首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Inhibition of osteoblast-mediated mineralization is one of the major catabolic effects of parathyroid hormone (PTH) on bone. Previously, we showed that PTH induces matrix gamma-carboxyglutamic acid (Gla) protein (MGP) expression and established that this induction is critical for PTH-mediated inhibition of osteoblast mineralization. In the present study, we focus on the mechanism through which PTH regulates MGP expression in osteoblastic MC3T3-E1 cells. Following transient transfection of these cells with a -748 bp murine MGP promoter-luciferase construct (pMGP-luc), PTH (10 (-7) M) induced promoter activity in a time-dependent manner with a maximal four- to six fold induction seen 6 h after PTH treatment. Both H-89 (PKA inhibitor) and U0126 (MEK inhibitor), suppressed PTH induction of MGP promoter activity as well as the MGP mRNA level. In addition, forskolin (PKA activator) stimulated MGP promoter activity and mRNA levels confirming that PKA is one of the signaling molecules required for regulation of MGP by PTH. Co-transfection of MC3T3-E1 cells with pMGP-luc and MEK(SP), a plasmid encoding the constitutively active form of MEK, led to a dose-dependent increase in MGP promoter activity. Both MGP promoter activity and MGP mRNA level were not affected by the protein kinase C (PKC) inhibitor, GF109203X. However, phorbol 12-myristate 13-acetate (PMA), a selective PKC activator induced MGP mRNA expression through activation of extracellular signal-regulated kinase (ERK). Taken together, these results indicate that PTH regulates MGP via both PKA- and ERK-dependent pathways.  相似文献   

2.
Parathyroid hormone (PTH) inhibits Na+-K+-ATPase activity by serine phosphorylation of the alpha1 subunit through protein kinase C (PKC)- and extracellular signal-regulated kinase (ERK)-dependent pathways. Based on previous studies we postulated that PTH regulates sodium pump activity through isoform-specific PKC-dependent activation of ERK. In the present work utilizing opossum kidney cells, a model of renal proximal tubule, PTH stimulated membrane translocation of PKCalpha by 102 +/- 16% and PKCbetaI by 41 +/- 7% but had no effect on PKCbetaII and PKCzeta. Both PKCalpha and PKCbetaI phosphorylated the Na+-K+-ATPase alpha1 subunit in vitro. PTH increased the activity of PKCalpha but not PKCbetaI. Coimmunoprecipitation assays demonstrated that treatment with PTH enhanced the association between Na+-K+-ATPase alpha1 subunit and PKCalpha, whereas the association between Na+-K+-ATPase alpha1 subunit and PKCbetaI remained unchanged. A PKCalpha inhibitory peptide blocked PTH-stimulated serine phosphorylation of the Na+-K+-ATPase alpha1 subunit and inhibition of Na+-K+-ATPase activity. Pharmacologic inhibition of MEK-1 blocked PTH-stimulated translocation of PKCalpha, whereas transfection of constitutively active MEK-1 cDNA induced translocation of PKCalpha and increased phosphorylation of the Na+-K+-ATPase alpha1 subunit. In contrast, PTH-stimulated ERK activation was not inhibited by pretreatment with the PKCalpha inhibitory peptide. Inhibition of PKCalpha expression by siRNA did not inhibit PTH-mediated ERK activation but significantly reduced PTH-mediated phosphorylation of the Na+-K+-ATPase alpha1 subunit. Pharmacologic inhibition of phosphoinositide 3-kinase blocked PTH-stimulated ERK activation, translocation of PKCalpha, and phosphorylation of the Na+-K+-ATPase alpha1 subunit. We conclude that PTH stimulates Na+-K+-ATPase phosphorylation and decreases the activity of Na+-K+-ATPase by ERK-dependent activation of PKCalpha.  相似文献   

3.
4.
Previous studies showed that in C2C12 cells, phospholipase D (PLD) and its known regulators, RhoA and protein kinase Calpha (PKCalpha), were downstream effectors in sphingosine 1-phosphate (SPP) signalling. Moreover, the role of PKC for SPP-mediated PLD activation and the requirement of PKCalpha for RhoA translocation were reported. The present results demonstrated that inactivation of RhoA, by overexpression of RhoGDP dissociation inhibitor (RhoGDI) as well as treatment with C3 exotoxin, attenuated SPP-stimulated PLD activity, supporting the involvement of RhoA in the stimulation of PLD activity by the bioactive lipid in C2C12 myoblasts. In addition, the effect of PKCalpha inhibitor G?6976 on the SPP-induced PLD activation in myoblasts, where RhoA function was inactivated, was consistent with a dual regulation of the enzyme through RhoA and PKCalpha. Interestingly, the subcellular distribution of PLD isoforms, RhoA and PKCalpha, in SPP-stimulated cells supported the view that the functional relationship between the two PLD regulators, demonstrated to occur in SPP signalling, represents a novel mechanism of regulation of specifically localized PLD.  相似文献   

5.
Protein kinase C (PKC) has been shown to be activated by parathyroid hormone (PTH) in osteoblasts. Prior evidence suggests that this activation mediates responses leading to bone resorption, including production of the osteoclastogenic cytokine interleukin-6 (IL-6). However, the importance of specific PKC isozymes in this process has not been investigated. A selective antagonist of PKC-β, LY379196, was used to determine the role of the PKC-β isozyme in the expression of IL-6 in UMR-106 rat osteoblastic cells and in bone resorption in fetal rat limb bone organ cultures. PTH, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced translocation of PKC-α and -βI to the plasma membrane in UMR-106 cells within 5 min. The stimulation of PKC-βI translocation by PTH, TNF-α or IL-1β was inhibited by LY379196. In contrast, LY379196 did not affect PTH, TNF-α-, or IL-1β-stimulated translocation of PKC-α. PTH, TNF-α, and IL-1β increased luciferase expression in UMR-106 cells transiently transfected with a −224/+11 bp IL-6 promoter-driven reporter construct. The IL-6 responses were also attenuated by treatment with LY379196. Furthermore, LY379196 inhibited bone resorption elicited by PTH in fetal rat bone organ cultures. These results indicate that PKC-βI is a component of the signaling pathway that mediates PTH-, TNF-α-, and IL-1β-stimulated IL-6 expression and PTH-stimulated bone resorption.  相似文献   

6.
Formation of osteoclast-like cells in mouse bone marrow cultures induced by either 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)), parathyroid hormone (PTH) or prostaglandin E(2) (PGE(2)), respectively, shows partial dependence on interleukin-6 receptor (IL-6R) activation. This suggests that locally produced IL-6 could be relevant for osteoclast formation. Therefore, we evaluated the effects of 1,25-(OH)(2)D(3), PTH, and PGE(2) on IL-6 production in stromal/osteoblastic cell lines. It appeared that these bone resorptive factors differed widely in their ability to modulate IL-6 mRNA expression and, consequently, protein synthesis in each of the cell lines studied. While 1,25-(OH)(2)D(3) was marginally effective only in ST2 cells, and PTH caused a 2- to 20-fold increase in IL-6 levels MC3T3-E1 and UMR-106 cells, PGE(2) enhanced IL-6 production in the ST2 and MC3T3-E1 cell line by two to three orders of magnitude, respectively, and also induced IL-6 in fibroblastic L929 cells. PGE(2)-stimulated IL-6 release from mesenchymal cells seems to be important for autocrine/paracrine control of osteoclast formation in health and disease.  相似文献   

7.
Fc receptors play a pivotal role linking the cellular and humoral arms of the immune system [1-3]. Our previous studies have shown that the human high-affinity immunoglobulin G receptor Fc(gamma)RI couples to a novel intracellular signaling pathway requiring phospholipase D activation [4]. The mechanisms that regulate receptor coupling to phospholipase D in intact cells are poorly understood but involve small molecular weight GTPases and protein kinase C [5-7]. Here, we show that immune complex aggregation of Fc(gamma)RI stimulates the association of phospholipase D1 with ARF6 and protein kinase Calpha. Surprisingly, PKCalpha activity per se is not required. Rather, all of the Fc(gamma)RI-mediated increase in PKC activity requires phospholipase D1, as treatment of cells with butan-1-ol (0.3%) or specific downregulation of phospholipase D1 using antisense oligonucleotides inhibits Fc(gamma)RI-coupled PKC activation. Moreover, treatment of cells with butan-1-ol or phospholipase D1 antisense oligonucleotides inhibits translocation of PKCdelta, -epsilon, and -zeta but had no effect on the association of PKCalpha or ARF6 with phospholipase D1. These data indicate that association with ARF6 and PKCalpha plays a role in coupling Fc(gamma)RI to phospholipase D1 activation and that PLD1 lies upstream of all Fc(gamma)RI-mediated PKC activity.  相似文献   

8.
Although the stimulatory effect of glucagon-like peptide 1 (GLP-1), a cAMP-generating agonist, on Ca(2+) signal and insulin secretion is well established, the underlying mechanisms remain to be fully elucidated. We recently discovered that Ca(2+) influx alone can activate conventional protein kinase C (PKC) as well as novel PKC in insulin-secreting (INS-1) cells. Building on this earlier finding, here we examined whether GLP-1-evoked Ca(2+) signaling can activate PKCalpha and PKCepsilon at a substimulatory concentration of glucose (3 mm) in INS-1 cells. We first showed that GLP-1 translocated endogenous PKCalpha and PKCepsilon from the cytosol to the plasma membrane. Next, we assessed the phosphorylation state of the PKC substrate, myristoylated alanine-rich C kinase substrate (MARCKS), by using MARCKS-GFP. GLP-1 translocated MARCKS-GFP to the cytosol in a Ca(2+)-dependent manner, and the GLP-1-evoked translocation of MARCKS-GFP was blocked by PKC inhibitors, either a broad PKC inhibitor, bisindolylmaleimide I, or a PKCepsilon inhibitor peptide, antennapedia peptide-fused pseudosubstrate PKCepsilon-(149-164) (antp-PKCepsilon) and a conventional PKC inhibitor, G?-6976. Furthermore, forskolin-induced translocation of MARCKS-GFP was almost completely inhibited by U73122, a putative inhibitor of phospholipase C. These observations were verified in two different ways by demonstrating 1) forskolin-induced translocation of the GFP-tagged C1 domain of PKCgamma and 2) translocation of PKCalpha-DsRed and PKCepsilon-GFP. In addition, PKC inhibitors reduced forskolin-induced insulin secretion in both INS-1 cells and rat islets. Thus, GLP-1 can activate PKCalpha and PKCepsilon, and these GLP-1-activated PKCs may contribute considerably to insulin secretion at a substimulatory concentration of glucose.  相似文献   

9.
In bone, clock genes are involved in the circadian oscillation of bone formation and extracellular matrix expression. However, to date little attention has been paid to circadian rhythm in association with expression of clock genes during chondrogenesis in cartilage. In this study, we investigated the functional expression of different clock genes by chondrocytes in the course of cartilage development. The mRNA expression of types I, II, and X collagens exhibited a 24-h rhythm with a peak at zeitgeber time 6, in addition to a 24-h rhythmicity of all the clock genes examined in mouse femurs in vivo. Marked expression of different clock genes was seen in both osteoblastic MC3T3-E1 and chondrogenic ATDC5 cells in vitro, whereas parathyroid hormone (PTH) transiently increased period 1 (per1) mRNA expression at 1 h in both cell lines. Similar increases were seen in the mRNA levels for both per1 and per2 in prehypertrophic chondrocytes in metatarsal organotypic cultures within 2 h of exposure to PTH. PTH significantly activated the mouse per1 (mper1) and mper2 promoters but not the mper3 promoter in a manner sensitive to both a protein kinase A inhibitor and deletion of the cAMP-responsive element sequence (CRE) in ATDC5 cells. In HEK293 cells, introduction of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (bmal1)/clock enhanced mouse type II collagen first intron reporter activity without affecting promoter activity, with reduction effected by either per1 or per2. These results suggest that PTH directly stimulates mper expression through a protein kinase A-CRE-binding protein signaling pathway for subsequent regulation of bmal1/clock-dependent extracellular matrix expression in cartilage.  相似文献   

10.
Parathyroid hormone (PTH) is known to have both catabolic and anabolic effects on bone. The dual functionality of PTH may stem from its ability to activate two signal transduction mechanisms: adenylate cyclase and phospholipase C. Here, we demonstrate that continuous treatment of UMR 106-01 and primary osteoblasts with PTH peptides, which selectively activate protein kinase C, results in significant increases in DNA synthesis. Given that ERKs are involved in cellular proliferation, we examined the regulation of ERKs in UMR 106-01 and primary rat osteoblasts following PTH treatment. We demonstrate that treatment of osteoblastic cells with very low concentrations of PTH (10(-12) to 10(-11) m) is sufficient for substantial increases in ERK activity. Treatment with PTH-(1-34) (10(-8) m), PTH-(1-31), or 8-bromo-cAMP failed to stimulate ERKs, whereas treatment with phorbol 12-myristate 13-acetate, serum, or PTH peptides lacking the N-terminal amino acids stimulated activity. Furthermore, the activation of ERKs was prevented by pretreatment of osteoblastic cells with inhibitors of protein kinase C (GF 109203X) and MEK (PD 98059). Treatment of UMR cells with epidermal growth factor (EGF), but not PTH, promoted tyrosine phosphorylation of the EGF receptor. Transient transfection of UMR cells with p21(N17Ras) did not block activation of ERKs following treatment with low concentrations of PTH. Thus, activation of ERKs and proliferation by PTH is protein kinase C-dependent, but stimulation occurs independently of the EGF receptor and Ras activation.  相似文献   

11.
Interferon-gamma (IFN-gamma) induced intercellular adhesion molecule-1 (ICAM-1) expression in human NCI-H292 epithelial cells, as shown by enzyme-linked immunosorbent assay and immunofluorescence staining. The enhanced ICAM-1 expression resulted in increased adhesion of U937 cells to NCI-H292 cells. Tyrosine kinase inhibitors (genistein or herbimycin), Src family inhibitor (PP2), or a phosphatidylinositol-phospholipase C inhibitor (U73122) attenuated the IFN-gamma-induced ICAM-1 expression. Protein kinase C (PKC) inhibitors (staurosporine or Ro 31-8220) also inhibited IFN-gamma-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression; this effect was inhibited by tyrosine kinase or Src inhibitor. ICAM-1 promoter activity was enhanced by IFN-gamma and TPA in cells transfected with pIC339-Luc, containing the downstream NF-kappaB and gamma-activated site (GAS) sites, but not in cells transfected with GAS-deletion mutant, pIC135 (DeltaAP2). Electrophoretic gel mobility shift assay demonstrated that GAS-binding complexes in IFN-gamma-stimulated cells contained STAT1alpha. The IFN-gamma-induced ICAM-1 promoter activity was inhibited by tyrosine kinase inhibitors, a phosphatidylinositol-phospholipase C inhibitor, or PKC inhibitors, and the TPA-induced ICAM-1 promoter activity was also inhibited by tyrosine kinase inhibitors. Cotransfection with a PLC-gamma2 mutant inhibited IFN-gamma- but not TPA-induced ICAM-1 promoter activity. However, cotransfection with dominant negative mutants of PKCalpha or c-Src inhibited both IFN-gamma- and TPA-induced ICAM-1 promoter activity. The ICAM-1 promoter activity was stimulated by cotransfection with wild type PLC-gamma2, PKCalpha, c-Src, JAK1, or STAT1. An immunocomplex kinase assay showed that both IFN-gamma and TPA activated c-Src and Lyn activities and that these effects were inhibited by staurosporine and herbimycin. Thus, in NCI-H292 epithelial cells, IFN-gamma activates PLC-gamma2 via an upstream tyrosine kinase to induce activation of PKC-alpha and c-Src or Lyn, resulting in activation of STAT1alpha, and GAS in the ICAM-1 promoter, followed by initiation of ICAM-1 expression and monocyte adhesion.  相似文献   

12.
13.
14.
15.
16.
In L6 skeletal muscle cells expressing human insulin receptors (L6(hIR)), exposure to 25 mM glucose for 3 min induced a rapid 3-fold increase in GLUT1 and GLUT4 membrane translocation and glucose uptake. The high glucose concentration also activated the insulin receptor kinase toward the endogenous insulin receptor substrates (IRS)-1 and IRS-2. At variance, in L6 cells expressing kinase-deficient insulin receptors, the exposure to 25 mM glucose elicited no effect on glucose disposal. In the L6(hIR) cells, the acute effect of glucose on insulin receptor kinase was paralleled by a 2-fold decrease in both the membrane and the insulin receptor co-precipitated protein kinase C (PKC) activities and a 3-fold decrease in receptor Ser/Thr phosphorylation. Western blotting of the receptor precipitates with isoform-specific PKC antibodies revealed that the glucose-induced decrease in membrane- and receptor-associated PKC activities was accounted for by dissociation of PKCalpha but not of PKCbeta or -delta. This decrease in PKCalpha was paralleled by a similarly sized increase in cytosolic PKCalpha. In intact L6(hIR) cells, inhibition of PKCalpha expression by using a specific antisense oligonucleotide caused a 3-fold increase in IRS phosphorylation by the insulin receptor. This effect was independent of insulin and accompanied by a 2.5-fold increase in glucose disposal by the cells. Thus, in the L6 skeletal muscle cells, glucose acutely regulates its own utilization through the insulin signaling system, independent of insulin. Glucose autoregulation appears to involve PKCalpha dissociation from the insulin receptor and its cytosolic translocation.  相似文献   

17.
18.
While protein kinase C (PKC) appears to play a role in the action of PTH in renal cells, direct evidence of activation by PTH is lacking. Rat PTH (1-34) caused a rapid, transient translocation of PKC in opossum kidney (OK) cells from a basal value of 0.09 to maximum of 0.24 at 10-15 sec. Both the time course and dose-response relationship of translocation matched a corresponding increase in cytosolic Ca2+. In contrast, PTH activation of cAMP-dependent protein kinase (PKA), while also rapid, was greater in magnitude (0.10 to 0.50), persistent, and occurred at a threshold level of 3 x 10(-10)M PTH, compared to 10(-8)M for PKC. Neither bPTH(3-34) nor bPTH(7-34) activated either protein kinase, while both antagonized rPTH(1-34)-induced PKC translocation more effectively than PKA activation. These differential effects of PTH agonist and antagonists further support the suggestion that PTH acts through two signal transduction mechanisms in which one or more receptors is linked in distinct ways to adenylate cyclase and phospholipase C.  相似文献   

19.
Our previous studies have shown that parathyroid hormone (PTH) stimulates phosphatidylcholine (PC) hydrolysis by phospholipase D (PLD) and transphosphatidylation in UMR-106 osteoblastic cells. To determine whether phospholipase C (PLC) is also involved in the PTH-mediated PC hydrolysis, we used the inhibitor, tricyclodecan-9-yl xanthogenate (D609), a putatively selective antagonist of this pathway. Consistent with this proposed mechanism, D609 decreased (3)H-phosphocholine in extracts from UMR-106 cells prelabeled with (3)H-choline. Unexpectedly, D609 enhanced PC hydrolysis and transphosphatidylation, suggesting that either there was a compensatory increase in PLD activity when PLC was inhibited, or that D609 directly increased PLD activity. The D609-stimulated increase in PC hydrolysis was rapid, being seen as early as 2 min. The effect of D609 was temperature-sensitive, consistent with an enzymatic mechanism. The D609-stimulated increase in PC hydrolysis was PKC-independent, based upon the lack of effect of down-regulation of PKC by phorbol 12,13-dibutyrate on the response. The studies reveal a novel action of this inhibitor on signaling in osteoblastic cells which might influence downstream responses.  相似文献   

20.
Fibronectin (Fn) is involved in early stages of bone formation and basic fibroblast growth factor (bFGF) is an important factor regulating osteogenesis. bFGF increased Fn expression, which was attenuated by phosphatidylinositol phospholipase inhibitor (U73122), protein kinase C inhibitor (GF109203X), Src inhibitor (PP2), NF-kappaB inhibitor (PDTC), IkappaBalpha phosphorylation inhibitor (Bay 117082), or IkappaB protease inhibitor (TPCK). bFGF-induced increase of Fn-luciferase activity was antagonized by cells transfected with Fn construct without NF-kappaB regulatory site. Stimulation of osteoblasts with bFGF activated IkappaB kinase alpha/beta (IKK alpha/beta) and increased IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 and p50 translocation from the cytosol to the nucleus, the formation of an NF-kappaB-specific DNA-protein complex and kappaB-luciferase activity. bFGF-mediated an increase of IKKalpha/beta activity and DNA-binding activity was inhibited by U73122, GF109203X, or PP2. The binding of p65 to the NF-kappaB element, as well as the recruitment of p300 and the enhancement of p50 acetylation on the Fn promoter was enhanced by bFGF. Overexpression of constitutively active FGF receptor 2 (FGFR2) increased Fn-luciferase activity, which was inhibited by co-transfection with dominant negative (DN) mutants of PLCgamma2, PKCalpha, c-Src, IKKalpha, or IKKbeta. Our results suggest that bFGF increased Fn expression in rat osteoblasts via the FGFR2/PLCgamma2/PKCalpha/c-Src/NF-kappaB signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号