首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 is a homotetrameric protein containing four tryptophan residues per subunit. The fluorescence properties of the enzyme are strongly influenced by halide binding. To examine the role of the tryptophans (W139, W192, W238, and W249) in halide binding and catalysis, they were individually mutated to a phenylalanine. All mutations, except for W238F, influenced the enzymatic properties. Mutating W192 to phenylalanine inactivated the enzyme and led to dissociation into dimers and monomers. In the structure of HheC, residue W139 and residue W249 from the opposite subunit are close to the active site of the enzyme. Substitution of W139 mainly affected K(m) values with all tested substrates and reduced the enantiopreference for p-nitro-2-bromo-1-phenylethanol. Replacing W249 increased both k(cat) and K(m) values with all tested substrates except for the (S)-enantiomer of p-nitro-2-bromo-1-phenylethanol, for which k(cat) was 3-fold decreased, resulting in a 6-fold increase of the enantioselectivity. Fluorescence measurements revealed that in the ligand-free state the intrinsic protein fluorescence of mutant W139F is higher than that of the wild-type enzyme, while the fluorescence intensity of mutants W238F and W249F was lower. The fluorescence intensities of the W238F and W249F enzymes were increased when they were unfolded or when bromide was added, whereas the fluorescence of mutant W139F was not increased by unfolding or addition of bromide. These results demonstrate that the fluorescence of residues W238 and W249 is partially quenched in the folded ligand-free state, and that W139 is completely quenched and acts as an energy acceptor for the other tryptophan residues as well. Changes of the maximum fluorescence emission wavelength of the HheC variants and the results of acrylamide quenching experiments confirmed that bromide binding induces a local conformational change around the active site, resulting in residue W139 and the quencher group being separated.  相似文献   

2.
Single tryptophan mutant proteins of a catalytically active domain III recombinant protein (PE24) from Pseudomonas aeruginosa exotoxin A were prepared by site-directed mutagenesis. The binding of the dinucleotide substrate, NAD+, to the PE24 active site was studied by exploiting intrinsic tryptophan fluorescence for the wild-type, single Trp, and tryptophan-deficient mutant proteins. Various approaches were used to study the substrate binding process, including dynamic quenching, CD spectroscopy, steady-state fluorescence emission analysis, NAD+-glycohydrolase activity, NAD+ binding analysis, protein denaturation experiments, fluorescence lifetime analysis, steady-state anisotropy measurement, stopped flow fluorescence spectroscopy, and quantum yield determination. It was found that the conservative replacement of tryptophan residues with phenylalanine had little or no effect on the folded stability and enzyme activity of the PE24 protein. Dynamic quenching experiments indicated that when bound to the active site of the enzyme, the NAD+ substrate protected Trp-558 from solvent to a large extent but had no effect on the degree of solvent exposure for tryptophans 417 and 466. Also, upon substrate binding, the anisotropy of the Trp-417(W466F/W558F) protein showed the largest increase, followed by Trp-466(W417F/W558F), and there was no effect on Trp-558(W417F/W466F). Furthermore, the intrinsic tryptophan fluorescence exhibited the highest degree of substrate-induced quenching for the wild-type protein, followed in decreasing order by Trp-417(W466F/W558F), Trp-558(W417F/W466F), and Trp-466(W417F/W558F). These data provide evidence for a structural rearrangement in the enzyme domain near Trp-417 invoked by the binding of the NAD+ substrate.  相似文献   

3.
Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric μ-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH(2)-benzoate and p-Br-benzoate showed a μ-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a π-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 ?) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential contribution to product release.  相似文献   

4.
Site-directed mutagenesis on human cytidine deaminase (CDA) was employed to mutate specifically two highly conserved phenylalanine residues, F36 and F137, to tryptophan; at the same time, the unique tryptophan residue present in the sequence at position 113 was mutated to phenylalanine. These double mutations were performed in order to have for each protein a single tryptophan signal for fluorescence studies relative to position 36 or 137. The mutant enzymes thus obtained, W113F, F36W/W113F and F137W/W113F, showed by circular dicroism and thermal stability an overall structure not greatly affected by the mutations. The titration of Trp residues by N-bromosuccinimide (NBS) suggested that residue W113 of the wild-type CDA and W36 of mutant F36W/W113F are buried in the tertiary structure of the enzyme, whereas the residue W137 of mutant F137W/W113F is located near the surface of the molecule. Kinetic experiments and equilibrium experiments with FZEB showed that the residue W113 seems not to be part of the active site of the enzyme whereas the Phe/Trp substitution in F36W/W113F and F137W/W113F mutant enzymes had a negative effect on substrate binding and catalysis, suggesting that F137 and F36 of the wild-type CDA are involved in a stabilizing interaction between ligand and enzyme.  相似文献   

5.
The tryptophan residues of the cellulase (EC 3.2.1.4; 1,4-beta-D-glucan 4-glucanohydrolase) from Schizophyllum commune were oxidized by N-bromosuccinimide in both the presence and absence of substrates and inhibitors of the enzyme. In the absence of protective ligands, eight of the twelve tryptophan residues in the cellulase were susceptible to modification with concomitant inactivation of the enzyme. The binding of the substrates, CM-cellulose, methyl cellulose, cellohexaose or lichenan and the competitive inhibitor, cellobiose, protected one tryptophan residue from oxidation but did not prevent the inactivation. Characterization of the oxidized enzyme derivatives by ultraviolet difference absorption and by fluorescence spectroscopy indicated that two tryptophan residues are essential in the mechanism of cellulase catalysis. One residue appears to be directly involved in the binding of substrate, while the second residue is proposed to constitute an integral part of a catalytically sound active centre.  相似文献   

6.
Asparaginase II from Escherichia coli is well-known member of the bacterial class II amidohydrolases. Enzymes of this family utilize a peculiar catalytic mechanism in which a pair of threonine residues play pivotal roles. Another common feature is a mobile surface loop that closes over the active site when the substrates is bound. We have studied the motion of the loop by stopped-flow experiments using the fluorescence of tryptophan residues as the spectroscopic probe. With wild-type enzyme the fluorescence of the only tryptophan, W66, was monitored. Here asparagine induced a rapid closure of the loop. The rate constants of the process (100-150 s(-1) at 4 degrees C) were considerably higher than those of the rate-limiting catalytic step. A more selective spectroscopic probe was generated by replacing W66 with tyrosine and Y25, a component of the loop, with tryptophan. In the resulting enzyme variant, k(cat) and the rate of loop movement were reduced by factors of 10(2) and >10(3), respectively, while substrate binding was unaffected. This indicates that the presence of tyrosine in position 25 is essential for both loop closure and catalysis. Numerical simulations of the observed transients are consistent with a model where loop closure is an absolute prerequisite for substrate turnover.  相似文献   

7.
Dissociation constants of Escherichia coli adenylosuccinate synthetase with IMP, GTP, adenylosuccinate, and AMP (a competitive inhibitor for IMP) were determined by measuring the extent of quenching of the intrinsic tryptophan fluorescence of the enzyme. The enzyme has one binding site for each of these ligands. Aspartate and GDP did not quench the fluorescence to any great extent, and their dissociation constants could not be determined. These ligand binding studies were generally supportive of the kinetic mechanism proposed earlier for the enzyme. Cys291 was modified with the fluorescent chromophores N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate and tetramethylrhodamine maleimide in order to measure enzyme conformational changes attending ligand binding. The excitation and emission spectra of these fluorophores are not altered by the addition of active site binding ligands. TbGTP and TbGDP were used as native reporter groups, and changes in their fluorescence on complexing with the enzyme and various ligands made it possible to detect conformational changes occurring at the active site. Evidence is presented for abortive complexes of the type: enzyme-TbGTP-adenylosuccinate and enzyme-TbGTP-adenylosuccinate-aspartate. These results suggest that the IMP and aspartate binding sites are spatially separated.  相似文献   

8.
 本文用N-溴代琥珀酰亚胺(NBS)对葡萄糖淀粉酶进行特异性修饰,当酶分子表面有3个色氨酸残基被修饰后,酶活力完全丧失。用邹氏图解法测得酶活性中心有一个色氨酸残基是必需的。如果在酶液中加入不同的底物再用NBS氧化,用荧光发射和荧光猝灭光谱检测表明,底物对酶分子有不同程度的保护作用。在被测试的三种底物中,这种保护能力依为糊精>淀粉>麦芽糖。  相似文献   

9.
The hepatitis C virus nonstructural 5B protein (NS5B) protein has been shown to require either magnesium or manganese for its RNA-dependent RNA polymerase activity. As a first step toward elucidating the nature and the role(s) of the metal ions in the reaction chemistry, we have utilized endogenous tryptophan fluorescence to quantitate the interactions of magnesium and manganese ions with this protein. The association of either Mg(2+) or Mn(2+) ions with the enzyme resulted in a decrease in the intensity of the tryptophan emission spectrum. This decrease was used to determine the apparent dissociation constants for both ions. The apparent K(d) values for the binding of Mg(2+) and Mn(2+) ions to the free enzyme were 3.1 and 0.3 mm, respectively. Dual ligand titration experiments demonstrated that both ions bind to a single common site, for which they compete. The kinetics of real time metal ion binding to the NS5B protein were also investigated. Based on the results of our fluorescence and near-UV circular dichroism experiments, we show that NS5B undergoes conformational changes upon the binding of metal ions. However, this process does not significantly stimulate the binding to the RNA or NTP substrates. We envisage that the ion-induced conformational change is a prerequisite for catalytic activity by both correctly positioning the side chains of the residues located in the active site of the enzyme and also contributing to the stabilization of the intermediate transition state.  相似文献   

10.
A sensitive fluorescence resonance energy transfer method was developed for the direct measurement of the dissociation constants of stromelysin inhibitors. The method is applied to the thiadiazole class of stromelysin inhibitors and it takes advantage of the fact that, upon binding to the active site of enzyme, the thiadiazole ring, with its absorbance centered at 320 nm, is able to quench the fluorescence of the tryptophan residues surrounding the catalytic site. The changes in fluorescence are proportional to the occupancy of the active site: Analysis of the fluorescence versus inhibitor concentration data yields dissociation constants that are in agreement with the corresponding competitive inhibitory constants measured by a catalytic rate assay. The affinity of nonthiadiazole inhibitors of stromelysin-such as hydroxamic acids and others-can be determined from the concentration-dependent displacement of a thiadiazole of known affinity. Using this displacement method, we determined the affinities of a number of structurally diverse inhibitors toward stromelysin. Since the three tryptophan residues located in the vicinity of the active site of stromelysin are conserved in gelatinase and collagenase, the method should also be applicable to inhibitors of other matrix metalloproteinases.  相似文献   

11.
The preparation of fluorescence labeled acyl enzymes (Streptomyces griseus trypsin) was successfully carried out using specific trypsin substrates, 'inverse substrates'. The topographical analysis of the structures of the area around the active site was carried out by measuring the fluorescence spectra of the acyl enzyme preparations and these results were compared with those of bovine trypsin. It was found that the polarity of the active site vicinity at pH 5 was similar to that of bovine trypsin, whereas considerable differences were noticed at lower pH as a result of pH-induced transformation. Conformational changes of the active site induced by the interaction with the specific ligand were analyzed from the fluorescence spectra. In these responses the two enzymes were quite distinguishable. The two enzymes active sites were also different in the energy transfer experiments. The spatial arrangements of the catalytic residues relative to the intrinsic tryptophan residues were suggested to be substantially different for the two enzymes.  相似文献   

12.
To better understand ligand-induced structural transitions in cytochrome P450 2B4, protein-ligand interactions were investigated using a bulky inhibitor. Bifonazole, a broad spectrum antifungal agent, inhibits monooxygenase activity and induces a type II binding spectrum in 2B4dH(H226Y), a modified enzyme previously crystallized in the presence of 4-(4-chlorophenyl)imidazole (CPI). Isothermal titration calorimetry and tryptophan fluorescence quenching indicate no significant burial of protein apolar surface nor altered accessibility of Trp-121 upon bifonazole binding, in contrast to recent results with CPI. A 2.3 A crystal structure of 2B4-bifonazole reveals a novel open conformation with ligand bound in the active site, which is significantly different from either the U-shaped cleft of ligand-free 2B4 or the small active site pocket of 2B4-CPI. The O-shaped active site cleft of 2B4-bifonazole is widely open in the middle but narrow at the top. A bifonazole molecule occupies the bottom of the active site cleft, where helix I is bent approximately 15 degrees to accommodate the bulky ligand. The structure also defines unanticipated interactions between helix C residues and bifonazole, suggesting an important role of helix C in azole recognition by mammalian P450s. Comparison of the ligand-free 2B4 structure, the 2B4-CPI structure, and the 2B4-bifonazole structure identifies structurally plastic regions that undergo correlated conformational changes in response to ligand binding. The most plastic regions are putative membrane-binding motifs involved in substrate access or substrate binding. The results allow us to model the membrane-associated state of P450 and provide insight into how lipophilic substrates access the buried active site.  相似文献   

13.
The consequences of active site mutations of the Escherichia coli D-xylose isomerase (E.C. 5.3.1.5) on substrate binding were examined by fluorescence spectroscopy. Site-directed mutagenesis of conserved tryptophan residues in the E. coli enzyme (Trp49 and Trp188) reveals that fluorescence quenching of these residues occurs during the binding of xylose by the wild-type enzyme. The fluorescent properties of additional active site substitutions at His101 were also examined. Substitutions of His101 which inactivate the enzyme were shown to have altered spectral characteristics, which preclude detection of substrate binding. In the case of H101S, a mutant protein with measurable isomerizing activity, substrate binding with novel fluorescent properties was observed, possibly the bound pyranose form of xylose under steady-state conditions.  相似文献   

14.
色氨酸残基在内切葡聚糖酶分子中的作用   总被引:13,自引:0,他引:13  
内切葡聚糖酶的化学修饰研究表明:色氨酸残基可能位于活性位点,与底物结合有关.荧光光谱测定指出该酶的荧光几乎都来自色氨酸残基,酶分子中色氨酸微环境对pH变化非常敏感,降低pH导致了酶分子构象发生了较大变化,配基结合使酶分子色氨酸微环境产生了改变,引发了与pH诱导不同的构象变化.  相似文献   

15.
Investigation of the properties of Ca2(+)-ATPase of sarcoplasmic reticulum cross-linked at the active site with glutaraldehyde showed that ATP binding affinity and rate of ATP-dependent phosphorylation and Ca2+ occlusion were decreased 2-3 orders of magnitude compared with the native enzyme. Cross-linkage had little effect on or marginally increased the rate of acetyl phosphate- and p-nitrophenyl phosphate-supported Ca2+ occlusion. Ca2+ binding or Ca2(+)-induced changes in tryptophan fluorescence were unaffected. High levels of phosphoenzyme (up to 4 nmol/mg of protein) were obtained, with 2 mol of Ca2+ occluded/mol of E-P. Dephosphorylation and deocclusion occurred together at a slow rate (k = 0.01 s-1) and were stimulated in a monophasic manner up to 20-fold by ADP. Cross-linking inhibited E2-P formation from Pi in 30% (v/v) dimethyl sulfoxide by more than 95%. Induction of turnover of the native ATPase, under conditions designed to yield high steady state levels of E1 approximately P(2Ca), results in a 3-4-fold increase in reactivity of active site residues to glutaraldehyde. The results show that cross-linkage sterically impairs nucleotide binding, changing ATP and ADP into relatively poor substrates, slowing nucleotide-dependent phosphoryl transfer and Ca2+ occlusion and deocclusion. The forward reaction with smaller substrates is unaffected. Another major effect of the cross-link is to inhibit E2-P formation, causing accumulation of E1 approximately P(2Ca) during enzyme turnover and preventing phosphorylation by Pi in the reverse direction. We suggest that occlusion and deocclusion of cations at the transport site of the native enzyme are linked to a two-step cleft closure movement at the active site and that the crosslink stabilizes occluded forms of the pump because it blocks part of this tertiary structural change. The latter could normally be propagated through linking helices to the distal side of the pump to destabilize the cations and open the transport sites to the lumen.  相似文献   

16.
Martucci WE  Vargo MA  Anderson KS 《Biochemistry》2008,47(34):8902-8911
The essential enzyme TS-DHFR from Cryptosporidium hominis undergoes an unusually rapid rate of catalysis at the conserved TS domain, facilitated by two nonconserved residues, Ala287 and Ser290, in the folate tail-binding region. Mutation of these two residues to their conserved counterparts drastically affects multiple steps of the TS catalytic cycle. We have determined the crystal structures of all three mutants (A287F, S290G, and A287F/S290G) in complex with active site ligands dUMP and CB3717. The structural data show two effects of the mutations: an increased distance between the ligands in the active site and increased flexibility of the folate ligand in the partially open enzyme state that precedes conformational change to the active catalytic state. The latter effect is able to be rescued by the mutants containing the A287F mutation. In addition, the conserved water network of TS is altered in each of the mutants. The structural results point to a role of the folate tail-binding residues in closely positioning ChTS ligands and restricting ligand flexibility in the partially open state to allow for a rapid transition to the active closed state and enhanced rate of catalysis. These results provide an explanation on how folate tail-binding residues at one end of the active site affect long-range interactions throughout the TS active site and validate these residues as targets for species-specific drug design.  相似文献   

17.
Tryptophan fluorescence was used to study GK (glucokinase), an enzyme that plays a prominent role in glucose homoeostasis which, when inactivated or activated by mutations, causes diabetes mellitus or hypoglycaemia in humans. GK has three tryptophan residues, and binding of D-glucose increases their fluorescence. To assess the contribution of individual tryptophan residues to this effect, we generated GST-GK [GK conjugated to GST (glutathione transferase)] and also pure GK with one, two or three of the tryptophan residues of GK replaced with other amino acids (i.e. W99C, W99R, W167A, W167F, W257F, W99R/W167F, W99R/W257F, W167F/W257F and W99R/W167F/W257F). Enzyme kinetics, binding constants for glucose and several other sugars and fluorescence quantum yields (varphi) were determined and compared with those of wild-type GK retaining its three tryptophan residues. Replacement of all three tryptophan residues resulted in an enzyme that retained all characteristic features of GK, thereby demonstrating the unique usefulness of tryptophan fluorescence as an indicator of GK conformation. Curves of glucose binding to wild-type and mutant GK or GST-GK were hyperbolic, whereas catalysis of wild-type and most mutants exhibited co-operativity with D-glucose. Binding studies showed the following order of affinities for the enzyme variants: N-acetyl-D-glucosamine>D-glucose>D-mannose>D-mannoheptulose>2-deoxy-D-glucose>L-glucose. GK activators increased sugar binding of most enzymes, but not of the mutants Y214A/V452A and C252Y. Contributions to the fluorescence increase from Trp(99) and Trp(167) were large compared with that from Trp(257) and are probably based on distinct mechanisms. The average quantum efficiency of tryptophan fluorescence in the basal and glucose-bound state was modified by activating (Y214A/V452A) or inactivating (C213R and C252Y) mutations and was interpreted as a manifestation of distinct conformational states.  相似文献   

18.
纤维素酶活性架构是酶分子中多个氨基酸残基构成的可结合并催化底物的功能区,其中色氨酸等芳香族残基在该区域中起着重要作用.本研究利用荧光光谱法,定量分析了纤维素酶Ch Cel5A活性架构中色氨酸与底物的结合动力学过程,通过色氨酸荧光猝灭的定量分析,确定了色氨酸特异性结合时的底物浓度范围,并且测定了Ch Cel5A活性架构中单个氨基酸突变导致的底物结合常数的变化,与催化动力学参数比较发现,荧光光谱法可准确表征纤维素酶与底物的结合力及其单个残基突变引起动力学参数的变化.此外,由于p NP中含有强的吸电子基团,因而以p NPC等为配体时会高估与色氨酸的结合常数约20~100倍.荧光光谱法可以测定纤维素酶结合糖分子底物的动力学参数,该方法具有灵敏和快速的特点,这为蛋白质与底物之间相互作用的定量分析提供了新的视角.  相似文献   

19.
W Chen  W D Frasch 《Biochemistry》2001,40(25):7729-7735
Site-directed mutants Y317C, Y317E, Y317F, Y317G, and Y317K were made to the catch-loop tyrosine on the beta subunit of the chloroplast F(1)-ATPase in Chlamydomonas. EPR spectra of VO(2+)-ATP bound to site 3 of CF(1) from wild type and mutants were obtained. Every mutant changed the (51)V hyperfine parameters of the VO(2+) bound at this site in the catalytically active conformation of the enzyme but had no effect on these parameters in the form that predominates when the enzyme activity is latent. These results indicate that this residue is a ligand to the metal of the Mg(2+)-nucleotide complex that binds to the empty catalytic site. The mutations also decreased the k(cat) of the ATPase activity to a much greater extent than k(cat)/K(M). Thus, these mutations limit the rate of product (Mg(2+)-ADP and phosphate) release in the ATPase direction or, conversely, the initial binding of substrates in the ATP synthesis direction. On the basis of these observations, coordination of betaY317 by Mg(2+)-ADP that binds to the empty catalytic site provides a means by which substrate binding could trigger gamma subunit rotation and consequent conformation changes of beta subunits during ATP synthesis.  相似文献   

20.
Stewart RC 《Biochemistry》2005,44(11):4375-4385
Signal transduction in the chemotaxis system of Escherichia coli involves an autophosphorylating protein histidine kinase, CheA. At the active site of CheA, phenylalanine residues 455 and 459 occupy positions near the ATP-binding pocket, immediately adjacent to one of the hinge regions of a loop that undergoes an ATP-induced conformational change ("lid closure") that has been characterized previously in X-ray crystal structures [Bilwes et al. (2001) Nat. Struct. Biol. 8, 353-360]. We generated versions of CheA carrying F455W and F459W replacements and investigated whether the fluorescence properties of the introduced tryptophan side chains were affected by nucleotide binding in a manner that would provide a signal for investigating the dynamics of active site events, such as ATP binding and lid closure. Our results indicate that CheA(F455W) is useful in this regard, but CheA(F459W) is not. CheA(F455W) retained full catalytic activity and exhibited easily monitored fluorescence changes upon binding nucleotide: we observed a 25-30% decrease in CheA(F455W) fluorescence emission intensity at 330 nm upon binding ATP in the absence of Mg(2+); in the presence of Mg(2+), the emission spectrum of the CheA(F455W):ATP complex was red-shifted by 5 nm and exhibited an increased intensity (approximately 20% higher at 345 nm relative to that of uncomplexed CheA(F455W)). Different fluorescence changes were observed when two ATP analogues (ADPNP and ADPCP) were used instead of ATP and when Mn(2+) or Ca(2+) was used in place of Mg(2+). We exploited the fluorescence changes induced by Mg(2+)-ATP to explore the kinetics and mechanism of nucleotide binding by CheA(F455W). In the absence of Mg(2+), binding appears to involve a simple one-step equilibrium (k(assn) = 0.7 microM(-1) s(-1) and k(dissn) = 270 s(-1) at 4 degrees C). In the presence of Mg(2+), the binding mechanism involves at least two steps: (i) rapid, relatively weak binding followed by (ii) a rapid, reversible step (k(forward) = 300 s(-1) and k(reverse) =15 s(-1) at 4 degrees C) that enhanced the overall affinity of the complex and generated an increase in W455 fluorescence. This second step could reflect a conformational change at the CheA active site, such as lid closure. These results provide the first insight into the dynamics of nucleotide binding and substrate-induced conformational changes at the active site of a protein histidine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号