首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Envelope protein 53R was identified from frog Rana grylio virus (RGV), a member of the family Iridoviridae, and it plays an important role in the virus assembly. Although inhibition of iridovirus major capsid protein (MCP) by small hairpin RNAs (shRNAs) has been shown to cause resistance to viral infection in vitro, RNA interference (RNAi) to inhibit aquatic animal virus envelope protein gene product has not been reported.

Methodology

We devised artificial microRNAs (amiRNAs) that target a viral envelope protein gene RGV 53R. By incorporating sequences encoding amiRNAs specific to 53R of RGV into pre-miRNA155 (pSM155) vectors, which use the backbone of natural miR-155 sequence and could intracellularly express 53R-targeted pre-amiRNAs. The pre-amiRNAs could be processed by the RNase III-like enzyme Dicer into 21–25 nt amiRNAs (amiR-53Rs) in fish cell lines. The levels of 53R expression were analyzed through real-time PCR and RGV virions assembly were observed by electronic microscopy in fish cells transfected with or without amiR-53Rs at 72 h of RGV infection.

Conclusion/Significance

The results argue that viral envelope protein RGV 53R can be silenced and the virions assembly was deficient by amiR-53R-1, and further identified the first amiRNA of envelope protein gene from iridovirus that was able to cause resistance to virus infection in fish cells. The data demonstrate that the viral infection is efficiently suppressed (58%) by amiR-53R-1 targeting positon 36–57 of RGV 53R. Moreover, electron microscopic observations revealed virion assembly defect or reduced virions assembly capacity was closely correlated to expression of amiR-53R-1. Based on real time PCR of the Mx gene, we found no evidence of activation of IFN by amiR-53R-1.  相似文献   

2.
从蛙虹彩病毒(Rana grylio virus,RGV)中克隆出一个虹彩病毒科的序列保守基因RGV-12L, 序列分析表明该基因全长894 bp, 编码一个含297个氨基酸的多肽,分子量为33 kD。构建包含该基因全长的原核表达载体, 进行原核表达,获得了分子量约53 kD的融合蛋白。将融合蛋白经腹腔注射免疫小鼠,制备出鼠抗RGV-12L血清。通过RT-PCR和Western blotting分析RGV感染细胞后RGV-12L的转录时序, 感染4h可以在RNA水平检测到RGV-12L的转录, 感染8h可以在蛋白水平检测到RGV-12L的表达。用DNA复制抑制剂阿糖胞苷(Arac)进行药物抑制实验,鉴定出RGV-12L是一个晚期基因。免疫荧光分析显示RGV-12L分布于感染细胞的细胞核和细胞质中, 在病毒加工厂中也有该蛋白的分布, 提示该基因可能与病毒的装配、释放有关。    相似文献   

3.
Chinese sturgeon Acipenser sinensis, a cartilaginous ganoid, is a ‘living fossil’ on a deeply isolated evolutionary branch. A cell line was established from Chinese sturgeon tail‐fin tissue (CSTF) . These epithelial CSTF cells grew well in Dulbecco’s modified Eagle’s medium at 25° C. Karyotypic analysis revealed a normal diploid karyotype with 2n= 264 and large numbers of punctate chromosomes. A strain of frog iridoviruses [Rana grylio virus (RGV)] was used to test the susceptibility of this cell line to infection. Infection was confirmed by cytopathic effect, immunofluorescence and electron‐microscope observations, which detected the viral antigens or particles in the cytoplasm of RGV‐infected cells. Molecular analysis further suggested that c. 550 bp DNA fragment could be cloned from the RGV‐infected CSTF cells’ DNA with major capsid protein gene polymerase chain reaction primers. Furthermore, after transfection with pEGFP vector DNA, the CSTF cell line produced significant fluorescent signals indicating its utility in exogenous studies.  相似文献   

4.
The induction of apoptosis during coxsackievirus B3 (CVB3) infection is well documented. In order to study whether the inhibition of apoptosis has an impact on CVB3 replication, the pan-caspase inhibitor Z-VAD-FMK was used. The decreased CVB3 replication is based on reduced accumulation of both viral RNA and viral proteins. These effects are due to an inhibitory influence of Z-VAD-FMK on the proteolytic activity of the CVB3 proteases 2A and 3C, which was demonstrated by using the target protein poly(A)-binding protein (PABP). The antiviral effect of the structurally different pan-caspase inhibitor Q-VD-OPH was independently of the viral protease inhibition and resulted in suppression of virus progeny production and impaired release of newly produced CVB3 from infected cells. A delayed release of cytochrome c into the cytoplasm was detected in Q-VD-OPH-treated CVB3-infected cells pointing to an involvement of caspases in the initial steps of mitochondrial membrane-permeabilization.  相似文献   

5.
O Rey  D P Nayak 《Journal of virology》1992,66(10):5815-5824
We investigated the properties of ts51, an influenza virus (A/WSN/33) temperature-sensitive RNA segment 7 mutant. Nucleotide sequence analysis revealed that ts51 possesses a single nucleotide mutation, T-261----C, in RNA segment 7, resulting in a single amino acid change. Phenylalanine (position 79) in the wild-type M1 protein was substituted by serine in ts51. This mutation was phenotypically characterized by dramatic nuclear accumulation of the M1 protein and interfered with some steps at the late stage of virus replication, possibly affecting the assembly and/or budding of viral particles. However, although M1 protein was retained within the nucleus, export of the newly synthesized viral ribonucleoprotein containing the minus-strand RNA into the cytoplasm was essentially the same at both permissive and nonpermissive temperatures. The roles of M1 in the export of viral ribonucleoproteins from the nucleus into the cytoplasm and in the virus particle assembly process are discussed.  相似文献   

6.
During the late phase of adenovirus infection, viral mRNA is efficiently transported from the nucleus to the cytoplasm while most cellular mRNA species are retained in the nucleus. Two viral proteins, E1B-55 kDa and E4orf6, are both necessary for these effects. The E4orf6 protein of adenovirus type 5 binds and relocalizes E1B-55 kDa, and the complex of the two proteins was previously shown to shuttle continuously between the nucleus and cytoplasm. Nucleocytoplasmic transport of the complex is achieved by a nuclear export signal (NES) within E4orf6. Mutation of this signal sequence severely reduces the ability of the E1B-55 kDa-E4orf6 complex to leave the nucleus. Here, we examined the role of functional domains within E4orf6 during virus infection. E4orf6 or mutants derived from it were transiently expressed, followed by infection with recombinant adenovirus lacking the E4 region and determination of virus yield. An arginine-rich putative alpha helix near the carboxy terminus of E4orf6 contributes to E1B-55 kDa binding and relocalization as well as to the synthesis of viral DNA, mRNA, and proteins. Further mutational analysis revealed that mutation of the NES within E4orf6 considerably reduces its ability to support virus production. The same effect was observed when nuclear export was blocked with a competitor. Further, a functional NES within E4orf6 contributed to the efficiency of late virus protein synthesis and viral DNA replication, as well as total and cytoplasmic accumulation of viral late mRNA. Our data support the view that NES-mediated nucleocytoplasmic shuttling strongly enhances most, if not all, intracellular activities of E4orf6 during the late phase of adenovirus infection.  相似文献   

7.
The resistance (R) proteins of the TIR- and non-TIR (or CC-) superfamilies possess a nucleotide binding site (NBS) domain. Within an R gene, the NBS is the region of highest conservation, suggesting an essential role in triggering R protein activity. We compared the NBS domain of functional R genes and resistance gene analogs (RGA) amplified from S. caripense genomic DNA via PCR using specific and degenerate primers with its counterpart from other plants. An overall high degree of sequence conservation was apparent throughout the P-loop, kinase-2 and kinase-3a motifs of NBS fragments from all plants. Within the non-TIR class of R genes a prominent sub-class similar to the potato R1 gene conferring resistance to late blight, was detected. All non-TIR-R1-like R gene fragments that were sequenced possessed an intact open reading frame, whereas 22% of all non-TIR-non-R1-like fragments and 59% of all TIR-NBS RGA fragments had an interrupted reading frame or contained transposon-specific sequence. The non-TIR-R1-like fragments had high similarity to Solanaceae R genes and low similarity to RGAs of other plant species including A. thaliana and the cereals. It is concluded that appearance of the non-TIR-R1-like NBS domain represents a relatively recent evolutionary development. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
9.
10.
Functional importance of Vpx protein of human immunodeficiency virus type 2 was evaluated in various types of cells. In 8 lymphocytic or monocytic cell lines tested, vpx mutant virus grew as well as wild-type virus. Only in primary peripheral blood mononuclear cell cultures, severely retarded growth of mutant virus was observed. No replication of vpx-minus virus was detected in primary macrophage cells. A highly sensitive single-round replication assay system was used to determine the defective replication phase in primary mononuclear cells of vpx mutant virus. In all cell lines examined, vpx mutant displayed no abnormality. In contrast, the vpx mutant was demonstrated to be defective at an early stage of the infection cycle in primary cell cultures. No evidence of a replication-defect at a late phase in primary cells of the vpx mutant was obtained by a transfection-coculture method. These results indicate that the virion-associated Vpx protein is essential for early viral replication process in natural target cells such as primary macrophages.  相似文献   

11.

Background  

Sindbis virus (SV) is the prototype of alphaviruses which are a group of widely distributed human and animal pathogens. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an RNA-binding protein that shuttles between the nucleus and the cytoplasm. Our recent studies found that hnRNP A1 relocates from nucleus to cytoplasm in Sindbis virus (SV)-infected cells. hnRNP A1 binds to the 5' UTR of SV RNA and facilitates the viral RNA replication and translation.  相似文献   

12.
Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization.  相似文献   

13.
West Nile virus (WNV) is a single‐stranded, positive sense RNA virus of the family Flaviviridae and is a significant pathogen of global medical importance. Flavivirus replication is known to be exclusively cytoplasmic, but we show here for the first time that access to the nucleus of the WNV strain Kunjin (WNVKUN) RNA‐dependent RNA polymerase (protein NS5) is central to WNVKUN virus production. We show that treatment of cells with the specific nuclear export inhibitor leptomycin B (LMB) results in increased NS5 nuclear accumulation in WNVKUN‐infected cells and NS5‐transfected cells, indicative of nucleocytoplasmic shuttling under normal conditions. We used site‐directed mutagenesis to identify the nuclear localisation sequence (NLS) responsible for WNVKUN NS5 nuclear targeting, observing that mutation of this NLS resulted in exclusively cytoplasmic accumulation of NS5 even in the presence of leptomycin B. Introduction of NS5 NLS mutations into FLSDX, an infectious clone of WNVKUN, resulted in lethality, suggesting that the ability of NS5 to traffic into the nucleus in integral to WNVKUN replication. This study thus shows for the first time that NLS‐dependent trafficking into the nucleus during infection of WNVKUN NS5 is critical for viral replication. Excitingly, specific inhibitors of NS5 nuclear import reduce WNVKUN virus production, proving the principle that inhibition of WNVKUN NS5 nuclear import is a viable therapeutic avenue for antiviral drug development in the future.  相似文献   

14.
Theiler’s murine encephalomyelitis virus (TMEV) is a positive-sense RNA virus belonging to the Cardiovirus genus in the family Picornaviridae. In addition to other host cellular factors and pathways, picornaviruses utilise heat shock proteins (Hsps) to facilitate their propagation in cells. This study investigated the localisation of Hsps 70 and 90 in TMEV-infected BHK-21 cells by indirect immunofluorescence and confocal microscopy. The effect of Hsp90 inhibitors novobiocin (Nov) and geldanamycin (GA) on the development of cytopathic effect (CPE) induced by infection was also examined. Hsp90 staining was uniformly distributed in the cytoplasm of uninfected cells but was found concentrated in the perinuclear region during late infection where it overlapped with the signal for non-structural protein 2C within the viral replication complex. Hsp70 redistributed into the vicinity of the viral replication complex during late infection, but its distribution did not overlap with that of 2C. Inhibition of Hsp90 by GA and Nov had a negative effect on virus growth over a 48-h period as indicated by no observable CPE in treated compared to untreated cells. 2C was detected by Western analysis of GA-treated infected cell lysates at doses between 0.01 and 0.125 μM, suggesting that processing of viral precursors was not affected in the presence of this drug. In contrast, 2C was absent in cell lysates of Nov-treated cells at doses above 10 μM, although CPE was evident 48 hpi. This is the first study describing the dynamic behaviour of Hsps 70 and 90 in TMEV-infected cells and to identify Hsp90 as an important host factor in the life cycle of this virus.  相似文献   

15.
XY Lei  T Ou  QY Zhang 《PloS one》2012,7(8):e43033

Background

The complete genome of Rana grylio virus (RGV) was sequenced and analyzed recently, which revealed that RGV 50L had homologues in many iridoviruses with different identities; however, the characteristics and functions of 50L have not been studied yet.

Methodology/Principal Findings

We cloned and characterized RGV50L, and revealed 50L functions in virus assembly and gene regulation. 50L encoded a 499-amino acid structural protein of about 85 kDa in molecular weight and contained a nuclear localization signal (NLS) and a helix- extension-helix motif. Drug inhibition assay demonstrated that 50L was an immediate-early (IE) gene. Immuno-fluorescence assay revealed that 50L appeared early and persisted in RGV-infected cells following two distribution patterns. One pattern was that 50L exhibited a cytoplasm-nucleus- viromatrix distribution pattern, and mutagenesis of the NLS motif revealed that localization of 50L in the nucleus was NLS-dependent; the other was that 50L co-localized with viral matrix which plays important roles in virus assembly and the life circle of viruses.

Conclusions/Significance

RGV 50L is a novel iridovirus IE gene encoded structural protein which plays important roles in virus assembly.  相似文献   

16.
Ascoviruses (AVs) induce a unique pathology in their insect host cells causing cleavage of the cells into virion-containing vesicles. The mechanism by which AVs induce vesicle formation is poorly understood. It is postulated that the virus initially induces apoptosis leading to cell fragmentation. The apoptotic bodies are however, rescued by the virus to form the vesicles. Here we show that Heliothis virescens AV (HvAV-3e) is able to inhibit chemically induced apoptosis from around 16 h after infection. Analysis of the genome of the virus indicated the presence of a putative inhibitor of apoptosis (orf28) gene that encodes a protein with an imperfect baculovirus inhibitor of apoptosis repeat (BIR) and a RING domain. Transiently expressed orf28 did not inhibit chemically induced apoptosis suggesting that the protein may not serve as an inhibitor of apoptosis. Nevertheless, RNA interference studies revealed that the gene is probably essential for virus pathology and replication.  相似文献   

17.
The zinc finger antiviral protein (ZAP) is a recently isolated host antiviral factor. It specifically inhibits the replication of Moloney murine leukemia virus (MMLV) and Sindbis virus (SIN) by preventing the accumulation of viral RNA in the cytoplasm. In this report, we demonstrate that ZAP is predominantly localized in the cytoplasm at steady state but shuttles between the nucleus and the cytoplasm in a CRM1-dependent manner. Two nuclear localization sequences (NLS) and one nuclear export sequence (NES) were identified. One NLS was mapped to amino acids 68-RARVCRRK-75 and the other mapped to a region including amino acids K405 and K406. The NES was mapped to amino acids 284-LEDVSVDV-291. These findings help to understand why ZAP specifically prevents the accumulation of viral RNA in the cytoplasm. These findings also suggest possible functions of ZAP in the nucleus.  相似文献   

18.
Thogoto and Dhori viruses are tick-borne orthomyxoviruses infecting humans and livestock in Africa, Asia, and Europe. Here, we show that human MxA protein is an efficient inhibitor of Thogoto virus but is inactive against Dhori virus. When expressed in the cytoplasm of stably transfected cell lines, MxA protein interfered with the accumulation of Thogoto viral RNA and proteins. Likewise, MxA(R645), a mutant MxA protein known to be active against influenza virus but inactive against vesicular stomatitis virus, was equally efficient in blocking Thogoto virus growth. Hence, a common antiviral mechanism that is distinct from the antiviral action against vesicular stomatitis virus may operate against both influenza virus and Thogoto virus. When moved to the nucleus with the help of a foreign nuclear transport signal, MxA(R645) remained active against Thogoto virus, indicating that a nuclear step of virus replication was inhibited. In contrast, Dhori virus was not affected by wild-type or mutant MxA protein, indicating substantial differences between these two tick-transmitted orthomyxoviruses. Human MxB protein had no antiviral activity against either virus.  相似文献   

19.
Borna disease virus (BDV) is a nonsegmented negative-strand (NNS) RNA virus that is unusual because it replicates in the nucleus. The most abundant viral protein in infected cells is a 38/39-kDa doublet that is presumed to represent the nucleocapsid. Infectious particles also contain high levels of this protein, accounting for at least 50% of the viral proteins. The two forms of the protein differ by an additional 13 amino acids that are present at the amino terminus of the 39-kDa form and missing from the 38-kDa form. To examine whether this difference in amino acid content affects the localization of this protein in cells, the 39- and 38-kDa proteins were expressed in transfected cells. The 39-kDa form was concentrated in the nucleus, whereas the 38-kDa form was found in both the nucleus and cytoplasm. Inspection of the extra 13 amino acids present in the 39-kDa form revealed a sequence (Pro-Lys-Arg-Arg) that is very similar to the nuclear localization signals (in both sequence homology and amino-terminal location) of the VP1 proteins of simian virus 40 and polyomavirus. Primer extension analysis of total RNA from infected cells suggests that there are two mRNA species encoding the two forms of the nucleocapsid protein. In infected cells, the 39-kDa form is expressed at about twofold-higher levels than the 38-kDa form at both the RNA and protein levels. The novel nuclear localization of the 39-kDa nucleocapsid-like protein suggests that this form of the protein is targeted to the nucleus, the site for viral RNA replication, and that it may associate with genomic RNA.  相似文献   

20.
G88R emerged as a compensatory mutation in matrix protein 1 (M1) of influenza virus A/WSN/33 when its nuclear localization signal (NLS) was disrupted by R101S and R105S substitutions. The resultant M1 triple mutant M(NLS-88R) regained replication efficiency in vitro while remaining attenuated in vivo with the potential of being a live vaccine candidate. To understand why G88R was favored by the virus as a compensatory change for the NLS loss and resultant replication deficiency, three more M1 triple mutants with an alternative G88K, G88V, or G88E change in addition to R101S and R105S substitutions in the NLS were generated. Unlike the other M1 triple mutants, M(NLS-88R) replicated more efficiently in vitro and in vivo. The G88R compensatory mutation not only restored normal functions of M1 in the presence of a disrupted NLS but also resulted in a strong association of M1 with viral ribonucleoprotein. Under a transmission electron microscope, only the M1 layer of the M(NLS-88R) virion exhibited discontinuous fingerprint-like patterns with average thicknesses close to that of wild-type A/WSN/33. Computational modeling suggested that the compensatory G88R change could reestablish the integrity of the M1 layer through new salt bridges between adjacent M1 subunits when the original interactions were interrupted by simultaneous R101S and R105S replacements in the NLS. Our results suggested that restoring the normal functions of M1 was crucial for efficient virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号