首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mycelial wastes of Rhizopus arrhizus, used in fermentation industries to produce lipases, were studied for their ability to absorb various heavy metal ions (Ni, Zn, Cd and Pb). Chelation of all these ions occurs by a chemical, equilibrated and saturatable mechanism, following the Langmuir adsorption model. Data transformation allowed us to calculate maximum uptake and dissociation constants of the sorption reaction. We also investigated the influence of pH on metal accumulation. Sorption capacity variations between different biosorbent types (Rhizopus, Mucor, Penicillium, and Aspergillus), could be related to their acidity. pH neutralisation during the sorption reaction considerably enhanced zinc chelation (up to 56 mg/g). Previous NaOH treatment of mycelial wastes also increased their capacity for metal sorption. We report R. arrhizus metal uptake curves versus pH, using a pH-stat system. Optimal adsorption was achieved at neutral pH for nickel and zinc, pH 5.0 for lead, and inhibition of chelation was observed when the pH decreased. These results illustrate the importance of pH during the adsorption process, indicating a competitive mechanism for chelation between heavy metal ions and protons at cell wall adsorption sites. Correspondence to: J.-C. Roux  相似文献   

2.
The purinergic P2X7 receptor is a membrane protein of leucocytes involved in the clearance of intracellular bacteria such as Chlamydia and Mycobacterium. In this work, we investigated the role and modulation of macrophage P2X7R in intracellular infection with the protozoan parasite Leishmania amazonensis. Upon infection, isolated murine macrophages displayed enhanced expression of P2X7R and were significantly more responsive to extracellular ATP (ATPe)-induced pore opening, as demonstrated by the increased uptake of Lucifer Yellow. This was extended to the in vivo situation, where cells from established cutaneous lesions were more sensitive to ATPe than cells from uninfected mice. ATP treatment of infected macrophages inhibited parasite growth, and this was prevented by pre-treatment with oxidized ATP, a selective antagonist of P2X7R. Parasite killing was unlikely due to induction of nitric oxide production or cytolysis of infected macrophage, as those functions were unaltered with parasite-effective ATPe concentrations. A direct drug effect is also unlike, as ATPe enhanced axenic parasite growth. We found that leishmanial infection rendered wild-type but not P2X7R-deficient macrophages more prone to ATP-induced apoptosis. These results show that macrophage infection with L. amazonensis leads to enhanced expression of functional P2X7R, that upon ligation with ATPe helps in the elimination of the parasites by an as yet unclear mechanism possibly involving host cell apoptosis.  相似文献   

3.
Processes in the rhizosphere of metal hyperaccumulator species are largely unknown. We investigated root-induced changes of Ni biogeochemistry in the rhizosphere of Thlaspi goesingense Hálácsy in a rhizobox experiment and in related soil chemical and Ni uptake studies. In the rhizobox, a root monolayer was separated from rhizosphere soil by a nylon membrane. Rhizosphere soil was then sliced into 0.5 mm layers and analyzed for changes in soluble (water-extractable, Ni S) and labile (1 M NH 4NO 3-extractable, Ni L) Ni pools. Ni L in the rhizosphere was depleted due to excessive uptake in T. goesingense. Ni S in the rhizosphere increased in contrast to expectations based on the experimental Ni desorption isotherm. Mathematical simulations following the Tinker–Nye–Barber approach overestimated the depletion of the Ni L and predicted a decrease of Ni S in the rhizosphere. In a hydroponic experiment, we demonstrated that T. goesingense takes up Ni 2+ but excludes metal–organic complexes. The model output was then improved in later versions considering this finding. A sensitivity analysis identified I max and K m, derived from the Michaelis–Menten uptake kinetics experiment to be the most sensitive of the model parameters. The model was also sensitive to the accuracy of the estimate of the initial Ni concentration (C Si) in soil solution. The formation of Ni–DOM complexes in solution could not explain the poor fit as in contrast to previous field experiments, the correlation between soluble Ni and dissolved organic carbon (DOC) was weak. Ion competition of Ni with Ca and Mg could be ruled out as explanation of enhanced Ni solubility in the rhizosphere as the molar ratio of Ni/(Ca + Mg) in solution was not affected. However, a decreased Vanselov coefficient Kv near the root plane indicated (an apparent) lower selectivity of the exchange complex for Ni, possibly due to adsorption of oxalate exuded by T. goesingense roots or associated rhizosphere microbes. This conclusion is supported by field data, showing enhanced oxalate concentrations in the rhizosphere of T. goesingense on the same experimental soil. The implications for phytoextraction and bio-available contaminant stripping (BCS) as well as for future modeling and experimental work are discussed.  相似文献   

4.
We investigate the effect of pore confinement and molecular geometry on the adsorption and self-diffusion of H2O, CO2, Ar, CH4, C3H6, SF6 and C5H12, in a realistic model of nanoporous silicon carbide derived carbon (SiC-DC), constructed using hybrid reverse Monte Carlo simulation. Adsorption isotherms, adsorbate–adsorbate and adsorbate–adsorbent contributions to the isosteric heat of adsorption are determined to study the effect of pore confinement, microporosity and molecular geometry on adsorption of these gases. We describe the cooperative effect of pore confinement and hydrogen bonding on the formation of water clusters and anomalous adsorption behaviour of water compared with non-polar gases. We find that, in contrast to literature results based on the slit-pore model, pore-filling does not occur below the saturation pressure in hydrophobic amorphous carbon materials such as SiC-DC and activated carbon fibre. We also compare self-diffusivities and activation energy barriers of water and non-polar gases in the microporous structure of SiC-DC to identify underlying correlations with molecular properties. We demonstrate that the self-diffusivity of water deviates considerably from the correlation between diffusivity and molecular kinetic diameter observed for non-polar gases. This is attributed to the reduced diffusivity of water, and its relatively large energy barrier at high loadings despite its small kinetic diameter, which is due to the blocking effect of water clusters at pore entries.  相似文献   

5.
The roles of the extractable components (Mn oxides, Fe oxides, and organic materials) of surficial sediments in controlling metals adsorption were investigated. Cu and Zn adsorptions were conducted before and after the surficial sediments extracted with hydroxylamine hydrochloride, an oxalate solution, and H 2 O 2 , respectively. The extraction removed target components with extraction efficiencies from 63 to 98%. Nonlinear regression analyses of Cu and Zn adsorptions based on the assumption of additive Langmuir adsorption isotherm were employed to estimate the relative contributions of sediment components to Cu and Zn adsorptions. The results indicate that the greatest contribution to total Cu and Zn adsorption to the surficial sediments on a molar basis was from Mn oxides in the extractable fractions. Both Cu and Zn adsorption capacities of Mn oxides exceeded those of Fe oxides by approximately one order of magnitude, fewer roles were attributed to the adsorption of organic material (OM), and the estimated contribution of the residual fraction to total Cu and Zn adsorption was insignificant. These information implied that the roles of metal oxides (Fe and Mn oxides) in the extractable form of the surficial sediments, especially Mn oxides, was the most important component in controlling heavy metal transportation in aquatic environments.  相似文献   

6.
We propose here to give an overview of gases and liquids adsorption in the materials of Institute Lavoisier (MIL)-101(Cr), MIL-53(Cr) and silica materials. We present some recent results of systems of interests such as the H2 adsorption in MIL-101(Cr) and CO2 and H2S adsorption in the MIL-53(Cr) material. In addition, we will examine the sensitivity in water force field for water adsorption in hydrophilic and hydrophobic silica nanopores and we evaluate the Gay–Berne liquid crystal adsorption in the smooth and rough pores.  相似文献   

7.
Bioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L?1 for P. vulgaris, T. aestivum, and R. crispus; and 0 and 12 mmol Ti L?1 for E. canadensis). Also examined in E. canadensis was the influence of TiO2 nanoparticles upon the uptake of Fe, Mn, and Mg, and the influence of P on Ti uptake. For the rooted plants, exposure to TiO2 nanoparticles did not affect biomass production, but significantly increased root Ti sorption and uptake. R. crispus showed translocation of Ti into the shoots. E. canadensis also showed significant uptake of Ti, P in the nutrient solution significantly decreased Ti uptake, and the uptake patterns of Mn and Mg were altered. Ti from nano-Ti was bioavailable to plants, thus showing the potential for cycling in ecosystems and for phytoremediation, particularly where water is the main carrier.  相似文献   

8.
《Process Biochemistry》1999,34(5):429-439
Fenton’s oxidation and activated carbon adsorption were examined as pretreatment processes for dyestuff wastewater having high salinity, colour, and non-biodegradable organic concentrations. In this work, each wastewater stream produced by individual production processes was classified as streams R1, R2, and R3. The stream having a value of BOD5/COD lower than 0.4 was pretreated by Fenton’s oxidation or activated carbon adsorption to increase the ratio of BOD5/COD which indicates biodegradability. For Fenton’s oxidation with one stream having a value of BOD5/COD lower than 0.4, the optimal reaction pH was 3.0 and the minimum dosing concentration (mg l−1) of H2O2:FeSO4·7H2O was 700:3500. Stream R3, which consisted mainly of methanol was efficiently treated by activated carbon adsorption. The ratio of BOD5/COD was also increased to 0.432 and 0.31 from 0.06 in Fenton’s oxidation and activated carbon adsorption, respectively. A biological treatment system using a fixed bed reactor was also investigated to enhance biological treatment efficiency at various hydraulic retention times, pretreatment conditions by Fenton’s reagent and salt concentrations by dyestuff wastewater. In addition, the efficiency of Fenton’s oxidation as a post-treatment system was also investigated to present a total treatment process of dyestuff wastewater. As the influent COD and salinity were increased, the effluent SS and COD were consequently increased. However, as the microorganisms became adapted to the changed influent condition, the treatment efficiency of the fixed bed reactor quickly recovered under the high COD and salinity since the microorganisms were well adapted to toxic influent conditions. A wastewater treatment process consisting of chemical oxidation, activated carbon adsorption, fixed bed biofilm process and Fenton’s oxidation as a post-treatment system can be useful to treat dyestuff wastewater having high salinity, colour, and non-biodegradable organic concentration.  相似文献   

9.
The purpose of the present investigation was to evaluate possible ecological and physiological functions of mucilaginous capsules produced by the freshwater algae Kirchneriella aperta Teiling (Chlorococcales) as related to copper ions. All experiments were performed using synthetic media under laboratory‐controlled conditions. Copper interactions were investigated by distinguishing between adsorption onto the mucilaginous material present at the surface of the cells, intracellular uptake, and differentiation between total dissolved copper and free copper ions in the culture medium. Kirchneriella aperta is sensitive to copper, as revealed by a 96‐h EC50 value of 10 ? 9.22 M Cu2 + . We demonstrated that the mucilaginous capsules were able to sequester copper ions from the medium through a passive mechanism, thus providing the cell with a mechanism able to postpone the toxic effects of copper. The organic material that diffuses into the test medium as well as the mucilaginous capsules produced by K. aperta both effectively complex copper; thus, toxicity must be related to free copper ions and not the total dissolved copper concentration in the medium.  相似文献   

10.
Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results.  相似文献   

11.
Bolan  N.S.  Adriano  D.C.  Duraisamy  P.  Mani  A. 《Plant and Soil》2003,256(1):231-241
We examined the effect of biosolid compost on the adsorption and complexation of cadmium (Cd) in two soils (Egmont and Manawatu) which varied in their organic matter content. The effect of biosolid compost on the uptake of Cd from the Manawatu soil, treated with various levels of Cd (0–10 mg Cd kg–1 soil), was also examined using mustard (Brassica juncea L.) plants. The transformation of Cd in soil was evaluated by a chemical fractionation scheme. Addition of biosolid compost increased negative charge in soil. The effect of biosolid compost on Cd adsorption varied between the soils, with a large portion of the sorbed Cd remaining in solution as an organic complex. Increasing addition of Cd increased Cd concentration in plants, resulting in decreased plant growth at high levels of Cd (i.e., phytotoxicity). Addition of biosolid compost was effective in reducing the phytotoxicity of Cd as indicated by the decrease in the concentration of NH4OAc extractable-Cd and soil solution-Cd. The solid-phase fractionation study indicated that the addition of biosolid compost decreased the concentration of the soluble and exchangeable Cd fraction but increased the concentration of organic-bound Cd fraction in soil. Alleviation of Cd phytotoxicity by biosolid compost can be attributed primarily to complexation of Cd by the organic matter in the biosolid compost.  相似文献   

12.
The ability of Chlorella species and two other algal blooms collected locally to take up Cu+2 and Ni+2 was investigated using infrared and scanning electron microscopy (SEM) data. The percentage of metal uptake was determined with atomic absorption spectroscopy. The effects of pH and initial concentrations of metal ions on bioaccumulation were examined. The uptake of methyl orange dye by Chlorella species was also studied using Langmuir and Freundlich adsorption isotherms.  相似文献   

13.
Direct electron uptake is emerging as a key process for electron transfer in anaerobic microbial communities, both between species and from extracellular sources, such as zero-valent iron (Fe0) or cathodic surfaces. In this study, we investigated cathodic electron uptake by Fe0-corroding Desulfovibrio ferrophilus IS5 and showed that electron uptake is dependent on direct cell contact via a biofilm on the cathode surface rather than through secreted intermediates. Induction of cathodic electron uptake by lactate-starved D. ferrophilus IS5 cells resulted in the expression of all components necessary for electron uptake; however, protein synthesis was required for full biofilm formation. Notably, proteinase K treatment uncoupled electron uptake from biofilm formation, likely through proteolytic degradation of proteinaceous components of the electron uptake machinery. We also showed that cathodic electron uptake is dependent on SO42− reduction. The insensitivity of Fe0 corrosion to proteinase K treatment suggests that electron uptake from a cathode might involve different mechanism(s) than those involved in Fe0 corrosion.  相似文献   

14.
Predicting the behavior, fate, and transport potential of a herbicide in any soil involves understanding the sorption characteristics. The sorption characteristics of glyphosate (GPS) on soil and their main components were investigated, indicating that the mineral phase is more important than the organic carbon in adsorption of GPS. Sorption isotherms were determined from each component using the batch equilibrium method at various concentrations (5, 10, 15, 20, 25, and 30 mg L?1) and sorption affinity of GPS was approximated by the Freundlich equation. The sorption strength K f [mg kg?1 (L mg?1)?n] across the various components ranged from 2.1–134.9 while the organic carbon-normalized Freundlich sorption capacity values, K foc, ranged from 1.28–3.53 mg kg?1-OC/(mg L?1)n. Infrared Fourier transform spectroscopy (FTIR) of the components showed significant structural differences. The results suggest that the presence of the oxides and hydroxides iron, in particular in soil solutions, enhanced GPS adsorption. They also suggest that reduction in OC% due to various treatments may enhance the remobilization of GPS into the aqueous phase (i.e., groundwater), though at different rates. Comparatively, contribution of surface area to the adsorption of GPS on the various components proved more significant than contents of organic carbon.  相似文献   

15.
This study provides information on the mechanism(s) of Cu and Ni ion biosorption by C. vulgaris, distinguishing adsorption from intracellular accumulation under various conditions. Surface adsorption was found to contribute maximally (>70%) to total Cu/Ni ion accumulation by the test alga (total accumulation efficiencies were 60 and 53 g metal ion mg protein–1, respectively for Cu and Ni). Maximum intracellular uptake was reported at a pH range of 6.5–7.5, whereas adsorption reached its maximum at pH 3.5 for Cu, and pH 3.5 and 6.5 in the case of Ni. 35 °C was found to be the best temperature for maximum adsorption, whereas intracellular uptake was highest at 25 °C. Though exponentially grown C. vulgaris registered maximum metal ion uptake, adsorption maxima reached the highest values in the declining phase of the culture. Heat-killed and air-dried C. vulgaris accumulated Cu and Ni at about 80% of the values for viable samples, whereas formaldehyde-treated and immobilized biomasses depicted better accumulating potential than the control cells. Na, K, Mn and Zn caused competitive inhibition, whereas for Ca a mixed-type inhibition was evident. Thus, the present study suggests that the general concept that cations inhibit metal ion accumulation by competing with them for the same binding sites on the cell surface is not absolutely valid. As these results also demonstrate that a large amount of the bound metal (>70%) is in the adsorbed fraction, it is advantageous in the sense that it could be recovered by a suitable desorbing agent, especially in case of precious metals and the biomass could be exploited for repeated use in reactors.  相似文献   

16.
Temperate terrestrial ecosystems are currently exposed to climatic and air quality changes with increased atmospheric CO2, increased temperature and prolonged droughts. The responses of natural ecosystems to these changes are focus for research, due to the potential feedbacks to the climate. We here present results from a field experiment in which the effects of these three climate change factors are investigated solely and in all combinations at a temperate heath dominated by heather (Calluna vulgaris) and wavy hair-grass (Deschampsia flexuosa).Climate induced increases in plant production may increase plant root exudation of dissolved organic compounds such as amino acids, and the release of amino acids during decomposition of organic matter. Such free amino acids in soil serve as substrates for soil microorganisms and are also acquired as nutrients directly by plants. We investigated the magnitude of the response to the potential climate change treatments on uptake of organic nitrogen in an in situ pulse labelling experiment with 15N13C2-labelled glycine (amino acid) injected into the soil.In situ root nitrogen acquisition by grasses responded significantly to the climate change treatments, with larger 15N uptake in response to warming and elevated CO2 but not additively when the treatments were combined. Also, a larger grass leaf biomass in the combined T and CO2 treatment than in individual treatments suggest that responses to combined climate change factors cannot be predicted from the responses to single factors treatments.The soil microbes were superior to plants in the short-term competition for the added glycine, as indicated by an 18 times larger 15N recovery in the microbial biomass compared to the plant biomass. The soil microbes acquired glycine largely as an intact compound (87%), with no effects of the multi factorial climate change treatment through one year.  相似文献   

17.
The mechanism(s) by which zinc is transported into cells has not been identified. Since zinc uptake is inhibited by reducing the temperature, zinc uptake may depend on the movement of plasma membrane micoenvironments, such as endocytosis or potocytosis. We investigated the potential role of potocytosis in cellular zinc uptake by incubating normal and acrodermatitis enteropathica fibroblasts with nystatin, a sterol-binding drug previously shown to inhibit potocytosis. Zinc uptake was determined during initial rates of uptake (10 min) following incubation of the fibroblasts in 50 μg nystatin/mL or 0.1% dimethyl-sulfoxide for 10 min at 37°C. The cells were then incubated with 1 to 30 μM 65zinc. Michaelis-Menten kinetics were observed for zinc uptake. Nystatin inhibited zinc uptake in both the normal and AE fibroblasts. Reduced cellular uptake of zinc was associated with its internalization, not its external binding. In normal fibroblasts, nystatin significantly reduced theK m 56% and theV max 69%. In the AE fibroblasts, nystatin treatment significantly reduced theV max 59%, but did not significantly affect theK m. The AE mutation alone affected theV max for cellular zinc uptake. The control AE fibroblasts exhibited a 40% reduction inV max compared to control normal fibroblasts. We conclude that nystatin exerts its effect on zinc uptake by reducing the velocity at which zinc traverses the cell membrane, possibly through potocytosis. Furthermore, the AE mutation also effects zinc transport by reducing zinc transport.  相似文献   

18.
Industrial wastewaters contain various heavy metal components and therefore threaten aquatic bodies. Heavy metals can be adsorbed by living or non‐living biomass. Submerged aquatic plants can be used for the removal of heavy metals. This paper exhibits the comparison of the adsorption properties of two aquatic plants Myriophyllum spicatum and Ceratophyllum demersum for lead, zinc, and copper. The data obtained from batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (qmax) were obtained for both plant species and each metal. The maximum adsorption capacities (qmax) achieved with M. spicatum were 10.37 mg/g for Cu2+, and 15.59 mg/g for Zn2+ as well as 46.49 mg/g for Pb2+ and with C. demersum they were 6.17 mg/g for Cu2+, 13.98 mg/g for Zn2+ and 44.8 mg/g for Pb2+. It was found that M. spicatum has a better adsorption capacity than C. demersum for each metal tested. Gibbs free energy and the specific surface area based on the qmax values were also determined for each metal.  相似文献   

19.
We have previously described that arachidonic acid (AA)-5-lipoxygenase (5-LO) metabolism inhibitors such as NDGA and MK886, inhibit cell death by apoptosis, but not by necrosis, induced by extracellular ATP (ATPe) binding to P2X7 receptors in macrophages. ATPe binding to P2X7 also induces large cationic and anionic organic molecules uptake in these cells, a process that involves at least two distinct transport mechanisms: one for cations and another for anions. Here we show that inhibitors of the AA-5-LO pathway do not inhibit P2X7 receptors, as judged by the maintenance of the ATPe-induced uptake of fluorescent anionic dyes. In addition, we describe two new transport phenomena induced by these inhibitors in macrophages: a cation-selective uptake of fluorescent dyes and the release of ATP. The cation uptake requires secreted ATPe, but, differently from the P2X7/ATPe-induced phenomena, it is also present in macrophages derived from mice deficient in the P2X7 gene. Inhibitors of phospholipase A2 and of the AA-cyclooxygenase pathway did not induce the cation uptake. The uptake of non-organic cations was investigated by measuring the free intracellular Ca2 + concentration ([Ca2 +]i) by Fura-2 fluorescence. NDGA, but not MK886, induced an increase in [Ca2 +]i. Chelating Ca2 + ions in the extracellular medium suppressed the intracellular Ca2 + signal without interfering in the uptake of cationic dyes. We conclude that inhibitors of the AA-5-LO pathway do not block P2X7 receptors, trigger the release of ATP, and induce an ATP-dependent uptake of organic cations by a Ca2 +- and P2X7-independent transport mechanism in macrophages.  相似文献   

20.
Abstract

A series of batch adsorption experiments were carried out, with the aim of removing cadmium ions from aqueous solutions and water samples using powdered marble wastes (PMW) as an effective inorganic sorbent. PMW is inexpensive, widespread, and may be considered as environmental problem. The main parameters (i.e. solution pH, sorbent and cadmium concentrations, stirring time, and temperature) influencing the sorption process were investigated. The results obtained for sorption of cadmium ions onto PMW are well described by the Freundlich and Langmuir models. The Dubinin-Radushkevick (D–R) isotherm model was applied to describe the nature of the adsorption of the metal ion; it was found that the adsorption process was chemical in nature. The thermodynamic parameters were also calculated from the Gibbs free energy change (ΔG°), enthalpy (AH°) and entropy (ΔS°). These parameters indicated that the adsorption process of cadmium(II) ions on PMW was spontaneous and endothermic in nature. Under the optimum experimental conditions employed the removal of ca ~100% of Cd2+ ions was attained. The procedure was successfully applied to removal of the cadmium ions from aqueous and various natural water samples. The adsorption mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号