首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
稳恒磁场抑制肿瘤增殖的实验研究与理论探讨   总被引:2,自引:0,他引:2  
朱杰西 《生物磁学》2006,6(1):10-13
作为模型处理最简单的稳恒磁场,其与肿瘤作用的研究是最具理论和实际意义的.分别介绍了稳恒磁场作用于微循环系统、免疫系统对肿瘤的间接抑制和杀伤作用,磁场影响自由基代谢和细胞膜及细胞内结构对肿瘤的抑制作用;回顾了磁场干扰细胞周期、诱导细胞凋亡对肿瘤的影响,并介绍了稳恒磁场联合抗癌药物在治癌中的应用现状;最后结合实验的进展情况,分析探讨了稳恒磁场抑制肿瘤细胞增殖的物理机理,对肿瘤磁疗的发展前景进行了展望.  相似文献   

2.
目的:探索全身暴露强度为4.0 m T中强度稳恒磁场对于糖尿病性动脉粥样硬化的血脂和血液流变学影响,以明确稳恒磁场对糖尿病性动脉粥样硬化的潜在作用效果。方法:选择3月龄雄性SD大鼠30只,随机等分至空白对照组、糖尿病组及糖尿病磁场暴露组。糖尿病和糖尿病磁场暴露组的大鼠采用链脲佐菌素+维生素D3+高脂饮食组合作用法建立糖尿病性动脉粥样硬化大鼠模型,对糖尿病磁场暴露组施加2小时/天、强度为4.0 m T的全身稳恒磁场暴露,连续刺激8周后,检测空腹血糖、血清胰岛素、血脂四项(血清总胆固醇、甘油三酯、高密度脂蛋白胆固醇以及低密度脂蛋白胆固醇)以及血液流变参数(低切全血粘度、中切全血粘度、高切全血粘度以及血浆粘度)。结果:稳恒磁场暴露显著抑制了糖尿病动脉粥样硬化大鼠血清总胆固醇、甘油三酯、高密度脂蛋白胆固醇和低密度脂蛋白胆固醇的升高(P0.05),同时也显著降低了低切、中切和高切全血粘度以及血浆粘度(P0.05),但对血糖和血清胰岛素的影响不显著(P0.05)。结论:中强度稳恒磁场可显著降低糖尿病性动脉粥样硬化大鼠的血脂水平并改善其血液流变学。  相似文献   

3.
目的:观察磁性四氧化三铁(Fe3O4)纳米粒子对肝癌细胞的体外作用,并研究外加稳恒磁场(SMF)或交变磁场(EMF)对Fe3O4纳米粒子作用的影响。方法:光镜下观察CBRH-7919细胞对Fe3O4纳米粒子的吞噬作用;MTT法检测Fe3O4纳米粒子对大鼠肝癌细胞株CBRH-7919的毒性及外加磁场的影响;流式细胞术检测外加磁场作用下Fe3O4纳米粒子对细胞凋亡及线粒体膜电位的影响。结果:光镜下可见CBRH-7919细胞吞噬大量Fe3O4纳米粒子入胞浆,且交变磁场作用下细胞的吞噬量增加。30~100μg/mL Fe3O4纳米粒子作用于CBRH-7919细胞未产生细胞毒性,稳恒磁场对其作用无影响,而交变磁场能增加Fe3O4纳米粒子的毒性,使细胞活性降低、凋亡率增加、线粒体膜电位降低。结论:交变磁场能增加CBRH-7919细胞对Fe3O4纳米粒子的吞噬并产生细胞毒性。  相似文献   

4.
邢娟  刘军锋  李金莲  闫鹏 《生物磁学》2012,(31):6055-6059,6028
目的:观察磁性四氧化三铁(Fe3O4)纳米粒子对肝癌细胞的体外作用,并研究外加稳恒磁场(SMF)或交变磁场(EMF)对FeID4纳米粒子作用的影响。方法:光镜下观察CBRH-7919细胞对Fe3O4纳米粒子的吞噬作用;MTT法检测Fe304纳米粒子对大鼠肝癌细胞株CBRH-7919的毒性及外加磁场的影响;流式细胞术检测外加磁场作用下Fe3O4纳米粒子对细胞凋亡及线粒体膜电位的影响。结果:光镜下可见CBRH-7919细胞吞噬大量Fe3O4纳米粒子入胞浆,且交变磁场作用下细胞的吞噬量增加。30-100μg/mLFe3O4纳米粒子作用于CBRH-7919细胞未产生细胞毒性,稳恒磁场对其作用无影响,而交变磁场能增加Fe3O4纳米粒子的毒性,使细胞活性降低、凋亡率增加、线粒体膜电位降低。结论:交变磁场能增加CBRH-7919细胞对Fe3O4纳米粒子的吞噬并产生细胞毒性。  相似文献   

5.
化学疗法为肿瘤临床治疗的常规方法,存在毒副作用大、抗药性强等缺陷。为了提高药物的利用效率,减少药物引起的毒副作用,将8.8 m T稳恒磁场分别与顺铂、阿霉素联用,经MTT检测发现磁场与药物联用可对肝癌细胞Hepa1-6生长具有协同抑制的效应,经HE染色发现联合处理组细胞发生明显的形态学改变。流式细胞仪检测显示磁场能增加顺铂对G2/M期细胞的滞留,而磁场与阿霉素共同作用可将细胞阻止于G1期和G2/M期。经彗星电泳检测表明磁场能够增强药物对DNA的损伤,且原子力显微镜观察发现联合处理组细胞膜表面出现较大且较深的孔洞,表面结构破坏严重。实验结果表明,抗肿瘤药物与磁场联用技术可有效抑制肿瘤细胞的生长,减少药物的使用浓度,为将抗肿瘤药物与磁场应用于临床治疗恶性肿瘤提供了一个全新的思路与策略。  相似文献   

6.
本文通过溶胶-凝胶法制备了BiFeO_3@TiO_2复合纳米颗粒,利用透射电镜(TEM)、X射线衍射(XRD)、荧光发光光谱等对纳米颗粒进行表征。研究采用Cell Counting Kit-8(CCK-8)法分别检测了在暗室条件、光照条件以及不同强度的弱稳恒磁场作用下,用终值质量浓度为50μg/mL纳米颗粒处理HL60细胞活性,试验结果表明:在暗室条件下,药物质量浓度为50μg/mL,与HL60细胞共同孵育12 h后,BiFeO_3@TiO_2复合纳米颗粒随着TiO_2外壳厚度增加,细胞的暗室相对存活率从78%增加到85%;在光照条件下,有弱稳恒磁场作用的BiFeO_3与TiO_2质量比为1∶2的BiFeO_3@TiO_2复合纳米颗粒对HL60细胞的PDT灭活效率最高达到78%,弱稳恒磁场环境增强了对HL60细胞的PDT灭活效率,这为对弱稳恒磁场环境下的光动力疗法治疗白血病肿瘤细胞的临床应用提供了参考。  相似文献   

7.
目的:研究不同处理时间稳恒磁场协同抗癌药物环磷酰胺对人白血病细胞K5 6 2的杀伤作用。方法:K5 6 2细胞经不同浓度的环磷酰胺和/或磁场处理12h或2 4h后,MTT法检测。数据进行统计学分析处理。结果:单纯磁场处理时,磁场对K5 6 2细胞的杀伤作用表现在2 4h(P <0 .0 1) ;环磷酰胺单纯处理K5 6 2细胞12h ,在0 .4和0 .8mg/mL浓度时对肿瘤细胞的生长没有影响(P >0 .0 5 ) ,在1.6和3.2mg/mL浓度下环磷酰胺对细胞有杀伤作用(P <0 .0 1) ;0 .4mg/mL环磷酰胺联合磁场处理K5 6 2细胞12~2 4h后,细胞活性均极显著的低于单纯环磷酰胺处理组(P <0 .0 1)。结论:9mT稳恒磁场对环磷酰胺杀伤肿瘤细胞具有一定的协同作用,磁场处理可以增加环磷酰胺的抗肿瘤效应。  相似文献   

8.
肿瘤热疗已成为一种重要的治癌手段 ,但是对于人体深层部位的肿瘤 ,由于人体内各部脏器组织对电磁波的干扰及人体内各部分物理特性的非均匀性 ,肿瘤热疗的疗效并不显著。本文提出一种提高肿瘤热疗疗效的新方法 ,它能使肿瘤热疗既适用于浅层肿瘤的治疗又适用于深层肿瘤的治疗 ;通过静脉注射将多晶铁纤维注入血管 ,利用稳恒梯度磁场诱导多晶铁纤维定位于肿瘤病灶局部 ,然后在微波照射下 ,多晶铁纤维将有效地吸收微波能量 ,并将其转换成热能对肿瘤组织加热 ,杀灭肿瘤细胞。本文对多晶铁纤维提高肿瘤热疗疗效的应用基础进行了研究 ,并得出重要结论 ;多晶铁纤维通过很强的畴壁运动损耗和宏观涡流损耗将入射的微波能量转换成热能从而对肿瘤加温 ;热疗过程中当微波频率为 1 1GHz时多晶铁纤维吸收转换微波能量的效率最高 ;稳恒梯度磁场可用于诱导多晶铁纤维定位于肿瘤病灶局部等。随着研究的深入 ,多晶铁纤维将使肿瘤热疗发展成更为重要的肿瘤治疗手段。  相似文献   

9.
应用多晶铁纤维提高肿瘤热疗疗效的基础研究   总被引:5,自引:3,他引:2  
肿瘤热疗已成为一种重要的治癌手段,但是对于人体深层部位的肿瘤,由于人体内各部脏器组织对电磁波的干扰及人体内各部分物理特性的非均匀性,肿瘤热疗的疗效并不显。本提出一种提高肿瘤热疗疗效的新方法,它能使肿瘤热疗既适用于浅层肿瘤的治疗又适用于深层肿瘤的治疗:通过静脉注射将多晶铁纤维注入血管,利用稳恒梯度磁场诱导多晶铁纤维定位于肿瘤病灶局部,然后在微波照射下,多晶铁纤维将有效地吸收微波能量,并将其转换成热能对肿瘤组织加热,杀灭肿瘤细胞。本对多晶铁纤维提高肿瘤热疗疗效的应用基础进行了研究,并得出重要结论;多晶铁纤维通过很强的畴壁运动损耗和宏观涡流损耗将入射的微波能量转换成热能从而对肿瘤加温;热疗过程中当微波频率为11GHz时多晶铁纤维吸收转换微波能量的效率最高;稳恒梯度磁场可用于诱导多晶铁纤维定位于肿瘤病灶局部等。随着研究的深入,多晶铁纤维将使肿瘤热疗发展成更为重要的肿瘤治疗手段。  相似文献   

10.
综述了磁场抑制肿瘤的机理。磁场可以抑制肿瘤组织的供血与代谢,损伤肿瘤细胞的DNA,诱导肿瘤细胞凋亡,以及增强机体对肿瘤的免疫作用等。  相似文献   

11.
Magnetic resonance imaging (MRI) machines have horizontal or upright static magnetic field (SMF) of 0.1–3 T (Tesla) at sites of patients and operators, but the biological effects of these SMFs still remain elusive. We examined 12 different cell lines, including 5 human solid tumor cell lines, 2 human leukemia cell lines and 4 human non-cancer cell lines, as well as the Chinese hamster ovary cell line. Permanent magnets were used to provide 0.2–1 T SMFs with different magnetic field directions. We found that an upward magnetic field of 0.2–1 T could effectively reduce the cell numbers of all human solid tumor cell lines we tested, but a downward magnetic field mostly had no statistically significant effect. However, the leukemia cells in suspension, which do not have shape-induced anisotropy, were inhibited by both upward and downward magnetic fields. In contrast, the cell numbers of most non-cancer cells were not affected by magnetic fields of all directions. Moreover, the upward magnetic field inhibited GIST-T1 tumor growth in nude mice by 19.3% (p < 0.05) while the downward magnetic field did not produce significant effect. In conclusion, although still lack of mechanistical insights, our results show that different magnetic field directions produce divergent effects on cancer cell numbers as well as tumor growth in mice. This not only verified the safety of SMF exposure related to current MRI machines but also revealed the possible antitumor potential of magnetic field with an upward direction.  相似文献   

12.
Previous assays with weak sinusoidal magnetic fields (SMF) have shown that bacteria that had been exposed to a 50 Hz magnetic field (0.1–1 mT) gave colonies with significantly lower transposition activity as compared to sham-exposed bacteria. These experiments have now been extended by using a pulsed-square wave magnetic field (PMF) and, unexpectedly, it was found that bacteria exposed to PMF showed a higher transposition activity compared to the controls. The increase of the transposition activity was positively correlated with the intensity of the magnetic fields (linear dose-effect relation). This phenomenon was not affected by any bacterial cell proliferation, since no significant difference was observed in number and size of PMF-exposed and sham-exposed colonies. In addition, the cell viability of E. coli was significantly higher than that of the controls when exposed to SMF, and lower than that of the controls when exposed to PMF. Under our experimental conditions it was shown that exposure to PMF stimulates the transposition activity and reduces cell viability of bacteria, whereas exposure to SMF reduces the transposition mobility and enhances cell viability. These results suggest that the biological effects of magnetic fields may critically depend on the physical characteristics of the magnetic signal, in particular the wave shape.  相似文献   

13.
Natural killer (NK) cells are innately immune to the body’s immune system and can actively recognize and kill cancer cells. This study explores the potential for enhancing the killing ability of NK cells by co-culturing the NK cells with the target cells under a static magnetic field (SMF). In this study, NK92-MI cell lines were cultured in the presence of a 0.4-T SMF. The effect of the SMF on NK cell viability was evaluated by means of an MTT assay. Culturing tests were performed with inhibitors of the DAG/IP3, STAT3, ERK, JNK and p38 pathways in order to examine the possible signaling cascade responsible for the SMF effect on the NK92-MI cell viability. Finally, the effect of the SMF on the cytotoxicity of the NK92-MI cells was evaluated by co-culturing the NK cells with K562 leukemia cell lines. The results showed that the application of a 0.4-T SMF significantly increased (p < 0.05) the viability of the NK92-MI cells. Furthermore, the inhibitor tests indicated that the SMF affected cell viability by activating multiple MAPK signaling pathways (ERKs, JNKs, and p38-MAPK). Finally, SMF pre-exposure for 48 hr significantly improved the killing activity of the NK92-MI cells (p < 0.05). That is, pre-exposure to SMF increased the viability of the NK92-MI cells and improved their killing ability against K562 tumor cells. In general, the present results suggest that NK cells pre-exposed to 0.4-T SMF show potential as a tool for immune-therapy treatment of cancer.  相似文献   

14.
The biological response after exposure to a high‐strength static magnetic field (SMF) has recently been widely discussed from the perspective of possible health benefits as well as potential adverse effects. To clarify this issue, CD34+ cells from human placental and umbilical cord blood were exposed under conditions of high‐strength SMF in vitro. The high‐strength SMF exposure system was comprised of a magnetic field generator with a helium‐free superconducting magnet with built‐in CO2 incubator. Freshly prepared CD34+ cells were exposed to a 5 tesla (T) SMF with the strongest magnetic field gradient (41.7 T/m) or a 10 T SMF without magnetic field gradient for 4 or 16 h. In the harvested cells after exposure to 10 T SMF for 16 h, a significant increase of hematopoietic progenitors in the total burst‐forming unit erythroid‐ and megakaryocytic progenitor cells‐derived colony formation was observed, thus producing 1.72‐ and 1.77‐fold higher than the control, respectively. Furthermore, early hematopoiesis‐related and cell cycle‐related genes were found to be significantly up‐regulated by exposure to SMF. These results suggest that the 10 T SMF exposure may change gene expressions and result in the specific enhancement of megakaryocytic/erythroid progenitor (MEP) differentiation from pluripotent hematopoietic stem cells and/or the proliferation of bipotent MEP. Bioelectromagnetics 30:280–285, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The magnetic flux density of MRI for clinical diagnosis has been steadily increasing. However, there remains very little biological data regarding the effect of strong static magnetic fields (SMFs) on human health. To evaluate the effects of strong SMFs on biological systems, we cultured insulin-secreting cells under exposure to sham and SMF conditions (3-10 T of magnetic flux density, and 0-41.7 T/m of magnetic field gradient) for 0.5 or 1 h, and analyzed insulin secretion, mRNA expression, glucose-stimulated insulin secretion, insulin content, cell proliferation and cell number. Exposure to SMF with a high magnetic field gradient for 1 h significantly increased insulin secretion and insulin 1 mRNA expression. Exposure to SMF with a high magnetic flux density for 0.5 h significantly enhanced responsiveness to glucose stimulation. Exposure to SMF did not affect the insulin content, cell proliferation or cell number. Our results suggested that MRI systems with a higher magnetic flux density might not cause cell proliferative or functional damages on insulin-secreting cells, and that SMF with a high magnetic field gradient might be used clinically after thorough in vivo investigations are conducted.  相似文献   

16.
In this experiment, we evaluated the effects of strong static magnetic fields (SMF) on the orientation of myotubes formed from a mouse-derived myoblast cell line, C2C12. Myogenic differentiation of C2C12 cells was conducted under exposure to SMF at a magnetic flux density of 0-10 T and a magnetic gradient of 0-41.7 T/m. Exposure to SMF at 10 T led to significant formation of oriented myotubes. Under the high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient, myotube orientation increased as the myogenic differentiation period increased. At the 3 T exposure position, where there was a moderate magnetic flux density and moderate magnetic field gradient, myotube orientation was not observed. We demonstrated that SMF induced the formation of oriented myotubes depending on the magnetic flux density, and that a high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient induced the formation of oriented myotubes 6 days after myogenic differentiation. We did not detect any effect of the static magnetic fields on myogenic differentiation or cell number. To the best of our knowledge, this is the first report to demonstrate that myotubes orient to each other under a SMF without affecting the cell number and myogenic differentiation.  相似文献   

17.
Abstract

Magnetic nano-Fe3O4 particles (MNPs), static magnetic field (SMF) and extremely low-frequency altering electric magnetic field (ELFF) were utilized to treat nude mice loading hepatoma Bel-7402 cell lines to investigate the therapeutic values of MNPs combined with ELFF in vivo. Magnetic resonance image (MRI) figures showed that about 98.9% MNPs injected into mice body through tail vein were gathered in tumor focal by SMF directing exposure. Single ELFF and MNPs treatments did not influence mice physiological function obviously. However, gathered MNPs combined with ELFF treatment prolonged mice survival time and inhibited loading tumor cells proliferation significantly compared to other mice groups (p?<?0.05); furthermore, the tumor cells early apoptosis ratio of mice group was significantly higher than other groups (p?<?0.05), and ELFF combined with gathered MNPs treatment improved tumor cells early apoptosis associated with Bcl group protein expression: Bax protein expression was higher than Bcl-2 and the combined treatment improved cells Heat shock protein-27 (Hsp-27) expression which could protect cells avoiding early apoptosis. The possible mechanism that this kind of combination inducing more cells into early apoptosis could be due to ELFF exposure influencing cells ion metabolism, MNPs strengthening the effects, and the ELFF vibrating MNPs to generate extra heat and activate cellular heat shock signal channel.  相似文献   

18.
Heat shock proteins, in particular hsp70, are induced under conditions of cellular stress. It has been reported that environmental stimuli such as hyperthermia, oxidative stress, and exposure to magnetic fields increase levels of hsp70. It has also been reported that hyperthermia in combination with magnetic field exposure results in a synergistic increase in hsp70 production. We tested the hypothesis that oxidative stress induced by glutathione (GSH) depletion in combination with static magnetic field (SMF) exposure will produce a similar synergistic increase in hsp70 production. We exposed cells to heat, SMF, and diethylmaleate (DEM), which depletes GSH levels alone and in combination with each other, and measured hsp70 production using an hsp70/luciferase reporter and mRNA levels using PCR. We found that treatment with DEM significantly reduced the rate of luciferase bioluminescence production, particularly in the presence of heat. There was no significant effect of a 100-mT SMF exposure either alone or in combination with heat, DEM, or both on bioluminescence, however there was a significant interaction between SMF and DEM on hsp70 mRNA levels. Therefore, under our exposure conditions, GSH depletion reduced hsp70 levels but a synergistic effect of combining this stress with other external stimuli was only observed at the level of mRNA.  相似文献   

19.
Abstract

We have investigated the effects of static magnetic field (SMF) on the viability of the human cervical cancer (HeLa) cell line and fibroblast cells. The cells were cultured in DMEM medium and treated several times (24, 48,72 and 96?h) and at several intensities (5, 10, 20 and 30?mT) of magnetic field (MF). The cytotoxicity and cell viability percent in treated cells were performed using MTT assay by evaluating mitochondrial dehydrogenase activity. The MF ability on inducing cell death or inhibiting biochemical function was reported as cell death percent. The results showed that the increase of MF intensity and the time that cells were exposed to this treatment increased sharply cell death percent and proliferation rate in HeLa cell compare to fibroblast cells. Our data suggest that SMF biological effects on cell death were different in our selected targets. Cell type and time of exposure have been therefore found to be significant factors. These findings could be used to improve new effective method using SMF in conjunction with the common therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号