首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The phylogeny of baobab trees was analyzed using four data sets: chloroplast DNA restriction sites, sequences of the chloroplast rpl16 intron, sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA, and morphology. We sampled each of the eight species of Adansonia plus three outgroup taxa from tribe Adansonieae. These data were analyzed singly and in combination using parsimony. ITS and morphology provided the greatest resolution and were largely concordant. The two chloroplast data sets showed concordance with one another but showed significant conflict with ITS and morphology. A possible explanation for the conflict is genealogical discordance within the Malagasy Longitubae, perhaps due to introgression events. A maximum-likelihood analysis of branching times shows that the dispersal between Africa and Australia occurred well after the fragmentation of Gondwana and therefore involved overwater dispersal. The phylogeny does not permit unambiguous reconstruction of floral evolution but suggests the plausible hypothesis that hawkmoth pollination was ancestral in Adansonia and that there were two parallel switches to pollination by mammals in the genus.  相似文献   

2.
The phylogenetic utility of chloroplast (atpB-rbcL, petD, rps16, trnL-F) and nuclear (ETS, ITS) DNA regions was investigated for the tribe Spermacoceae of the coffee family (Rubiaceae). ITS was, despite often raised cautions of its utility at higher taxonomic levels, shown to provide the highest number of parsimony informative characters, in partitioned Bayesian analyses it yielded the fewest trees in the 95% credible set, it resolved the highest proportion of well resolved clades, and was the most accurate region as measured by the partition metric and the proportion of correctly resolved clades (well supported clades retrieved from a combined analysis regarded as “true”). For Hedyotis, the nuclear 5S-NTS was shown to be potentially as useful as ITS, despite its shorter sequence length. The chloroplast region being the most phylogenetically informative was the petD group II intron.We also present a phylogeny of Spermacoceae based on a Bayesian analysis of the four chloroplast regions, ITS, and ETS combined. Spermacoceae are shown to be monophyletic. Clades supported by high posterior probabilities are discussed, especially in respect to the current generic classification. Notably, Oldenlandia is polyphyletic, the two subgenera of Kohautia are not sister taxa, and Hedyotis should be treated in a narrow sense to include only Asian species.  相似文献   

3.
The Vernonieae is one of the major tribes of the largest family of flowering plants, the sunflower family (Compositae or Asteraceae), with ca. 25,000 species. While the family's basal members (the Barnadesioideae) are found in South America, the tribe Vernonieae originated in the area of southern Africa/Madagascar. Its sister tribe, the Liabeae, is New World, however. This is the only such New/Old World sister tribe pairing anywhere in the family. The Vernonieae is now found on islands and continents worldwide and includes more than 1500 taxa. The Vernonieae has been called the "evil tribe" because overlapping character states make taxonomic delimitations difficult at all levels from the species to the subtribe for the majority of taxa. Juxtaposed with these difficult-to-separate entities are monotypic genera with highly distinctive morphologies and no obvious affinities to any other members of the tribe. The taxonomic frustration generated by these contrary circumstances has resulted in a lack of any phylogeny for the tribe until now. A combined approach using DNA sequence data from two chloroplast regions, the ndhF gene and the noncoding spacer trnL-F, and from the nuclear rDNA ITS region for 90 taxa from throughout the world was used to reconstruct the evolutionary history of the tribe. The data were analyzed separately and in combination using maximum parsimony (MP), minimum evolution neighbor-joining (NJ), and Bayesian analysis, the latter producing the best resolved and most strongly supported tree. In general, the phylogeny shows Old World taxa to be basal and New World taxa to be derived, but this is not always the case. Old and New World species are found together in two separate and only distantly related clades. This is best explained by long-distance dispersal with a minimum of two trans-oceanic exchanges. Meso/Central America has had an important role in ancient dispersals between the Old and New World and more recent movements from South to North America in the New World.  相似文献   

4.
For the genus Anthyllis (Fam. Fabaceae, tribe Loteae), with few exceptions, little information is available on the genetic variation among and within species. This genus contains 20 species distributed throughout Europe, Africa, and the Mediterranean basin. The most widespread species is A. vulneraria, and over 30 intraspecies taxa have been identified based on plant morphology. To study the molecular phylogeny of the genus, the sequences of the internal transcribed spacers ITS1 and ITS2 of the nuclear ribosomal DNA of 10 Anthyllis species, including 11 subspecies of A. vulneraria and three subspecies of A. montana, were obtained and analysed together with sequences of five other species of the genus obtained from GenBank. Our results suggest that the genus Anthyllis is not monophyletic and is divided in two main clades: the Anthyllis sensu strictu and the "tetraphylla clade". The former includes most of the Anthyllis species, and the latter includes three annual species more closely related to Lotus. All the taxa were also analysed according to seven chloroplast microsatellites, and these data closely confirm the results obtained with the ITS phylogeny.  相似文献   

5.
The phylogenetic relationships of nine genera in four tribes of the family Brassicaceae were estimated from the sequences of the internal transcribed spacer region (ITS) of the 18S-25S nuclear ribosomal DNA. The entire ITS region of 16 accessions belonging to 10 species of seven genera was sequenced. Eight published sequences of Brassicaceae were also used. A total of 27 sequences were included in this study; four of them were found to be pseudogenes. Both the neighbor-joining and the parsimony trees suggest that the nine genera can be divided into three groups: (1) Arabidopsis, Cardaminopsis, Capsella, and Lepidium; (2) Rorippa and Cardamine; and (3) Brassica, Sinapis, and Raphanus. In contradiction to the proposal that Cardaminopsis and Arabidopsis be put into an expanded tribe Arabideae, our data show that these two genera are more closely related to Capsella and Lepidium (tribe Lepidieae) than to Rorippa and Cardamine (tribe Arabideae). Further, our data show that within the tribe Brassiceae, Raphanus is more closely related to B. nigra than to the B. oleracea/B. rapa clade. This result is in agreement with the nuclear data obtained in several studies, but is in conflict with the RFLP data of mitochondrial and chloroplast DNA. As pointed out by previous authors, it is possible that Raphanus is a hybrid between the B. nigra and B. oleracea/B. rapa lineages with the latter as the maternal parent.  相似文献   

6.
The Menispermaceae family contains ca. 72 genera with 450 species that are almost entirely tropical. Its phylogeny at the tribal level has never been examined using molecular data. Here we used DNA sequences of the chloroplast matK gene and trnL-F regions, and the nuclear ITS region to study the delimitation and position of the tribe Menispermeae within the family and its subtribal monophyletic groups. Family-wide phylogenetic analyses of the chloroplast data produced two strongly supported clades. The first clade contains two subclades: Coscinieae including Arcangelisia and Anamirta, and Tinosporeae sensu lato including Fibraureae, supported by morphological characters, such as traits of the cotyledon, stylar scar and embryo. The second clade consists of the tribes Menispermeae sensu DC. and Tiliacoreae Miers. All our analyses surprisingly recognized that tribe Menispermeae is not monophyletic unless tribe Tiliacoreae is included, suggesting that characters of cotyledon and stylar scar are very important for the infrafamilial classification, and that endosperm presence vs. absence was over-emphasized in traditionally tribal division of the family. Our topologies indicate a secondary loss of endosperm. The monophyly of two subtribes of the tribe Menispermeae, Stephaniinae and Cissampelinae, is supported by the cpDNA and ITS data, as well as by morphological characters, including aperture types and shapes, and colpal membrane features of pollen grains, and sepal number of male flowers. The Cocculinae was recognized as a paraphyletic group containing the remaining genera of the tribe Menispermeae.  相似文献   

7.
根据ITS序列证据重建防己科蝙蝠葛族的系统发育   总被引:10,自引:4,他引:6  
研究了国产防己科蝙蝠葛族tirb.Menispermeae9属20种和外类群青牛胆族trib.Tinosporeae 2属3种植物完整的ITS(包括5.8S rDNA)序列。trib.Menispermeae的ITS长527~601 bp,排序后长667bp。当gap处理为missing时具281个有信息位点。PAUP软件分析结果表明:①trib.Menispermeae是一个单系类群,该分支得到hootstrap l00%的支持;②确定了存疑种Pachygone valida的系统学位置,该种是Coc—culus属的成员;③Sinomenium和Menispermum两属有很近的系统学关系,组成族内稳定的一支,它们的ITS序列同源性极高,ITS1比族内其它属长41~73bp;④Stephania和Cyclea也是系统发育关系很近的两个类群。前者具两个主要分支,其IIS1、ITS2的G+C含量差异较大,在种类组成上,该两大支与传统上Stephania属内处理的2个亚属——千金藤亚属subgen.Stephania和山乌龟亚属subgen.Tuberiphania基本一致;Cyclea属内种间的ITS序列差异小,同源性极高。  相似文献   

8.
Molecular variation in Antitrichia curtipendula (Hedw.) Brid. s.l. was studied based on the nuclear internal transcribed spacer (ITS) and the chloroplast markers trn L- trn F and rpl 16, and analysed by neighbour joining (for ITS; recombination present), maximum parsimony (chloroplast markers) and TCS (haplotype network). Old World plus E North American populations belong to a different lineage than those of W North America. These are molecularly well differentiated and are treated as A. curtipendula and A. gigantea (Sull. & Lesq.) Kindb. Two distinct groups of Old World haplotypes are separated by one 'missing' haplotype and are interpreted as cryptic species. Tropical African populations share one ITS deletion and form a lineage within one of the cryptic species. Molecular variation within A. gigantea , within each of the two cryptic Old World plus E North American (except tropical African) haplotype groups, and among tropical African populations are of similar magnitude, suggesting that analogous mechanisms and similar time spans explain the found variation. Events related to Pleistocene climatic oscillations are suggested as having caused this differentiation within each group, whereas the African lineage was probably split off before this. Identical tRNA-Gly sequences were found in 33 specimens; new primers were designed for rpl 16 and ITS 1+2.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 341–354.  相似文献   

9.
The phylogeny of the tribe Menispermeae (Menispermaceae) represented by 20 species of 9 genera in China, was reconstructed based on sequence analysis of the internal transcribed spacers (ITS) (including ITS1, ITS2, and 5.8S rRNA gene ) of nuclear ribosomal DNA. Three species of two genera in the tribe Tinosporeae were designated as outgroups. Direct PCR sequencing method was used in the study, The sizes of ITS within trib. Menispermeae range from 527 to 601 bp. The aligned length is 667 bp, which provides 281 phylogenetically informative sites when gaps are treated as missing. The results of phylogenetic analyses show that: ① trib. Menispermeae is a monophyletic group strongly supported by a bootstrap value of 100%; ② Pachygone valida, whose systematic position was uncertain in the previous classification, should be placed in the Cocculus. ③Sinomenium and Menispermum are two close genera of the tribe. Their sequcences are very similar to each other, with ITS1 having 41 to 73 bp longer than that of the other genera in trib. Menispermeae. ④ Stephania and Cyclea are also closely related. The former forms two major clades, which are approximately consistent with the two traditional subgenera: subgen. Stephania and subgen. Tuberiphania. The species of Cyclea are mutually little diverged in complete ITS sequences, and they com-prise a sister clade to the genus Stephania.  相似文献   

10.
Angiosperm phylogeny has been investigated extensively using organellar sequences; recent efforts using nuclear genes have also been successful in reconstructing angiosperm phylogenies at family or deeper levels. However, it is not clear whether nuclear genes are also effective in understanding relationships between species in a genus. Here we present a case study of phylogeny at generic and specific levels with nuclear genes, using Brassicaceae taxa as examples. Brassicaceae includes various crops and the model plant Arabidopsis thaliana. A recent study showed that nuclear genes can provide well-resolved relationships between tribes and larger lineages in Brassicaceae, but few species were included in any given genus. We present a phylogeny with multiple species in each of five genera within Brassicaceae for a total of 65 taxa, using three protein-coding nuclear genes, MLH1, SMC2, and MCM5, with up to approximately 10 200 base pairs (in both exons and introns). Maximum likelihood and Bayesian analyses of the separate gene regions and combined data reveal high resolution at various phylogenetic depths. The relationships between genera here were largely congruent with previous results, with further resolution at the species level. Also, we report for the first time the affinity of Cardamine rockii with tribe Camelineae instead of other Cardamine members. In addition, we report sequence divergence at three levels: across angiosperms, among Brassicaceae species, and between Arabidopsis ecotypes. Our results provide a robust species-level phylogeny for a number of Brassicaceae members and support an optimistic perspective on the phylogenetic utility of conserved nuclear data for relatively recent clades.  相似文献   

11.
The tribe Arctotideae (African Daisies), of the flowering plant family Compositae (Asteraceae), is a diverse and interesting group with a primarily southern African distribution (ca. 13 genera, 215 species) and many species in the Cape Floristic Region. It is divided into two subtribes: Arctotidinae (ca. 5 genera, 85 species) and Gorteriinae (ca. 8 genera, 130 species). The monophyly of the genera within the subtribe Gorteriinae and their relationship to one another was investigated using 71 samples/212 sequences including 64/141 of which are newly reported from three phylogenetic markers, two from chloroplast DNA (trnL-F and ndhF) and one from the nuclear genome (ITS). The outgroup was composed of seven members from the sister subtribe. Results show the subtribe Gorteriinae to be divided into three monophyletic groups, the Gazania-Hirpicium-Gorteria group, the Didelta group, and the Berkheya-Cullumia group. Within these three groups are 13 sub-groups, one of which has sub-clades. The genus Berkheya Ehrh. is paraphyletic, falling into five different sub-groups. The two monotypic genera, Cuspidia and Heterorhachis are not nested within any of the Berkheya clades. Hirpicium and Cullumia each have most of their taxa in a monophyletic group, but they also have one or two taxa associated with other clades. Four of the five sub-groups of Berkheya have morphologically recognizable shared characters, such as habit and spines that have been recognized by past studies. However, the grouping of one species with Didelta is difficult to explain. Support for the major clades and most of the sub-groups is strong but the relationships among some of the terminal taxa are variable.  相似文献   

12.
13.
This analysis goes beyond many phylogenies in exploring how phylogenetic structure imposed by morphology, ecology, and geography reveals useful evolutionary data. A comprehensive range of such diversity is evaluated within tribe Indigofereae and outgroups from sister tribes. A combined data set of 321 taxa (over one-third of the tribe) by 80 morphological characters, 833 aligned nuclear ribosomal ITS/5.8S sites, and an indel data set of 33 characters was subjected to parsimony analysis. Notable results include the Madagascan dry forest Disynstemon resolved as sister to tribe Indigofereae, and all species of the large genus Indigofera comprise just four main clades, each diagnosable by morphological synapomorphies and ecological and geographical predilections. These results suggest niche conservation (ecology) and dispersal limitation (geography) are important processes rendering signature shapes to the Indigofereae phylogeny in different biomes. Clades confined to temperate and succulent-rich biomes are more dispersal limited and have more geographical phylogenetic structure than those inhabiting tropical grass-rich vegetation. The African arid corridor, particularly the Namib center of endemism, harbors many of the oldest Indigofera lineages. A rates analysis of nucleotide substitutions confirms that the ages of the oldest crown clades are mostly younger than 16 Ma, implicating dispersal in explaining the worldwide distribution of the tribe.  相似文献   

14.
基于叶绿体trnL_F序列单独分析以及trnL_F和rbcL序列联合分析重建了木通科的分子系统发育。本研究的系统发育拓扑结构与覃海宁和塔赫他间的族划分系统非常一致。猫儿屎族和串果藤族在系统发育树上位于本科的基部。由分布于南美的勃奎拉藤属和拉氏藤属组成的拉氏藤族得到了trnL_F序列分析 (10 0 % )和联合序列分析 (99% )的很好支持。木通族在两个分析里都得到了 10 0 %的靴带支持率。新建立的长萼木通属在trnL_F树上嵌套在木通属内 ;然而 ,在联合分析的树上 ,它与木通属形成姐妹群并得到很高的支持率。在系统发育上关系密切的 3个属 :牛藤果属、八月瓜属和野木瓜属之间的关系仍未解决。牛藤果与八月瓜在两个分析里都形成姐妹群 ,但支持率低。小花鹰爪枫嵌套在野木瓜属内 ,并与西南野木瓜形成姐妹群。木通族内这 3个属可能都不是单系 ,它们的属间界限和属的界定需要更多的分子和形态数据的进一步研究。  相似文献   

15.
Tribe Rhipsalideae is composed of unusual epiphytic or lithophytic cacti that inhabit humid tropical and subtropical forests. Members of this tribe present a reduced vegetative body, a specialized adventitious root system, usually spineless areoles and flowers and fruits reduced in size. Despite the debate surrounding the classification of Rhipsalideae, no studies have ever attempted to reconstruct phylogenetic relationships among its members or to test the monophyly of its genera using DNA sequence data; all classifications formerly proposed for this tribe have only employed morphological data. In this study, we reconstruct the phylogeny of Rhipsalideae using plastid (trnQ-rps16, rpl32-trnL, psbA-trnH) and nuclear (ITS) markers to evaluate the classifications previously proposed for the group. We also examine morphological features traditionally used to delimit genera within Rhipsalideae in light of the resulting phylogenetic trees. In total new sequences for 35 species of Rhipsalideae were produced (out of 55; 63%). The molecular phylogeny obtained comprises four main clades supporting the recognition of genera Lepismium, Rhipsalis, Hatiora and Schlumbergera. The evidence gathered indicate that a broader genus Schlumbergera, including Hatiora subg. Rhipsalidopsis, should be recognized. Consistent morphological characters rather than homoplastic features are used in order to establish a more coherent and practical classification for the group. Nomenclatural changes and a key for the identification of the genera currently included in Rhipsalideae are provided.  相似文献   

16.
The internal transcribed spacer (ITS) region of 18-26S nuclear ribosomal DNA was sequenced in 12 representatives of the Compositae subtribe Madiinae and two outgroup species to assess its utility for phylogeny reconstruction. High sequence alignability and minimal length variation among ITS 1, 5.8S, and ITS 2 sequences facilitated determination of positional homology of nucleotide sites. In pairwise comparisons among Madiinae DNAs, sequence divergence at unambiguously aligned sites ranged from 0.4 to 19.2% of nucleotides in ITS 1 and from 0 to 12.9% of nucleotides in ITS 2. Phylogenetic relationships among ITS sequences of Hawaiian silversword alliance species (Argyroxiphium, Dubautia, and Wilkesia) and California tarweed taxa in Adenothamnus, Madia, Raillardella, and Raillardiopsis are highly concordant with a chloroplast DNA-based phylogeny of this group. Maximally parsimonious trees from ITS and chloroplast DNA data all suggest (a) origin of the monophyletic Hawaiian silversword alliance from a California tarweed ancestor, (b) closer relationship of the Hawaiian species to Madia and Raillardiopsis than to Adenothamnus or Raillardella, (c) paraphyly of Raillardiopsis, a segregate of Raillardella, and (d) closer relationship of Raillardiopsis to Madia and the silversword alliance than to Raillardella. These findings indicate that the ITS region in plants should be further explored as a promising source of nuclear phylogenetic markers.  相似文献   

17.
The phylogenetic relationships within the fungus gnat tribe Exechiini have been left unattended for many years. Recent studies have not shed much light on the intergeneric relationship within the tribe. Here the first attempt to resolve the phylogeny of the tribe Exechiini using molecular markers is presented. The nuclear 18S and the mitochondrial 16S, and cytochrome oxidase subunit I (COI) genes were successfully sequenced for 20 species representing 15 Exechiini genera and five outgroup genera. Bayesian, maximum parsimony and maximum likelihood analyses revealed basically congruent tree topologies and the monophyly of Exechiini, including the genus Cordyla , is confirmed. The molecular data corroborate previous morphological studies in several aspects. Cordyla is found in a basal clade together with Brachypeza , Pseudorymosia and Stigmatomeria . The splitting of the genera Allodiopsis s.l. and Brevicornu s.l. as well as the sistergroup relationship of Exechia and Exechiopsis is also supported. The limited phylogenetic information provided by morphological characters is mirrored in the limited resolution of the molecular markers used in this study. Short internal and long-terminal branches obtained may indicate a rapid radiation of the Exechiini genera during a short evolutionary period.  相似文献   

18.
Alyssum desertorum (Alysseae, Brassicaceae) is an annual spring ephemeral plant whose life cycle is only 2–3 months. It typically has high photosynthetic capacity and a high growth rate. However, little was known about the chloroplast (cp) genome structure of this species. Furthermore, the phylogenetic position of the tribe Alysseae relative to other tribes in the Brassicaceae has not been established and there appear to be inconsistences between different DNA markers. This study is the first report on a cp genome of the genus Alyssum and discusses the phylogenetic relationships of the tribe Alysseae relative to other tribes in the family. The complete cp genome of A. desertorum was 151 677 bp in size and is thus the smallest cp genome of Brassicaceae sequenced to date. The genome includes a large single‐copy region of 81 551 bp, a small single‐copy region of 17 804 bp, and two inverted repeats of 26 161 bp each. The genome contains 132 genes, including 86 protein‐coding genes (PCGs), 38 tRNA genes and 8 rRNA genes. A total of 16 genes contained introns, including 10 PCGs and 6 tRNA genes; the ycf3 and clpP genes contained two introns, and the remaining genes each contained one. Compared to the cp genomes of 21 other Brassicaceae species, the cp genome of Alyssum desertorum was the smallest, as due to variation in gene content and gene length, such as a lack of the rps16 gene and the deletion of some coding genes. Additionally, deletions of introns and intergenic spacers were observed, but their total length was not significantly shorter than those of other taxa. Phylogenetic analysis at the tribal level based on a cp genome dataset revealed that the tribe Alysseae is an early‐diverging lineage that is sister to other species within subclade B of clade II.  相似文献   

19.
BACKGROUND AND AIMS: Boragineae is one of the main tribes of Boraginaceae, but delimitation and intergeneric classification of this group are unclear and have not yet been studied using DNA sequences. In particular, phylogenetic relationships in Anchusa s.l. still need to be elucidated in order to assess its taxonomic boundaries with respect to the controversial segregate genera Hormuzakia, Gastrocotyle, Phyllocara and Cynoglottis. METHODS: Phylogenetic relationships among 51 taxa of tribe Boragineae were investigated by comparative sequencing of the trnL(UAA) intron of the plastid genome and of the ITS1 region of the nuclear ribosomal DNA. Exemplar taxa from 16 genera of Boragineae and all subgenera of Anchusa s.l. were included, along with two selected outgroups from tribes Lithospermeae and Cynoglosseae. KEY RESULTS: Phylogenies generated by maximum parsimony and combined ITS1-trnL sequences support the monophyly of the tribe and a split into two clades, Pentaglottis and the remainder of Boragineae. The latter contains two large monophyletic groups. The first consists of three moderately to well-supported branches, Borago-Symphytum, Pulmonaria-Nonea and Brunnera. In the Pulmonaria-Nonea subclade, the rare endemic Paraskevia cesatiana is sister to Pulmonaria, and Nonea appears to be paraphyletic with respect to Elizaldia. The second main group corresponds to the well-supported clade of Anchusa s.l., with the megaphyllic, polyploid herb Trachystemon orientalis as sister taxon, although with low support. Anchusa s.l. is highly paraphyletic to its segregate genera and falls into four subclades: (1) Phyllocara, Hormuzakia, Anchusa subgenus Buglossum and A. subgenus Buglossoides; (2) Gastrocotyle; (3) A. subgenus Buglossellum and Cynoglottis; and (4) A. subgenus Anchusa, Lycopsis and Anchusella. All species of Anchusa subg. Anchusa, including the South African A. capensis, are included in a single unresolved clade. Anchusa subgenus Limbata is also included here despite marked divergence in floral morphology. The low nucleotide variation of ITS1 suggests a recent partly adaptive radiation within this group. CONCLUSIONS: Molecular data show that nine of the usually accepted genera of the Boragineae consisting of two or more species are monophyletic: Anchusella, Borago, Brunnera, Cynoglottis, Gastrocotyle, Hormuzakia, Nonea, Pulmonaria and Symphytum. In addition, the tribe includes the four monotypic genera Paraskevia, Pentaglottis, Phyllocara and Trachystemon. The morphologically well-characterized segregate genera in Anchusa s.l. are all confirmed by DNA sequences and should be definitively accepted. Most of the traditionally recognized subgenera of Anchusa are also supported as monophyletic groups by both nuclear and plastid sequence data. In order to bring taxonomy in line with phylogeny, the institution of new, independent generic entities for subgenera Buglossum, Buglossellum and Buglossoides and a narrower but more natural concept of Anchusa are advocated.  相似文献   

20.
Evolutionary relationships among members of Apiaceae (Umbelliferae) tribe Caucalideae Spreng. and related taxa were inferred from maximum parsimony analyses of chloroplast DNA restriction sites andrps16 intron sequences and the results compared to an existing phylogeny for the group based on nuclear ribosomal DNA internal transcribed spacer sequences. While these three data sets were not similar in size or composition, the relationships among the shared taxa, with few exceptions, were concordant. Three major lineages are recognized, coinciding with the previously delimited Scandiceae subtribes Daucinae Dumort. (Agrocharis, Ammodaucus, Cuminum, Daucus, Orlaya, Pachyctenium, Pseudorlaya), Torilidinae Dumort. (Astrodaucus, Caucalis, Glochidotheca, Lisaea, Szovitsia, Torilis, Turgenia, Yabea), and Scandicinae Tausch (Anthriscus, Kozlovia, Myrrhis, Osmorhiza, Scandix). Included in Daucinae is representation from tribe Laserpitieae (Laser, Laserpitium, Melanoselinum, Monizia, Polylophium). Daucinae and Torilidinae arise as sister taxa in the chloroplast DNA-based phylogenies, whereas in the ITS trees relationships among the three major lineages are unresolved. Unexpectedly, three species ofFerula ally with Daucinae and Torilidinae. The position ofArtedia is equivocal, occurring either sister to Daucinae in the ITS trees, within Torilidinae in the intron trees, or sister to Torilidinae upon analysis of combined ITS and intron data.Chaetosciadium trichospermum emerges withinTorilis, and is recognized asTorilis trichosperma (L.) Spreng.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号