首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regenerating the heart   总被引:22,自引:0,他引:22  
Cell-based cardiac repair offers the promise of rebuilding the injured heart from its component parts. Work began with committed cells such as skeletal myoblasts, but recently the field has expanded to explore an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and both mouse and human embryonic stem cells. A related strategy for cardiac repair involves cell mobilization with factors such as cytokines. Translation of cell-based approaches to the clinic has progressed rapidly, and clinical trials using autologous skeletal myoblasts and bone marrow cells are under way. Many challenges remain before the vision of healing an infarct by muscle regeneration can be realized. Future research is likely to focus on improving our ability to guide the differentiation of stem cells, control their survival and proliferation, identify factors that mediate their homing and modulate the heart's innate inflammatory and fibrotic responses.  相似文献   

2.
3.
Postnatal heart stem and progenitor cells are a potential therapeutic tool for cardiomyopathies, but little is known about the mechanisms that control cardiac differentiation. Recent work has highlighted an important role for microribonucleic acids (miRNAs) as regulators of cardiac and skeletal myogenesis. In this paper, we isolated cardiac progenitors from neonatal β-sarcoglycan (Sgcb)-null mouse hearts affected by dilated cardiomyopathy. Unexpectedly, Sgcb-null cardiac progenitors spontaneously differentiated into skeletal muscle fibers both in vitro and when transplanted into regenerating muscles or infarcted hearts. Differentiation potential correlated with the absence of expression of a novel miRNA, miR669q, and with down-regulation of miR669a. Other miRNAs are known to promote myogenesis, but only miR669a and miR669q act upstream of myogenic regulatory factors to prevent myogenesis by directly targeting the MyoD 3' untranslated region. This finding reveals an added level of complexity in the mechanism of the fate choice of mesoderm progenitors and suggests that using endogenous cardiac stem cells therapeutically will require specially tailored procedures for certain genetic diseases.  相似文献   

4.
A highly heterogeneous population of stem and progenitor cells has been described by light immunohistochemistry in the mammalian adult heart, but the ultrastructural identity of cardiac stem cells remains unknown. Using electron microscopy, we demonstrate the presence of cells with stem features in the adult mouse heart. These putative cardiac stem cells are small (6–10 μm), round cells, with an irregular shaped nucleus, large nucleolus, few endoplasmic reticulum cisternae and mitochondria, but numerous ribosomes. Stem cells located in the epicardial stem cell niche undergo mitosis and apoptosis. Cells with intermediate features between stem cells and cardiomyocyte progenitors have also been seen. Moreover, electron microscopy showed that cardiomyocyte progenitors were added to the peripheral working cardiomyocytes. Telocytes make a supportive interstitial network for stem cells and progenitors in the stem cell niche. This study enhances the hypothesis of a unique type of cardiac stem cell and progenitors in different stages of differentiation. In our opinion, stem cells, cardiomyocyte progenitors and telocytes sustain a continuous cardiac renewal process in the adult mammalian heart.  相似文献   

5.
Heart diseases such as myocardial infarction cause massive loss of cardiomyocytes, but the human heart lacks the innate ability to regenerate. In the adult mammalian heart, a resident progenitor cell population, termed epicardial progenitors, has been identified and reported to stay quiescent under uninjured conditions; however, myocardial infarction induces their proliferation and de novo differentiation into cardiac cells. It is conceivable to develop novel therapeutic approaches for myocardial repair by targeting such expandable sources of cardiac progenitors, thereby giving rise to new muscle and vasculatures. Human pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells can self‐renew and differentiate into the three major cell types of the heart, namely cardiomyocytes, smooth muscle, and endothelial cells. In this review, we describe our current knowledge of the therapeutic potential and challenges associated with the use of pluripotent stem cell and progenitor biology in cell therapy. An emphasis is placed on the contribution of paracrine factors in the growth of myocardium and neovascularization as well as the role of immunogenicity in cell survival and engraftment. (Part C) 96:98–107, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Cell transplantation to repair or regenerate injured myocardium is a new frontier in the treatment of cardiovascular disease. Most studies on stem cell transplantation therapy in both experimental heart infarct and in phase-I human clinical trials have focused on the use of undifferentiated stem cells. Based on our previous observations demonstrating the presence of multipotent progenitor cells in human adult skeletal muscle, in this study we investigated the capacity of these progenitors to differentiate into cardiomyocytes. Here we show an efficient protocol for the cardiomyogenic differentiation of human adult skeletal muscle stem cells in vitro. We found that treatment with Retinoic Acid directed cardiomyogenic differentiation of skeletal muscle stem cells in vitro. After Retinoic Acid treatment, cells expressed cardiomyocyte markers and acquired spontaneous contraction. Functional assays exhibited cardiac-like response to increased extracellular calcium. When cocultured with mouse cardiomyocytes, Retinoic Acid-treated skeletal muscle stem cells expressed connexin43 and when transplanted into ischemic heart were detectable even 5 weeks after injection. Based on these results, we can conclude that human adult skeletal muscle stem cells, if opportunely treated, can transdifferentiate into cells of cardiac lineage and once injected into infarcted heart can integrate, survive in cardiac tissue and improve the cardiac function.  相似文献   

7.
胚胎发育中心脏祖细胞迁移至生心区并分化为心肌细胞是心脏形成的基础。研究心肌分化对了解心脏发育异常以及应用干细胞治疗缺血性心脏病具有重要意义。最近研究发现apelin/APJ信号通路与祖细胞的迁移及心肌分化有关。本文就apelin/APJ与胚胎心肌分化的关系做一综述。  相似文献   

8.

Background

The heart is unable to regenerate its tissues after severe injuries. Stem cell therapy appears to be one of the most promising approaches, though preclinical results are hitherto contradictory and clinical trials scanty and/or limited to phase-I. The limited knowledge about stem cell early homing in infarcted cardiac tissues can concur to this scenario.

Methods

The stem cell migration was assessed in in-vitro and ex-vivo models of heart ischemia, employing a rat dental pulp stem cell line (MUR-1) that shares the same ontogenic progenitors with portions of the heart, expresses markers typical of cardiac/vascular-like progenitors and is able to differentiate into cardiomyocytes in-vitro.

Results

Here, we demonstrated that the MUR-1 can reach the injured cells/tissue and make contacts with the damaged cardiomyocytes, likely through Connexin 43, N-cadherin and von Willebrand Factor mediated cell–cell interactions, both in in-vitro and ex-vivo models. Furthermore, we found that SDF-1, FGF-2 and HGF, but not VEGF are involved as chemotactic factors in MUR-1 migration, notifying a similarity with neural crest cell behavior during the organogenesis of both the splanchnocranium and the heart.

Conclusions

Herein we found a similarity between what happens during the heart organogenesis and the early migration and homing of MUR-1 cells in ischemic models.

General significance

The comprehension of molecular aspects underlying the early phases of stem cell migration and interaction with damaged organ contributes to the future achievement of the coveted stem cell-mediated organ regeneration and function preservation in-vivo.  相似文献   

9.
Cell therapy is emerging as a new strategy to circumvent the adverse effects of heart disease. Many experimental and clinical studies investigating the transplantation of cells into the injured myocardium have yielded promising results. Moreover, data from these reports show that transplanted stem cells can engraft within the myocardium, differentiate into major cardiac cell types, and improve cardiac function. However, results from clinical trials show conflicting results. These trials demonstrate significant improvements in cardiac function for up to 6 months. However, these improved functions were diminished when examined at 18 months. In this review, we will discuss the current literature available on cell transplantation, covering studies ranging from animal models to clinical trials.  相似文献   

10.
Many cell types are currently being studied as potential sources of cardiomyocytes for cell transplantation therapy to repair and regenerate damaged myocardium. The question remains as to which progenitor cell represents the best candidate. Bone marrow-derived cells and endothelial progenitor cells have been tested in clinical studies. These cells are safe, but their cardiogenic potential is controversial. The functional benefits observed are probably due to enhanced angiogenesis, reduced ventricular remodeling, or to cytokine-mediated effects that promote the survival of endogenous cells. Human embryonic stem cells represent an unlimited source of cardiomyocytes due to their great differentiation potential, but each step of differentiation must be tightly controlled due to the high risk of teratoma formation. These cells, however, confront ethical barriers and there is a risk of graft rejection. These last two problems can be avoided by using induced pluripotent stem cells (iPS), which can be autologously derived, but the high risk of teratoma formation remains. Cardiac progenitor cells have the advantage of being cardiac committed, but important questions remain unanswered, such as what is the best marker to identify and isolate these cells? To date the different markers used to identify adult cardiac progenitor cells also recognize progenitor cells that are outside the heart. Thus, it cannot be determined whether the cardiac progenitor cells identified in the adult heart represent resident cells present since fetal life or extracardiac cells that colonized the heart after cardiac injury. Developmental studies have identified markers of multipotent progenitors, but it is unknown whether these markers are specific for adult progenitors when expressed in the adult myocardium. Cardiac regeneration is dependent on the stability of the cells transplanted into the host myocardium and on the electromechanical coupling with the endogenous cells. Finally, the promotion of endogenous regenerative processes by mobilizing endogenous progenitors represents a complementary approach to cell transplantation therapy.  相似文献   

11.
冠状动脉或其分支阻塞而引起心肌缺血可导致急性心肌梗死,梗死区域周围形成瘢痕组织后心脏收缩功能下降,心室发生病理性重塑,最终出现充血性心力衰竭。心肌球源性细胞(CDC)是来自心肌的干细胞,在体外可以分化为心肌细胞和血管内皮细胞。在体内可以触发自身心肌细胞增殖和通过旁分泌募集祖细胞。旁分泌介质不但拥有干细胞的作用,且没有细胞移植相关的并发症。临床实验证明了CDC可以促进心肌梗死后的心脏功能的恢复。长期疗效还有待大规模临床试验的验证。  相似文献   

12.
The heart is one of the least regenerative organs in the body, and highly vulnerable to the increasing incidence of cardiovascular diseases in an aging world population. Cell-based approaches aimed at cardiac repair have recently caused great public excitement. But clinical trials of patients' own skeletal myoblasts or bone marrow cells for transplantation have been disappointing. Human embryonic stem cells (hESCs) form bona fide cardiomyocytes in vitro which are readily generated in mass culture and are being tested in animal models of heart damage. The early results, while encouraging, underscore that much remains to be done. This review focuses on the many challenges that remain before hESCs-mediated repair of the human heart becomes a reality.  相似文献   

13.
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite advances in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. Bone marrow-derived mesenchymal stem cells (MSCs) hold promise for cardiac repair following MI, due to their multilineage, self-renewal and proliferation potential. In addition, MSCs can be easily isolated, expanded in culture, and have immunoprivileged properties to the host tissue. Experimental studies and clinical trials have revealed that MSCs not only differentiate into cardiomyocytes and vascular cells, but also secrete amounts of growth factors and cytokines which may mediate endogenous regeneration via activation of resident cardiac stem cells and other stem cells, as well as induce neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility in a paracrine manner. It has also been postulated that the anti-arrhythmic and cardiac nerve sprouting potential of MSCs may contribute to their beneficial effects in cardiac repair. Most molecular and cellular mechanisms involved in the MSC-based therapy after MI are still unclear at present. This article reviews the potential repair mechanisms of MSCs in the setting of MI.  相似文献   

14.
15.
16.
A major challenge in cardiovascular regenerative medicine is the development of novel therapeutic strategies to restore the function of cardiac muscle in the failing heart. The heart has historically been regarded as a terminally differentiated organ that does not have the potential to regenerate. This concept has been updated by the discovery of cardiac stem and progenitor cells that reside in the adult mammalian heart. Whereas diverse types of adult cardiac stem or progenitor cells have been described, we still do not know whether these cells share a common origin. A better understanding of the physiology of cardiac stem and progenitor cells should advance the successful use of regenerative medicine as a viable therapy for heart disease. In this review, we summarize current knowledge of the various adult cardiac stem and progenitor cell types that have been discovered. We also review clinical trials presently being undertaken with adult stem cells to repair the injured myocardium in patients with coronary artery disease.  相似文献   

17.
Differentiation of embryonic stem cells into retinal neurons   总被引:14,自引:0,他引:14  
Mouse embryonic stem (ES) cells are continuous cell lines derived from the inner mass of blastocysts. Neural progenitors derived from these cells serve as an excellent model for controlled neural differentiation and as such have tremendous potential to understand and treat neurodegenerative diseases. Here, we demonstrate that ES cell-derived neural progenitors express regulatory factors needed for retinal differentiation and that in response to epigenetic cues a subset of them differentiate along photoreceptor lineage. During the differentiation, they activate photoreceptor regulatory genes, suggesting that ES cell-derived neural progenitors recruit mechanisms normally used for photoreceptor differentiation in vivo. These observations suggest that ES cells can serve as an excellent model for understanding mechanisms that regulate specification of retinal neurons and as an unlimited source of neural progenitors for treating degenerative diseases of the retina by cell replacement.  相似文献   

18.
Heart failure is becoming a major issue for public health in western countries and the effect of currently available therapies is limited. Therefore cell transplantation was developed as an alternative strategy to improve cardiac structure and function. This review describes the multiple cell types and clinical trials considered for use in this indication. Most studies have been developed in models of post-ischemic heart failure. The transplantation of fetal or neonatal cardiomyocytes has proven to be functionally successful, but ethical as well as immunological and technical reasons make their clinical use limited. Recent reports, however, suggested that adult autologous cardiomyocytes could be prepared from stem cells present in various tissues (bone marrow, vessels, adult heart itself, adipose tissue). Alternatively, endothelial progenitors originating from bone marrow or peripheral blood could promote the neoangiogenesis within the scar tissue. Hematopietic stem cells prepared from bone marrow or peripheral blood have been proposed but their differentiation ability seems limited. Finally, the transplantation of skeletal muscle cells (myoblasts) in the infarcted area improved myocardial function, in correlation with the development of skeletal muscle tissue in various animal models. The latter results paved the way for the development of a first phase I clinical trial of myoblast transplantation in patients with severe post-ischemic heart failure. It required the scale-up of human cell production according to good manufacturing procedures, started in june 2000 in Paris and was terminated in november 2001, and was followed by several others. The results were encouraging and prompted the onset of a blinded, multicentric phase II clinical trial for skeletal muscle cells transplantation. Meanwhile, phase I clinical trials also evaluate the safeness and efficacy of various cell types originating from the bone marrow or the peripheral blood. However, potential side effects related to the biological properties of the cells or the delivery procedures are being reported. High quality clinical trials supported by strong pre-clinical data will help to evaluate the role of cell therapy as a potential treatment for heart failure.  相似文献   

19.
Though cardiac progenitor cells should be a suitable material for cardiac regeneration, efficient ways to induce cardiac progenitors from embryonic stem (ES) cells have not been established. Extending our systematic cardiovascular differentiation method of ES cells, here we show efficient and specific expansion of cardiomyocytes and highly cardiogenic progenitors from ES cells. An immunosuppressant, cyclosporin-A (CSA), showed a novel effect specifically acting on mesoderm cells to drastically increase cardiac progenitors as well as cardiomyocytes by 10-20 times. Approximately 200 cardiomyocytes could be induced from one mouse ES cell using this method. Expanded progenitors successfully integrated into scar tissue of infracted heart as cardiomyocytes after cell transplantation to rat myocardial infarction model. CSA elicited specific induction of cardiac lineage from mesoderm in a novel mesoderm-specific, NFAT independent fashion. This simple but efficient differentiation technology would be extended to induce pluripotent stem (iPS) cells and broadly contribute to cardiac regeneration.  相似文献   

20.
The heart is one of the least regenerative organs in the body, and highly vulnerable to the increasing incidence of cardiovascular diseases in an aging world population. Cell-based approaches aimed at cardiac repair have recently caused great public excitement. But clinical trials of patients’ own skeletal myoblasts or bone marrow cells for transplantation have been disappointing. Human embryonic stem cells (hESCs) form bona fide cardiomyocytes in vitro which are readily generated in mass culture and are being tested in animal models of heart damage. The early results, while encouraging, underscore that much remains to be done. This review focuses on the many challenges that remain before hESCs-mediated repair of the human heart becomes a reality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号