首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bolan  N. S.  Adriano  D. C.  Duraisamy  P.  Mani  A.  Arulmozhiselvan  K. 《Plant and Soil》2003,250(1):83-94
The effect of phosphate on the surface charge and cadmium (Cd) adsorption was examined in seven soils that varied in their variable-charge components. The effect of phosphate on immobilization and phytoavailability of Cd from one of the soils, treated with various levels of Cd (0–10 mg Cd kg–1 soil), was further evaluated using mustard (Brassica juncea L.) plants. Cadmium immobilization in soil was evaluated by a chemical fractionation scheme. Addition of phosphate, as KH2PO4, increased the pH, negative charge and Cd adsorption by the soils. Of the seven soils examined, the three allophanic soils (i.e., Egmont, Patua and Ramiha) exhibited greater increases in phosphate-induced pH, negative charge and Cd2+ adsorption over the other four non-allophanic soils (i.e., Ballantrae, Foxton, Manawatu ad Tokomaru). Increasing addition of Cd enhanced Cd concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Addition of phosphate effectively reduced the phytotoxicity of Cd. There was a significant inverse relationship between dry matter yield and Cd concentration in soil solution. Addition of phosphate decreased the concentration of the soluble + exchangeable Cd fraction but increased the concentration of inorganic-bound Cd fraction in soil. The phosphate-induced alleviation of Cd phytotoxicity can be attributed primarily to Cd immobilization due to increases in pH and surface charge.  相似文献   

2.
The effect of pH-increases due to Ca(OH)2 and KOH addition on the adsorption of cadmium (Cd) was examined in two soils which varied in their variable-charge components. The effect of Ca(OH)2 on immobilization and phytoavailability of Cd from one of the soils, treated with various levels of Cd (0–10 mg Cd kg–1 soil), was further evaluated using mustard (Brassica juncea L.) plants. Cadmium immobilization in soil was evaluated by a chemical fractionation scheme. The addition of Ca(OH)2 and KOH increased the soil pH, thereby increasing the adsorption of Cd, the effect being more pronounced in the soil dominated by variable charge components. There was a greater increase in Cd2+ adsorption in the KOH-treated than the Ca(OH)2-treated soil, which is attributed to the greater competition of Ca2+ for adsorption. Increasing addition of Cd enhanced Cd concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Although addition of Ca(OH)2 effectively reduced Cd phytotoxicity, Cd uptake increased at the highest level, probably due to decreased Cd2+ adsorption resulting from increased Ca2+ competition. There was a significant inverse relationship between dry matter yield and Cd concentration in soil solution. Addition of Ca(OH)2 decreased the concentration of the soluble + exchangeable Cd fraction but increased the concentration of inorganic-bound Cd fractions in soil. Since there was no direct evidence for CdCO3 or Cd(OH)2 precipitation in the variable charge soil used for the plant growth experiment, alleviation of phytotoxicity can be attributed primarily to immobilization of Cd by enhanced pH-induced increases in negative charge.  相似文献   

3.
Abstract

This study investigated the effect of two organic amendments (compost of cattle ruminai content and Sphagnum-moss peat) on the reduction of hexavalent chromium and the distribution of this metal among the main solid phases of a soil with low organic matter content treated with different levels of Cr(VI) (0–2000 mg Cr kg?1 soil). At the same level of added organic carbon, the peat reduced Cr(VI) added to the soil from 250 to 2000 mg kg?1, with 100% efficiency. The reduction efficiency of the compost, however, decreased with the increasing dose of Cr(VI) soil. The distribution of Cr between the different soil components was evaluated by a sequential chemical extraction procedure. The concentration of water-soluble and exchangeable Cr decreased with the addition of organic amendments to the soil, whereas Cr increased in the organic fraction. The effect of added organic material on the Cr absorption was examined with two ornamental plants (Melissa officinalis and Begonia semperflorens). The increased Cr(VI) in the soil increased the Cr concentration in plant tissues. The addition of organic matter produced a greater aerial biomass for each level of added Cr in comparison with unamended soil. Sphagnum moss peat was more effective than the compost to decrease the total Cr and the Cr(VI) concentration in the water-soluble and exchangeable fraction of soil, thereby reducing the Cr accumulation in plants tissues and phytotoxic symptoms.  相似文献   

4.
Composting is a realistic option for disposal of olive mill pomace (OMP) by making it suitable as a soil amendment for organic farming. The chemical and physical characteristics and contribution of particle-size fractions to total nutrients and carbon mineralization of seven commercial composts of OMP (COMP) were investigated. Higher proportions of manure, co-composted with OMP, reduced the organic matter (OM), total carbon and C:N ratio of the product, but increased the content of nutrients and fine particles. The fine particles had higher nutrient contents, but less OM and carbon and, unlike larger particles, did not exhibit any phytotoxicity. Less than 1.5% of added carbon was mineralized in whole compost, but a lower rate was found with larger particles. Separation of COMP by particle size fractionation and application as a soil conditioner is recommended for better optimization of COMP with the <1 mm fraction providing the higher quality compost.  相似文献   

5.
The contamination of agricultural soils by heavy metals is a worldwide problem. Degradation of organic matter (OM) from organic amendments used in the remediation of metal-contaminated soils leads to changes in soil chemical properties shortly after their addition, which may affect the soil metal distribution. The effects of four differing organic amendments on chemical forms of Pb and Cd in a contaminated soil were investigated in a pot experiment of control unamended soil and soils amended with dry cow and poultry manures (20 g CM or PM kg?1 soil), and cow and poultry manure extracts (2 g CME or PME kg?1 soil) cultured with cannabis sativa. After eight weeks, a sequential extraction scheme was used to fractionate soil Pb and Cd into soluble-exchangeable (Sol-Exch), organic matter associated (AOM), and carbonates associated (ACar) forms. The addition of animal manures and their extracts increased the DTPA-extractable Pb and Cd in soil significantly. Soil Pb and Cd in Sol-Exch fraction were increased by manure applications. Both Pb and Cd in AOM fraction were increased by application of manures and their extracts. This increase was more obvious for Pb in application of cow and poultry manure extracts. The ACar chemical forms of Pb and Cd were also increased by application of manures and their extracts. The increases of Pb and Cd in Acar fraction was noticeable in soils treated with cow manure. Soil cultivation with cannabis sativa increased available, Sol-Exch, and AOM chemical forms of Pb in soil significantly compared to control soil. However, soil Pb and Cd in ACar fraction were decreased significantly by cannabis cultivation. The effect of cannabis cultivation on all of the Cd chemical forms (except on Sol-Exch) was similar to the results of Pb chemical forms. Plant cultivation had no significant effect on Cd in Sol-Exch chemical form.  相似文献   

6.
Metal adsorption is an important process at the soil-solution interface that controls metal bioavailability and toxicity. In this study, batch adsorption experiments were conducted to investigate the binding of Cd, Hg and Pb in soils collected from around metal smelters in Quebec and Ontario, Canada. It was found that soil organic matter enhanced the retention of Cd, Hg and Pb. Assuming that the surfaces of soil particles behaved similarly to organic matter, we used the Non-Ideal Competitive Adsorption (NICA)-Donnan model to derive the parameters for surface complexation of the three metals. The shape of the Cd, Hg and Pb adsorption isotherms are briefly discussed with respect to the results of the experimental measurements and the model predictions. The average values of the NICA-Donnan model parameters could be used to give reasonable predictions of metal sorption in the soils of this study.  相似文献   

7.
Bioavailability and mobility of heavy metals (HMs) in soils are determined by their partitioning between solution and solid-phase and their further redistribution among solid-phase components. A study was undertaken to determine the effects of organic matter (OM) and salinity on cadmium (Cd) and lead (Pb) distribution among soil fractions. Three agricultural soils were treated with 20 mg Cd/kg as Cd (NO3)2·4H2O, 150 mg Pb/kg as Pb (NO3)2, 20 g/kg alfalfa powder, and 50 mmol/kg of NaCl, and then incubated at 60% water holding capacity (60% WHC) and constant temperature (25°C) for 12 weeks. Various fractions of Cd and Pb were extracted from the soils after 2 and 12 w of incubation using a sequential extraction technique. Results showed that in the early stage of incubation (2 w), added Pb were found mainly in the specifically sorbed (SS) and amorphous Fe oxides (AFeO) fractions and added Cd found in SS and Mn oxides (MnO) fractions. Addition of 2% OM decreased the exchangeable (EXC) Pb fraction almost in all soils, whereas it had a different effect on the EXC Cd fraction depending on soil pH. Addition of NaCl increased the EXC Cd fraction in two soils, but it did not alter Pb fractions. At the end of the incubation period, Pb decreased in the EXC and MnO fractions except in the neutral soil and Cd decreased mainly in the SS fraction.  相似文献   

8.
We evaluate the mid-term effects of two amendments and the establishment of R. officinalis on chemical and biochemical properties in a trace element contaminated soil by a mine spill and the possible use of this plant for stabilization purposes. The experiment was carried out using containers filled with trace element polluted soil, where four treatments were established: organic treatment (biosolid compost, OAR), inorganic treatment (sugar beet lime, IAR), control with plant (NAR) and control without plant (NA). Amendment addition and plant establishment contributed to restore soil chemical (pH, total organic carbon, and water soluble carbon) and biochemical properties (microbial biomass carbon and the enzymatic activities: aryl-sulphatase and protease). The presence of rosemary did not affect soluble (0.01 M CaCl2) Cd and Zn and decreased trace element EDTA extractability in amended soils. There were no negative effects found on plant growth and nutrient content on polluted soils (NAR, OAR, and IAR). Trace element contents were within normal levels in plants. Therefore, rosemary might be a reliable option for successful phytostablization of moderate trace element contaminated soils.  相似文献   

9.
堆肥对土壤重金属垂直分布的影响与污染评价   总被引:8,自引:1,他引:7  
对不同畜禽粪便堆肥与土壤重金属垂直分布的关系进行了研究.结果表明,在畜禽粪便堆肥过程中,粪堆下土壤pH值和有机质显著增加,其pH和有机质含量的垂直分布表现为从表层到底层逐渐降低.各种畜禽粪便粪堆下土壤Zn、Cd含量明显增高,且从表层到底层呈逐渐减小的趋势.鸡粪和猪粪堆下土壤Cu含量随土层深度增加而降低;牛粪堆下土壤Cu含量随土层深度增加没有明显的变化.自然条件下Cd和Zn在土壤系统中的迁移能力大于Cu.各粪堆下的部分土层Cu、Zn、Cd含量超过我国土壤环境质量一级标准.应用地质积累指数法对各土层污染评价的结果表明,只有肉鸡粪堆下0~10cm土壤和蛋鸡粪堆下0~40cm土壤受到轻度Zn污染,其它粪堆下各土层均未受到Cu、Zn、Pb和Cd污染.  相似文献   

10.
Degradation of organic matter (OM) from organic amendments used in the remediation of metal contaminated soils leads to changes in soil chemical properties shortly after their addition, which may affect the soil metal distribution. The effects of two differing organic amendments on OM mineralisation and fractionation of heavy metals in a contaminated soil were investigated in an incubation experiment. The treatments were: control unamended soil, soil amended with fresh cow manure, and soil amended with a compost having a high maturity degree. The soil used was characteristic of the mining area at La Unión (Murcia, Spain) with 28% CaCO(3) and sandy-loam texture (pH 7.7; 2602 mg kg(-1)Zn; 1572 mg kg(-1)Pb). Manure and compost C-mineralisation after 56 days (24% and 3.8%, respectively) were below values reported previously for uncontaminated soils. Both amendments favoured Zn and Pb fixation, particularly the manure. Mn solubility increased at the beginning of the experiment due to a pH effect, and only Cu solubility increased through organic matter chelation in both amended soils.  相似文献   

11.
The effect of addition of a municipal solid waste (MSW) compost and its water-soluble and humic fraction to suppress the effect of Pythium ultimum on pea plants was studied and compared with that of a chemical pesticide (metalaxyl). The biotic and abiotic characteristics of compost involved in the biocontrol effects of these materials were also evaluated. The addition into soil of whole composts and their humic fractions reduced the effect of the pathogen on pea plants, significantly reducing the number of root lesions and Pythium populations and avoiding reductions of plant growth. The greatest pathogen suppression was achieved with the chemical pesticide. However, it also caused a significant decrease in the number of nontarget bacteria and fungi and on beneficial soil microorganisms such as Trichoderma and Pseudomonas. Addition of organic amendments increased population size of nontarget and specific biocontrol microorganisms. The humic fraction showed similar results to compost. All this suggests that metalaxyl has a nonspecific effect, producing adverse effects on aspects of soil quality. This was avoided if the chemical pesticide was reduced and replaced by organic amendments such as an MSW compost or its humic fraction.  相似文献   

12.
The Cu-saturated selective ion exchange resin (DOWEX M4195) extraction method was used to investigate the effects of two amendments, 5 and 15% organic matter in the form of hog-dung compost (HC) or cattle-dung compost (CC), on Cr(VI) bioavailability in three soils spiked with various levels of Cr(VI). The results showed that addition of composts could decrease the amounts of resin-extractable Cr(VI) in Cr(VI)-spiked soils, and the CC amendment decreased resin-extractable Cr(VI) more than the HC amendment. The X-ray Absorption Near-edge Structure spectroscopy (XANES) method was used to examine the distribution of Cr(III) and Cr(VI) species in Cr(VI)-spiked soils that were affected by compost amendments, and to elucidate the mechanisms for the decrease of resin-extractable Cr(VI) due to the application of composts. The XANES results suggested that the decrease in the amounts of resin-extractable Cr(VI) after compost addition was mainly due to the reduction of Cr(VI) to Cr(III). The amounts of soil resin-extractable Cr(VI) were also correlated with wheat seedling growth in order to evaluate the effect of compost amendments on decreasing the phytotoxicity of soil Cr(VI). The results showed that there was a sigmoidal relationship between soil resin-extractable Cr(VI) and the plant height of wheat seedlings and the obtained effective concentrations of resin-extractable Cr(VI) resulting in 10 and 50% growth inhibition (EC10 and EC50) were 76 and 191 mg kg−1 respectively. The above results suggested that the resin extraction method was a useful tool for assessing Cr(VI) phytotoxicity and that addition of composts would enhance Cr(VI) reduction to Cr(III) in soils and thus relieve Cr(VI) phytotoxicity.  相似文献   

13.
On soils differing in total Cd concentration, organic matter content and pH, but with the same compost treatment, a significant linear relation was found between the calculated Cd2+ concentration of the soil solution and the Cd concentration of lettuce grown under field conditions. The Cd2+ concentration was calculated with the equation for the exchange reaction between Cd2+ and Ca2+.  相似文献   

14.
水溶性有机质对土壤中镉吸附行为的影响   总被引:74,自引:7,他引:67  
水溶性有机质 (DOM)是陆地生态系统和水生生态系统中的一种很活跃的组分 .本文以赤红壤、水稻土和褐土作为供试土壤 ,研究了来源于稻秆和底泥的DOM对土壤中Cd吸附行为的影响 .DOM对土壤中Cd的吸附行为具有明显的抑制作用 .这种抑制作用与土壤类型和DOM种类有关 .在 3种供试土壤中 ,无论添加稻秆DOM还是底泥DOM ,都会使Cd的最大吸附容量和吸附率明显降低 ,其下降幅度为17 3%~ 93 9%.在添加同一种DOM的前提下 ,DOM对Cd吸附的抑制作用均为 :赤红壤 >水稻土 >褐土 .如果不添加DOM ,则土壤对Cd的最大吸附容量主要取决于土壤固相的吸附特性 ,添加DOM后土壤对Cd的最大吸附容量则主要取决于液相中的DOM .由此推断 ,传统的看法 ,通过施用有机肥来固定土壤中的Cd并达到治理重金属污染土壤的观点值得商榷 .  相似文献   

15.
The extent of contamination of soils by toxic heavy metals not only depends on the rate of loading of the metal but also on the nature of the adsorbing surfaces, the degree of alkalinity or acidity of the soil and the presence of aqueous complexant ligands. This work reports on the role of pH on the retention of Cd, Hg, Pb and Zn by two soils and on the influence of the chloride, Cl‐, ion on the chemical speciation and retention of the four metals. Batch adsorption experiments were conducted from pH 3 to 7 in the presence of either 0.1 M LiCl or LiClO4. The results of the study showed that high concentrations of Cl ions can greatly decrease the retention of Hg and have an increasingly lesser effect on Cd, Pb and Zn retention. The effect of the Clons was directly related to the metal‐Cl formation constants. The results of computer modeling of Cd and Hg retention by goethite and humic acid fractions indicated the relative importance of aqueous vs. surface complexation on metal retention. For organic surfaces, which do not form ternary surface complexes, the presence of aqueous complexant ligands should always decrease the adsorption of the metal. For mineral surfaces, which do form ternary surface complexes, there may be increased or decreased metal retention depending on the formation constant of the aqueous metal‐ligand species, the intrinsic complexation constants for the various binary and ternary complexes of the metal and the concentration of the complexant ligand. Thus for Hg, which forms very strong aqueous species with Cl ions, reduced adsorption on goethite was predicted in the presence of 0.1 M LiCl, while enhanced adsorption was predicted for Cd and Pb. The results suggest caution in the disposal of Cl‐containing wastes onto metal‐contaminated soils. The deleterious effects of Cl ion addition would be greatest for soils with relatively high organic matter contents and low contents of hydrous ferric oxides.  相似文献   

16.
Abstract

The retention of Cd by an organic soil was investigated as a function of pH and ionic strength. The adsorption of Cd at pH values from 2 to 11 at two ionic strengths (0.053 M and 0.017 M LiNO3) were found to be a function of both pH and ionic strength. Four Cd-humic complexation models were evaluated in order to test the applicability of these models to fit data from batch adsorption experiments. The models varied greatly in their complexity and implicit assumptions. Three were discrete functional group models – a simple diprotic acid model, a two diprotic acid model and the Windermere Humic Aqueous Acid (WHAM) model, and a continuous functional group model - the non-ideal competitive adsorption (NICA) model. The concentration of proton binding sites in the soil was found to be 4.51 mol kg-1. The NICA and WHAM models were more successful than either a simple diprotic acid model or a two diprotic acid model at modeling Cd complexation by the organic soil, although both underestimated adsorption at very high pH values.  相似文献   

17.
Using hyperaccumulator plants to phytoextract soil Ni and Cd   总被引:2,自引:0,他引:2  
Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd phytoextraction, but annual removals are much lower than the best T. caerulescens. Improved cultivars with higher yields and retaining this remarkable Cd phytoextraction potential are being bred using normal plant breeding techniques.  相似文献   

18.
A limiting factor in land application of sewage sludge is the resultant heavy metal accumulation in soils followed by biomagnification in the food chain, posing a potential hazard to animal and human health. In view of this fact, pot experiments were conducted to evaluate the effect of digested sludge application to soil on phytotoxicity of heavy metals such as Cd, Cr, Ni, and Pb to radish (Raphanus sativus L.) plants. Increasing sludge levels resulted in increased levels of DTPA-extractable heavy metals in the soil. Cadmium was the dominant metal extracted by DTPA followed by Ni, Pb, and Cr. The extractability of metals by DTPA tended to decrease from the first to the second crop. Dry matter yield of radish increased significantly as a function of increasing sludge treatments. Soil application of sludge raised the concentration of one or more heavy metals in plants. Shoots contained higher concentrations of Cd, Cr, and Ni than the roots of radish plants. Shoot concentrations of Cd, Cr, Ni, and Pb were within the tolerance levels of this crop at all rates of sludge application. Shoot as well as root concentration of Cd was above 0.5 mg kg?1, considered toxic for human and animal consumption. The levels of DTPA-extractable Cd and Ni were less correlated while those of Cr and Pb were more correlated with their respective shoot and root contents. The results emphasize that accumulation of potentially toxic heavy metals in soil and their build-up in vegetable crops should not be ignored when sludge is applied as an amendment to land.  相似文献   

19.
In 1998, a toxic mine spill polluted a 55-km2 area in a basin southward to Doñana National Park (Spain). Subsequent attempts to restore those trace element-contaminated soils have involved physical, chemical, or biological methodologies. In this study, the restoration approach included application of different types and doses of organic amendments: biosolid compost (BC) and leonardite (LEO). Twelve years after the last addition, molecular analyses of arbuscular mycorrhizal (AM) fungal communities associated with target plants (Lamarckia aurea and Chrysanthemum coronarium) as well as analyses of trace element concentrations both in soil and in plants were performed. The results showed an improved soil quality reflected by an increase in soil pH and a decrease in trace element availability as a result of the amendments and dosages. Additionally, the phylogenetic diversity of the AM fungal community increased, reaching the maximum diversity at the highest dose of BC. Trace element concentration was considered the predominant soil factor determining the AM fungal community composition. Thereby, the studied AM fungal community reflects a community adapted to different levels of contamination as a result of the amendments. The study highlights the long-term effect of the amendments in stabilizing the soil system.  相似文献   

20.
The Puchuncaví valley, central Chile, has been exposed to aerial emissions from a copper smelter. Nowadays, soils in the surroundings are sparsely-vegetated, acidic, and metal-contaminated, and their remediation is needed to reduce environmental risks. We assessed effectiveness of lime, fly ash, compost, and iron grit as amendments to immobilize Cu in soils and promote plant growth. Amended soils were cultivated with Lolium perenne for 60 days under controlled conditions. Total dissolved Cu and Cu2+ activity in the soil solution, ryegrass biomass, and Cu accumulation in plant tissues were measured. Addition of lime and fly ash decreased Cu concentrations and Cu2+ activity in the soil solution, increased plant biomass, and reduced shoot Cu concentration below 22 mg kg(-1) (the phytotoxicity threshold for the species). The most effective amendment with respect to the shoot biomass yield was a combination of lime and compost. Water content of the substrate and the K accumulation were positively correlated with the compost application rate. Compost combined with iron grit decreased dissolved Cu concentrations during the period of highest solubility, i.e., during the first 60 days after the compost application. However, iron grit incorporation into soils amended with lime and compost decreased the shoot biomass of ryegrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号