibited by the protein kinase A (PKA) inhibitor, H89. Activation was mimicked by PTH (1-31), PTH-related protein (1-34), and forskolin, but both PTH (3-34) and (7-34) had no effect. These findings suggest that the effect of PTH on the canonical Wnt signaling pathway occurs at least in part via the cAMP-PKA pathway through the differential regulation of the receptor complex proteins (FZD-1/LRP5 or LRP6) and the antagonist (Dkk-1). Taken together, these results reveal a possible role for the Wnt signaling pathway in PTH actions in bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号