首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细胞移植是一种有希望的组织再生的治疗手段.多种类型的细胞已经用于动物心 肌损伤的修复中,包括胚胎干细胞、胚胎和新生动物的心肌细胞、骨骼肌成肌细胞、 骨髓干细胞、脂肪来源的干细胞、可诱导的多能干细胞等.但是,这些用于移植的细胞 存在成活率低、在心脏局部存留少、与宿主心肌细胞不能整合和免疫排斥等问题,这 些问题限制了它们的应用.心脏自身存在的干细胞因为没有其他来源细胞存在的种种 问题,因而成为备受关注的治疗心肌梗死的种子细胞.但是,心脏干/祖细胞也有自身 弊端,包括干细胞群的细胞生物学或遗传学标志没有统一,在心肌中数量极少,体外 扩增能力有限等,因而限制了心脏干/祖细胞的有效应用.如何能有效动员和促进心脏 干/祖细胞增殖,依赖于人们对心脏干/祖细胞增殖、分化、归巢的调控机制,包括心 脏干/祖细胞修复损伤心肌的分子机制的深入了解.本文将就近年来在心脏再生领域中 ,心脏干/祖细胞的研究新进展进行综述.  相似文献   

2.
The role of stem cells in skeletal and cardiac muscle repair.   总被引:15,自引:0,他引:15  
In postnatal muscle, skeletal muscle precursors (myoblasts) can be derived from satellite cells (reserve cells located on the surface of mature myofibers) or from cells lying beyond the myofiber, e.g., interstitial connective tissue or bone marrow. Both of these classes of cells may have stem cell properties. In addition, the heretical idea that post-mitotic myonuclei lying within mature myofibers might be able to re-form myoblasts or stem cells is examined and related to recent observations for similar post-mitotic cardiomyocytes. In adult hearts (which previously were not considered capable of repair), the role of replicating endogenous cardiomyocytes and the recruitment of other (stem) cells into cardiomyocytes for new cardiac muscle formation has recently attracted much attention. The relative contribution of these various sources of precursor cells in postnatal muscles and the factors that may enhance stem cell participation in the formation of new skeletal and cardiac muscle in vivo are the focus of this review. We concluded that, although many endogenous cell types can be converted to skeletal muscle, the contribution of non-myogenic cells to the formation of new postnatal skeletal muscle in vivo appears to be negligible. Whether the recruitment of such cells to the myogenic lineage can be significantly enhanced by specific inducers and the appropriate microenvironment is a current topic of intense interest. However, dermal fibroblasts appear promising as a realistic alternative source of exogenous myoblasts for transplantation purposes. For heart muscle, experiments showing the participation of bone marrow-derived stem cells and endothelial cells in the repair of damaged cardiac muscle are encouraging.  相似文献   

3.
Cell therapy has been intensely studied for over a decade as a potential treatment for ischaemic heart disease. While initial trials using skeletal myoblasts, bone marrow cells and peripheral blood stem cells showed promise in improving cardiac function, benefits were found to be short‐lived likely related to limited survival and engraftment of the delivered cells. The discovery of putative cardiac ‘progenitor’ cells as well as the creation of induced pluripotent stem cells has led to the delivery of cells potentially capable of electromechanical integration into existing tissue. An alternative strategy involving either direct reprogramming of endogenous cardiac fibroblasts or stimulation of resident cardiomyocytes to regenerate new myocytes can potentially overcome the limitations of exogenous cell delivery. Complimentary approaches utilizing combination cell therapy and bioengineering techniques may be necessary to provide the proper milieu for clinically significant regeneration. Clinical trials employing bone marrow cells, mesenchymal stem cells and cardiac progenitor cells have demonstrated safety of catheter based cell delivery, with suggestion of limited improvement in ventricular function and reduction in infarct size. Ongoing trials are investigating potential benefits to outcome such as morbidity and mortality. These and future trials will clarify the optimal cell types and delivery conditions for therapeutic effect.  相似文献   

4.
Four decades after the first isolation and characterization of clonogenic bone marrow stromal cells or mesenchymal stem cells (MSC) in the laboratory of Dr. Alexander Friedenstien, the therapeutic application of their progeny following ex vivo expansion are only now starting to be realized in the clinic. The multipotency, paracrine effects, and immune-modulatory properties of MSC present them as an ideal stem cell candidate for tissue engineering and regenerative medicine. In recent years it has come to light that MSC encompass plasticity that extends beyond the conventional bone, adipose, cartilage, and other skeletal structures, and has expanded to the differentiation of liver, kidney, muscle, skin, neural, and cardiac cell lineages. This review will specifically focus on the skeletal regenerative capacity of bone marrow derived MSC alone or in combination with growth factors, biocompatible scaffolds, and following genetic modification.  相似文献   

5.
The use of stem cells to repair and replace damaged skeletal muscle cells in chronic, debilitating muscle diseases such as the muscular dystrophies holds great promise. Different stem cell populations, both of embryonic and adult origin display the potential to generate skeletal muscle cells and have been studied in animal models of muscular dystrophy. These include muscle derived satellite cells; bone marrow derived mesenchymal stem cells, muscle or bone marrow side population cells, circulating CD133+ cells and cells derived from blood vessel walls such as mesoangioblasts or pericytes. The design of effective stem cell based therapies requires a detailed understanding of the molecules and signaling pathways which determine myogenic lineage commitment and differentiation. We discuss the great strides that have been made in delineating these pathways and how a better understanding of muscle stem cell biology has the potential to lead to more effective stem cell based therapies for skeletal muscle regeneration for devastating muscle diseases.  相似文献   

6.
The heart is one of the least regenerative organs in the body, and highly vulnerable to the increasing incidence of cardiovascular diseases in an aging world population. Cell-based approaches aimed at cardiac repair have recently caused great public excitement. But clinical trials of patients' own skeletal myoblasts or bone marrow cells for transplantation have been disappointing. Human embryonic stem cells (hESCs) form bona fide cardiomyocytes in vitro which are readily generated in mass culture and are being tested in animal models of heart damage. The early results, while encouraging, underscore that much remains to be done. This review focuses on the many challenges that remain before hESCs-mediated repair of the human heart becomes a reality.  相似文献   

7.
Heart failure is becoming a major issue for public health in western countries and the effect of currently available therapies is limited. Therefore cell transplantation was developed as an alternative strategy to improve cardiac structure and function. This review describes the multiple cell types and clinical trials considered for use in this indication. Most studies have been developed in models of post-ischemic heart failure. The transplantation of fetal or neonatal cardiomyocytes has proven to be functionally successful, but ethical as well as immunological and technical reasons make their clinical use limited. Recent reports, however, suggested that adult autologous cardiomyocytes could be prepared from stem cells present in various tissues (bone marrow, vessels, adult heart itself, adipose tissue). Alternatively, endothelial progenitors originating from bone marrow or peripheral blood could promote the neoangiogenesis within the scar tissue. Hematopietic stem cells prepared from bone marrow or peripheral blood have been proposed but their differentiation ability seems limited. Finally, the transplantation of skeletal muscle cells (myoblasts) in the infarcted area improved myocardial function, in correlation with the development of skeletal muscle tissue in various animal models. The latter results paved the way for the development of a first phase I clinical trial of myoblast transplantation in patients with severe post-ischemic heart failure. It required the scale-up of human cell production according to good manufacturing procedures, started in june 2000 in Paris and was terminated in november 2001, and was followed by several others. The results were encouraging and prompted the onset of a blinded, multicentric phase II clinical trial for skeletal muscle cells transplantation. Meanwhile, phase I clinical trials also evaluate the safeness and efficacy of various cell types originating from the bone marrow or the peripheral blood. However, potential side effects related to the biological properties of the cells or the delivery procedures are being reported. High quality clinical trials supported by strong pre-clinical data will help to evaluate the role of cell therapy as a potential treatment for heart failure.  相似文献   

8.
9.
The limitation in successfully acquiring large populations of stem cell has impeded their application. A new method based on the dedifferentiation of adult somatic cells to generate induced multipotent stem cells would allow us to obtain a large amount of autologous stem cells for regenerative medicine. The current work was proposed to induce a sub‐population of cells with characteristics of muscle stem cells from myoblasts through conditional treatment of transforming growth factor (TGF)‐β1. Our results show that a lower concentration of TGF‐β1 is able to promote C2C12 myoblasts to express stem cell markers as well as to repress myogenic proteins, which involves a mechanism of dedifferentiation. Moreover, TGF‐β1 treatment promoted the proliferation‐arrested C2C12 myoblasts to re‐enter the S‐phase. We also investigated the multi‐differentiation potentials of the dedifferentiated cells. TGF‐β1 pre‐treated C2C12 myoblasts were implanted into mice to repair dystrophic skeletal muscle or injured bone. In addition to the C2C12 myoblasts, similar effects of TGF‐β1 were also observed in the primary myoblasts of mice. Our results suggest that TGF‐β1 is effective as a molecular trigger for the dedifferentiation of skeletal muscle myoblasts and could be used to generate a large pool of progenitor cells that collectively behave as multipotent stem cell‐like cells for regenerative medicine applications.  相似文献   

10.
The potential clinical use of stem cells for cell transplantation therapies to replace defective genes in myopathies is an area of intense investigation. Precursor cells derived from non-muscle tissue with myogenic potential have been identified in many tissues, including bone marrow and dermis, although the status of these putative stem cells requires clarification. The incorporation of circulating bone-marrow derived stem cells into regenerating adult skeletal muscle has been demonstrated in mice but the contribution of donor cells is so minimal that it would appear clinically irrelevant at this stage. The possibility of a true stem cell subpopulation within skeletal muscle that replenishes the satellite cells (conventional muscle precursors on the surface of myofibres) is also very attractive as a superior source of myoblasts for muscle construction. A full understanding of the intrinsic factors (i.e. gene expression within the stem cell) and extrinsic factors (i.e. signals from the external environment) which control the commitment of stem cells to the myogenic lineage, and the conditions which favour stem cell expansion in vivo is required before stem cells can be seriously considered for clinical cell therapy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The heart is one of the least regenerative organs in the body, and highly vulnerable to the increasing incidence of cardiovascular diseases in an aging world population. Cell-based approaches aimed at cardiac repair have recently caused great public excitement. But clinical trials of patients’ own skeletal myoblasts or bone marrow cells for transplantation have been disappointing. Human embryonic stem cells (hESCs) form bona fide cardiomyocytes in vitro which are readily generated in mass culture and are being tested in animal models of heart damage. The early results, while encouraging, underscore that much remains to be done. This review focuses on the many challenges that remain before hESCs-mediated repair of the human heart becomes a reality.  相似文献   

12.
Bone possesses a remarkable repair capacity to regenerate completely without scar tissue formation. This unique characteristic, expressed during bone development, maintenance and injury (fracture) healing, is performed by the reparative cells including skeletal stem cells (SSCs) and their descendants. However, the identity and functional roles of SSCs remain controversial due to technological difficulties and the heterogeneity and plasticity of SSCs. Moreover, for many years, there has been a biased view that bone marrow is the main cell source for bone repair. Together, these limitations have greatly hampered our understanding of these important cell populations and their potential applications in the treatment of fractures and skeletal diseases. Here, we reanalyse and summarize current understanding of the reparative cells in bone regeneration and repair and outline recent progress in this area, with a particular emphasis on the temporal and spatial process of fracture healing, the sources of reparative cells, an updated definition of SSCs, and markers of skeletal stem/progenitor cells contributing to the repair of craniofacial and long bones, as well as the debate between SSCs and pericytes. Finally, we also discuss the existing problems, emerging novel technologies and future research directions in this field.  相似文献   

13.
The role of stem cells in cardiac regeneration   总被引:18,自引:0,他引:18  
After myocardial infarction, injured cardiomyocytes are replaced by fibrotic tissue promoting the development of heart failure. Cell transplantation has emerged as a potential therapy and stem cells may be an important and powerful cellular source. Embryonic stem cells can differentiate into true cardiomyocytes, making them in principle an unlimited source of transplantable cells for cardiac repair, although immunological and ethical constraints exist. Somatic stem cells are an attractive option to explore for transplantation as they are autologous, but their differentiation potential is more restricted than embryonic stem cells. Currently, the major sources of somatic cells used for basic research and in clinical trials originate from the bone marrow. The differentiation capacity of different populations of bone marrow-derived stem cells into cardiomyocytes has been studied intensively. The results are rather confusing and difficult to compare, since different isolation and identification methods have been used to determine the cell population studied. To date, only mesenchymal stem cells seem to form cardiomyocytes, and only a small percentage of this population will do so in vitro or in vivo. A newly identified cell population isolated from cardiac tissue, called cardiac progenitor cells, holds great potential for cardiac regeneration. Here we discuss the potential of the different cell populations and their usefulness in stem cell based therapy to repair the damaged heart.  相似文献   

14.
The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.  相似文献   

15.
16.
Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.  相似文献   

17.
Sphere formation has been utilized as a way to isolate multipotent stem/progenitor cells from various tissues. However, very few studies on bone marrow-derived spheres have been published and assessed their multipotentiality. In this study, multipotent marrow cell populations were isolated using a three-step method. First, after elimination of hematopoietic cells, murine marrow-derived adherent cells were cultured in plastic dishes until small cells gradually appeared and multiplied. Cells were then cultured under non-adherent conditions and formed spheres that were immunopositive for a neural precursor marker, nestin. RT-PCR analysis also revealed that the spheres were positive for nestin in addition to PPARgamma, osf2, SOX9, and myoD, which are markers of precursors of adipocytic, osteoblastic, chondrocytic, and skeletal myeloblastic lineages, respectively. Finally, spheres were dissociated into single cells and expanded in adherent cultures. Under appropriate induction conditions, the sphere-derived cells acquired the phenotypic properties in vitro of neurons, skeletal myoblasts, and beating cardiomyocytes, as well as adipocytes, osteoblasts, and chondrocytes. Next, sphere-derived cells were transplanted into murine myocardial infarction models. One month later, they had become engrafted as cardiomyocytes, and cardiac catheterization showed significant functional improvements. Thus, sphere-derived cells represent a new approach to enhance the multi-differentiation potential of murine bone marrow.  相似文献   

18.
最近十几年,多种类型的干细胞,包括胚胎干细胞、诱导多能干细胞、骨骼肌干细胞、心脏干细胞和骨髓来源的干祖细胞等,可用于缺血性心脏病诱导的损伤修复和再生医学中,并且逐渐显示出广阔的发展前景。在此本文将介绍几种不同来源的干细胞在治疗缺血性心脏病中的研究概况,为进一步的基础研究和临床试验提供参考。  相似文献   

19.
Lots of evidence showed that bone marrow stem cells can differentiate into cardiac myocytes so as to treat damaged hearts. However, the following studies revealed that bone marrow stem cells also produced protective effects on hearts by releasing some beneficial cytokines and suppressing inflammatory effects and so on. Therefore, we speculated that the cardiac differentiation of bone marrow stem cells did not play an important role in cardiac repair.  相似文献   

20.
骨髓间质干细胞修复受损心肌研究进展   总被引:3,自引:1,他引:2  
骨髓间充质干细胞是一种多潜能干细胞。在体外培养时,多种诱导因素可使其分化为心肌细胞等。目前进行的动物实验和临床研究表明骨髓间充质干细胞具有促进血管增生以及改善心肌梗死后心脏功能的作用,为受损心肌的治疗提供了广阔前景。但是其修复受损心肌的机制仍具有很大争议。本文就以上内容进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号