首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When hematopoietic stem and progenitor cells(HSPC)are harvested for transplantation, either from the bone marrow or from mobilized blood, the graft contains a significant number of T cells. It is these T cells that are the major drivers of graft-vs-host disease(Gv HD). The risk for Gv HD can simply be reduced by the removal of these T cells from the graft. However, this is not always desirable, as this procedure also decreases the engraftment of the transplanted HSPCs and, if applicable, a graft-vs-tumor effect. This poses an important conundrum in the field: T cells act as a double-edged sword upon allogeneic HSPC transplantation, as they support engraftment of HSPCs and provide anti-tumor activity, but can also cause Gv HD. It has recently been suggested that T cells also enhance the engraftment of autologous HSPCs, thus supporting the notion that T cells and HSPCs have an important functional interaction that is highly beneficial, in particular during transplantation. The underlying reason on why and how T cells contribute to HSPC engraftment is still poorly understood. Therefore, we evaluate in this review the studies that have examined the role of T cells during HSPC transplantation and the possible mechanisms involved in their supporting function. Understanding the underlying cellular and molecular mechanisms can provide new insight into improving HSPC engraftment and thus lower the number of HSPCs required during transplantation. Moreover, it could provide new avenues to limit the development of severe Gv HD, thus making HSPC transplantations more efficient and ultimately safer.  相似文献   

2.
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.  相似文献   

3.
4.
Cell-cell and cell-extracellular matrix interactions between hematopoietic stem cells (HSCs) and their niches are critical for the maintenance of stem cell properties. Here, it is demonstrated that a cell adhesion molecule, N-cadherin, is expressed in hematopoietic stem/progenitor cells (HSPCs) and plays a critical role in the regulation of HSPC engraftment. Furthermore, overexpression of N-cadherin in HSCs promoted quiescence and preserved HSC activity during serial bone marrow (BM) transplantation (BMT). Inhibition of N-cadherin by the transduction of N-cadherin short hairpin (sh) RNA (shN-cad) reduced the lodgment of donor HSCs to the endosteal surface, resulting in a significant reduction in long-term engraftment. shN-cad-transduced cells were maintained in the spleen for six months after BMT, indicating that N-cadherin expression in HSCs is specifically required in the BM. These findings suggest that N-cadherin-mediated cell adhesion is functionally essential for the regulation of HSPC activities in the BM niche.  相似文献   

5.
The hallmark of vertebrate definitive hematopoiesis is the establishment of the hematopoietic stem/progenitor cell (HSPC) pool during embryogenesis. This process involves a defined ontogenic switching of HSPCs in successive hematopoietic compartments and is evolutionarily conserved from teleost fish to human. In zebrafish, HSPCs originate from the ventral wall of the dorsal aorta (VDA), from which they subsequently mobilize to an intermediate hematopoietic site known as the caudal hematopoietic tissue (CHT) and finally colonize the kidney for adult hematopoiesis. Despite substantial understanding of the ontogeny of HSPCs, the molecular basis governing migration, colonization and maintenance of HSPCs remains to be explored fully. Here, we report the isolation and characterization of two zebrafish mutants, rumba(hkz1) and samba(hkz2), that are defective in generating definitive hematopoiesis. We find that HSPC initiation in the VDA and subsequent homing to the CHT are not affected in these two mutants. However, the further development of HSPCs in the CHT is compromised in both mutants. Positional cloning reveals that Rumba is a novel nuclear C2H2 zinc-finger factor with unknown function and samba encodes an evolutionarily conserved protein that is homologous to human augmin complex subunit 3 (HAUS3). Furthermore, we show that these two factors independently regulate cell cycle progression of HSPCs and are cell autonomously required for HPSC development in the CHT. Our study identifies Rumba and Haus3 as two essential regulators of HSPC maintenance during zebrafish fetal hematopoiesis.  相似文献   

6.
The fate of hematopoietic stem and progenitor cells (HSPCs) is regulated by their interaction with stromal cells in the bone marrow. However, the cellular mechanisms regulating HSPC interaction with these cells and their potential impact on HSPC polarity are still poorly understood. Here we evaluated the impact of cell–cell contacts with osteoblasts or endothelial cells on the polarity of HSPC. We found that an HSPC can form a discrete contact site that leads to the extensive polarization of its cytoskeleton architecture. Notably, the centrosome was located in proximity to the contact site. The capacity of HSPCs to polarize in contact with stromal cells of the bone marrow appeared to be specific, as it was not observed in primary lymphoid or myeloid cells or in HSPCs in contact with skin fibroblasts. The receptors ICAM, VCAM, and SDF1 were identified in the polarizing contact. Only SDF1 was independently capable of inducing the polarization of the centrosome–microtubule network.  相似文献   

7.
Attempts to improve hematopoietic reconstitution and engraftment potential of ex vivo-expanded hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful due to the inability to generate sufficient stem cell numbers and to excessive differentiation of the starting cell population. Although hematopoietic stem cells (HSCs) will rapidly expand after in vivo transplantation, experience from in vitro studies indicates that control of HSPC self-renewal and differentiation in culture remains difficult. Protocols that are based on hematopoietic cytokines have failed to support reliable amplification of immature stem cells in culture, suggesting that additional factors are required. In recent years, several novel factors, including developmental factors and chemical compounds, have been reported to affect HSC self-renewal and improve ex vivo stem cell expansion protocols. Here, we highlight early expansion attempts and review recent development in the extrinsic control of HSPC fate in vitro.  相似文献   

8.

Background

In the last decades, human full-term cord blood was extensively investigated as a potential source of hematopoietic stem and progenitor cells (HSPCs). Despite the growing interest of regenerative therapies in preterm neonates, only little is known about the biological function of HSPCs from early preterm neonates under different perinatal conditions. Therefore, we investigated the concentration, the clonogenic capacity and the influence of obstetric/perinatal complications and maternal history on HSPC subsets in preterm and term cord blood.

Methods

CD34+ HSPC subsets in UCB of 30 preterm and 30 term infants were evaluated by flow cytometry. Clonogenic assays suitable for detection of the proliferative potential of HSPCs were conducted. Furthermore, we analyzed the clonogenic potential of isolated HSPCs according to the stem cell marker CD133 and aldehyde dehydrogenase (ALDH) activity.

Results

Preterm cord blood contained a significantly higher concentration of circulating CD34+ HSPCs, especially primitive progenitors, than term cord blood. The clonogenic capacity of HSPCs was enhanced in preterm cord blood. Using univariate analysis, the number and clonogenic potential of circulating UCB HSPCs was influenced by gestational age, birth weight and maternal age. Multivariate analysis showed that main factors that significantly influenced the HSPC count were maternal age, gestational age and white blood cell count. Further, only gestational age significantly influenced the clonogenic potential of UCB HSPCs. Finally, isolated CD34+/CD133+, CD34+/CD133– and ALDHhigh HSPC obtained from preterm cord blood showed a significantly higher clonogenic potential compared to term cord blood.

Conclusion

We demonstrate that preterm cord blood exhibits a higher HSPC concentration and increased clonogenic capacity compared to term neonates. These data may imply an emerging use of HSPCs in autologous stem cell therapy in preterm neonates.  相似文献   

9.
Infection with a variety of bacterial pathogens results in hematopoietic stem and progenitor cell (HSPC) mobilization. The mechanism and kinetics of HSPC mobilization during infection are largely unknown. Previously, we found altered HSPC activity in bone marrow, spleen and blood during infection with Anaplasma phagocytophilum, the agent of granulocytic anaplasmosis. We hypothesized that altered CXCL12/CXCR4 signaling, a central pathway for HSPC homing to, and retention within, the bone marrow, plays a role in infection-induced alterations in HSPC number and trafficking. Mice were infected with A. phagocytophilum. Lineage-cKit+ HSPCs were enumerated and proliferation determined. CXCL12 and CXCR4 mRNA were quantified along with CXCL12 protein, and CXCR4 surface, intracellular and total protein expression in HSPCs was determined. Increased bone marrow proliferation of HSPCs began at 2 d post-infection followed by HSPC mobilization and splenic homing. Proliferation of resident HSPCs contributed to increased splenic HSPC numbers. Bone marrow CXCL12 mRNA and protein levels were decreased at 4-8 d post-infection concurrent with HSPC mobilization. CXCR4 protein parameters were decreased in bone marrow HSPCs throughout 2-6 d post-infection. Reduction of CXCL12/CXCR4 signaling simultaneously occurs with HSPC mobilization from bone marrow. Findings suggest that deranged CXCL12/CXCR4 signaling plays a causal role in HSPC mobilization during acute A. phagocytophilum infection.  相似文献   

10.

Background

Hypercholesterolemia plays a critical role in atherosclerosis. CD34+ CD45dim Lineage- hematopoietic stem/progenitor cells (HSPCs) give rise to the inflammatory cells linked to atherosclerosis. In mice, high cholesterol levels mobilize HSPCs into the bloodstream, and promote their differentiation to granulocytes and monocytes. The objective of our study was to determine how cholesterol levels affect HSPC quantity in humans.

Methods

We performed a blinded, randomized hypothesis generating study in human subjects (n=12) treated sequentially with statins of differing potencies to vary lipid levels. CD34+ HSPC levels in blood were measured by flow cytometry. Hematopoietic colony forming assays confirmed the CD34+ population studied as HSPCs with multlineage differentiation potential. Mobilizing cytokine levels were measured by ELISA.

Results

The quantity of HSPCs was 0.15 ± 0.1% of buffy coat leukocytes. We found a weak, positive correlation between CD34+ HSPCs and both total and LDL cholesterol levels (r2=0.096, p < 0.025). Additionally, we tested whether cholesterol modulates CD34+ HSPCs through direct effects or on the levels of mobilizing cytokines. LDL cholesterol increased cell surface expression of CXCR4, G-CSFR affecting HSPC migration, and CD47 mediating protection from phagocytosis by immune cells. LDL cholesterol also increased proliferation of CD34+ HSPCs (28 ± 5.7%, n=6, p < 0.03). Finally, the HSPC mobilizing cytokine G-CSF (r2=0.0683, p < 0.05), and its upstream regulator IL-17 (r2=0.0891, p < 0.05) both correlated positively with LDL cholesterol, while SDF-1 levels were not significantly affected.

Conclusions

Our findings support a model where LDL cholesterol levels positively correlate with CD34+ HSPC levels in humans through effects on the levels of G-CSF via IL-17 promoting mobilization of HSPCs, and by direct effects of LDL cholesterol on HSPC proliferation. The findings are provocative of further study to determine if HSPCs, like cholesterol levels, are linked to CVD events.  相似文献   

11.
Freshly isolated human hematopoietic stem and progenitor cells (HSPCs) are small and round cells which upon cultivation adopt a polarized morphology and redistribute certain cell surface antigens. To functionally dissect this polarization process, we addressed impacts of protein synthesis, HSPC trafficking, cytoskeleton organization or lipid raft integrity on the establishment and maintenance of the cell polarity of human HSPCs. Effects on the morphology, sub-cellular distribution of lipid raft-associated molecular polarization markers (Flotillin-1, Flotillin-2, ICAM-3) and in vitro migration capabilities of treated cells were studied. We could distinguish two levels of cellular polarization, a molecular and a morphological level. Our data suggest that protein synthesis, lipid raft integrity and enzymatic activities of PI3K and aPKC are required to organize the molecular cell polarity. The morphological cell polarization process, however, also depends on actin polymerization and rho-GTPase activities. In summary, our data qualify HSPC polarization processes as new pharmaceutical target to interfere with migratory and with homing capabilities of HSPCs.  相似文献   

12.
13.
Glycans occupy the critical cell surface interface between hematopoietic cells and their marrow niches. Typically, glycosyltransferases reside within the intracellular secretory apparatus, and each cell autonomously generates its own cell surface glycans. In this study, we report an alternate pathway to generate cell surface glycans where remotely produced glycosyltransferases remodel surfaces of target cells and for which endogenous expression of the cognate enzymes is not required. Our data show that extracellular ST6Gal-1 sialyltransferase, originating mostly from the liver and released into circulation, targets marrow hematopoietic stem and progenitor cells (HSPCs) and mediates the formation of cell surface α2,6-linked sialic acids on HSPCs as assessed by binding to the specific lectins Sambucus nigra agglutinin and Polysporus squamosus lectin and confirmed by mass spectrometry. Marrow HSPCs, operationally defined as the Lin−c-Kit+ and Lin−Sca-1+c-Kit+ populations, express negligible endogenous ST6Gal-1. Animals with reduced circulatory ST6Gal-1 have marrow Lin−Sca-1+c-Kit+ cells with reduced S. nigra agglutinin reactivity. Bone marrow chimeras demonstrated that α2,6-sialylation of HSPCs is profoundly dependent on circulatory ST6Gal-1 status of the recipients and independent of the ability of HSPCs to express endogenous ST6Gal-1. Biologically, HSPC abundance in the marrow is inversely related to circulatory ST6Gal-1 status, and this relationship is recapitulated in the bone marrow chimeras. We propose that remotely produced, rather than the endogenously expressed, ST6Gal-1 is the principal modifier of HSPC glycans for α2,6-sialic acids. In so doing, liver-produced ST6Gal-1 may be a potent systemic regulator of hematopoiesis.  相似文献   

14.
Constitutive egress of bone marrow (BM)-resident hematopoietic stem and progenitor cells (HSPCs) into the blood is a well-established phenomenon, but the ultimate fate and functional relevance of circulating HSPCs is largely unknown. We show that mouse thoracic duct (TD) lymph contains HSPCs that possess short- and long-term multilineage reconstitution capacity. TD-derived HSPCs originate in the BM, enter the blood, and traffic to multiple peripheral organs, where they reside for at least 36 hr before entering draining lymphatics to return to the blood and, eventually, the BM. HSPC egress from extramedullary tissues into lymph depends on sphingosine-1-phosphate receptors. Migratory HSPCs proliferate within extramedullary tissues and give rise to tissue-resident myeloid cells, preferentially dendritic cells. HSPC differentiation is amplified upon exposure to Toll-like receptor agonists. Thus, HSPCs can survey peripheral organs and can foster the local production of tissue-resident innate immune cells under both steady-state conditions and in response to inflammatory signals.  相似文献   

15.
Hematopoietic stem cells (HSCs) are capable of giving rise to all blood cell lineages throughout adulthood, and the generation of engraftable HSCs from human pluripotent stem cells is a major goal for regenerative medicine. Here, we describe a functional genome‐wide RNAi screen to identify genes required for the differentiation of embryonic stem cell (ESC) into hematopoietic stem/progenitor cells (HSPCs) in vitro. We report the discovery of novel genes important for the endothelial‐to‐hematopoietic transition and subsequently for HSPC specification. High‐throughput sequencing and bioinformatic analyses identified twelve groups of genes, including a set of 351 novel genes required for HSPC specification. As in vivo proof of concept, four of these genes, Ap2a1, Mettl22, Lrsam1, and Hal, are selected for validation, confirmed to be essential for HSPC development in zebrafish and for maintenance of human HSCs. Taken together, our results not only identify a number of novel regulatory genes and pathways essential for HSPC development but also serve as valuable resource for directed differentiation of therapy grade HSPCs using human pluripotent stem cells.  相似文献   

16.
Lgr5 is a marker for proliferating stem cells in adult intestine, stomach, and hair follicle. However, Lgr5 is not expressed in adult hematopoietic stem and progenitor cells (HSPCs). Whether Lgr5 is expressed in the embryonic and fetal HSPCs that undergo rapid proliferation is unknown. Here we report the detection of Lgr5 expression in HSPCs in the aorta-gonad-mesonephros (AGM) and fetal liver. We also found that a portion of Lgr5+ cells expressed the Runx1 gene that is critical for the ontogeny of HSPCs. A small portion of Lgr5+ cells also expressed HSPC surface markers c-Kit and CD34 in AGM or CD41 in fetal liver. Furthermore, the majority of Lgr5+ cells expressed Ki67, indicating their proliferating state. Transplantation of fetal liver-derived Lgr5-GFP+ cells (E12.5) demonstrated that Lgr5-GFP+ cells were able to reconstitute myeloid and lymphoid lineages in adult recipients, but the engraftment was short-term (4–8 weeks) and 20-fold lower compared with the Lgr5-GFP control. Our data show that Lgr5-expressing cells mark short-term hematopoietic stem and progenitor cells, consistent with the role of Lgr5 in supporting HSPCs rapid proliferation during embryonic and fetal development.  相似文献   

17.
18.
Hematopoietic stem and progenitor cells (HSPCs) use specialized adhesive structures referred to as magnupodium to stay in hematopoietic niches. Bessey et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202005085) define new characteristics of the magnupodium, including centriole polarization and the necessary and sufficient role of CXCR4 signaling.

Hematopoietic stem and progenitor cells (HSPCs) need to stay in osteal and vascular niches in the bone marrow in the face of a massive flux of differentiating and maturing cells that might compete with or displace HSPCs. There have been only glimpses of the nature of the adhesive connection between HSPCs and the key niche cells. Bessy et al. use in vitro coculture systems with HSPCs and osteoblasts and/or endothelial cells, in conjunction with 3D immunofluorescence imaging, to define the nature of this critical cell–cell interface (1). In a microfluidic platform that provides HSPCs with a choice between osteoblasts and endothelial cells to establish a niche, Bessy et al. found that that HSPCs migrate into the synthetic osteal and vascular compartments and establish polarized interactions based on positioning of the centrioles toward the niche cell in the majority of observations. Bessy et al. propose that HSPCs form a specialized junction with niche cells characterized by polarity, adhesion, and stability, hallmarks of established synapses (2).Previous reports have focused on the role of a variety of cell projections in HSPC interactions with niche cells, including nanotubes many cell diameters in length and more substantial protrusions containing actinomyosin contractile systems that doubled the cell length. The latter appeared similar to the uropod of a migrating cell, except that it was attached at one end to the niche cell. Both types of structures were referred to as magnupodium due to their great relative dimensions. In microwell-based 1:1 coculture of HSPCs and osteoblasts, Bessy et al. clearly observe substantial protrusion emerging from HSPCs that are stably anchored to the osteoblast surface (1), which they refer to as magnupodium to follow the earlier precedents. The magnupodium allows the HSPC cell body to actively pivot about the stable attachment site, extensively surveying the 3D niche adjacent to the osteoblast while remaining firmly attached (1). While nanotubes and uropods are typically thought of as trailing structures in relation to cell migration (3), Bessy et al. conceptualize the magnupodium as the forward-facing synaptic structure of the niche bound HSPC; the dynamic cell body is viewed as the “tail” in this setting. This is an exciting inversion of the typical conventions and creates a framework for asking new questions and comparison to other synaptic systems.The HSPC niche requires the chemokine receptor CXCR4 on the HSPC and the chemokine SDF-1 on the stromal cell to establish a functional niche (4). Magnupodium formation with centriolar polarization is completely dependent upon CXCR4 function (Fig. 1; 1). They further demonstrate that polarized magnupodium formation by HSPCs is highly specific to bone marrow stromal cells, as HSPCs did not form a magnupodium with fibroblasts, and mature hematopoietic cells don’t form polarized magnupodium on osteoblasts. Importantly, the centrioles are not only oriented toward the magnupodium but are fully dissociated from the nucleus and positioned near to the tip of the magnupodium in contact with the niche cell. This is a critical point as docking of the centrioles directly at the synaptic cleft is a hallmark of immunological synapses (5, 6). The proteins enriched in the HSPC magnupodium include typical uropod proteins like ezrin and phosphorylated myosin II light chain. In contrast, CD44, which is often found in the uropod of migrating cells, is localized to the HSPC tail. CD133, lymphocyte function associated-1 (LFA-1), very late activation-4, the Arp2/3 complex, and the Golgi apparatus are found near the tip of magnupodium, consistent with synaptic adhesion and directed secretion. Thus, Bessy et al. strengthen the case that the magnupodium is a new type of communication structure that defines the HSPC niche. It will be important to directly test the potential for polarized secretion through the magnupodium to further investigate the synapse analogy.Open in a separate windowFigure 1.Magnupodium formation between HSPCs and osteoblasts and reductionist models. (A) Schematic of HSPC formation of a magnupodium with an osteoblast and potential receptor ligand interactions and cytoskeletal machinery. (B) Magnupodium-like structure formed by EBV transformed B cell on purified LFA-1. LMP, latent membrane protein (7). (C) Magnupodium formation in response to laterally mobile VCAM and mSCF (10).The magnupodium has implications for work on immune cell communication beyond HSPCs. Bessy et al. show that T cells and monocytes will not form a magnupodium-like structure with osteoblasts, which makes sense to avoid competition with HSPCs in the bone marrow, but this is not to say that a mature lymphocyte could never form a magnupodium in a relevant biological context. Early work with purified adhesion molecules revealed magnupodium-like structures formed by Epstein-Barr virus (EBV) transformed B lymphocytes when attached to supported lipid bilayers (SLBs) presenting purified LFA-1 (Fig. 1 B; 7). Time-lapse imaging revealed that the lymphoblasts were anchored in place for up to 16 h, the longest observation period (7). This is more durable than an antigen dependent immunological synapse (8). In light of results from Bessy et al., it’s surprising that an activated B cell line could form such a complex structure in response to engaging a single adhesion molecule. However, EBV encodes constitutively active surface receptors that mimic antigen receptor tyrosine kinase cascades, TNF receptor associated factor activation of NF-κB, and chemokine signaling (9). More recently, Hao et al. used SLBs containing laterally mobile vascular cell adhesion molecule (VCAM) and membrane anchored stem cell factor (mSCF) to trigger formation of a magnupodium-like structure by HSPCs (Fig. 1 C; 10). Hao et al. presented SDF1 in a laterally mobile form on an SLB and found that this presentation is not sufficient for magnupodium-like structure formation, whereas Bessy et al. presented SDF1 anchored to a solid surface and found that it is sufficient for magnupodium formation. This suggests that that the way in which SDF1 is presented on the osteoblast or endothelial cell, which could include the number of molecules per unit area or the lateral mobility, may be important for magnupodium formation. c-KIT signaling, triggered by mSCF, is similar in some respects to antigen receptor signaling in B cells. Neither of these studies investigated whether the centrioles are positioned near the protein-presenting SLB, which is critical to establishing if these structures are magnupodia according to the criteria proposed by Bessy et al. These SLB-based model systems should be helpful to further dissect signals sufficient for magnupodium formation.There could also be at least one physiological role for the magnupodium in B cell. Early in T cell help for antibody production by B cells, the antigen specific T and B cells meet at the boundary between the T cell zone and B cell follicle in secondary lymphoid tissues. The B cell and T cell do an intimate dance in which the B cell leads (11). The B cell migrates at ∼5 µm/min while dragging the T cell through the immunological synapse. In light of Bessy et al., it would be important to ask if the B cell side of the B–T immunological synapse is a magnupodium, creating a two-way communication interface in which both cells are polarized toward each other, even as one migrates in response to chemokine gradients. The criteria established by Bessy et al. could now be applied to the B–T synapse established in an appropriately engineered tissue-like environment. Depending upon the outcome of such experiments, this may suggest a potential for multitasking between motility directed by the leading lamellipodium and a synaptic interface through a magnupodium formed by the same cell.This concept of multitasking may also apply to HSPCs. HSPCs need to monitor many inputs to self-renew, differentiate, or even mobilize during inflammation. In polarized T cells, the free lamellipodium is much more sensitive than the uropod to antigen presenting cells (12). The magnupodium provides a solid connection between cells across which to exchange information over long periods, but the active waving by the HSPC tail in the 3D niche may provide opportunities to sense additional contact-dependent and/or soluble signals. In this regard it may be relevant that CD44 is part of this tail complex of the HSPC. CD44 is a critical sensor and regulator of inflammation (13), and it’s possible that it can better monitor the status of the niche from the tail than from the magnupodium, which is likely more focused on the state of the niche cell and providing the HSPC with its power to stay in the niche.In summary, Bessy et al. provide the field with a new perspective on the HSPC niche and help to explain the remarkable staying power and flexibility of HSPCs.  相似文献   

19.
NK cells resist engraftment of syngeneic and allogeneic bone marrow (BM) cells lacking major histocompatibility (MHC) class I molecules, suggesting a critical role for donor MHC class I molecules in preventing NK cell attack against donor hematopoietic stem and progenitor cells (HSPCs), and their derivatives. However, using high-resolution in vivo imaging, we demonstrated here that syngeneic MHC class I knockout (KO) donor HSPCs persist with the same survival frequencies as wild-type donor HSPCs. In contrast, syngeneic MHC class I KO differentiated hematopoietic cells and allogeneic MHC class I KO HSPCs were rejected in a manner that was significantly inhibited by NK cell depletion. In vivo time-lapse imaging demonstrated that mice receiving allogeneic MHC class I KO HSPCs showed a significant increase in NK cell motility and proliferation as well as frequencies of NK cell contact with and killing of HSPCs as compared to mice receiving wild-type HSPCs. The data indicate that donor MHC class I molecules are required to prevent NK cell-mediated rejection of syngeneic differentiated cells and allogeneic HSPCs, but not of syngeneic HSPCs.  相似文献   

20.
Due to the low number of collectable stem cells from single umbilical cord blood(UCB)unit,their initial uses were limited to pediatric therapies.Clinical applications of UCB hematopoietic stem and progenitor cells(HSPCs)would become feasible if there were a culture method that can effectively expand HSPCs while maintaining their self-renewal capacity.In recent years,numerous attempts have been made to expand human UCB HSPCs in vitro.In this study,we report that caffeic acid phenethyl ester(CAPE),a small molecule from honeybee extract,can promote in vitro expansion of HSPCs.Treatment with CAPE increased the percentage of HSPCs in cultured mononuclear cells.Importantly,culture of CD34+HSPCs with CAPE resulted in a significant increase in total colony-forming units and high proliferative potential colony-forming units.Burst-forming unit-erythroid was the mostly affected colony type,which increased more than 3.7-fold in 1μg mL 1CAPE treatment group when compared to the controls.CAPE appears to induce HSPC expansion by upregulating the expression of SCF and HIF1-α.Our data suggest that CAPE may become a potent medium supplement for in vitro HSPC expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号