首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Unregulated Ca2+ entry is thought to underlie muscular dystrophy. Here, we generated skeletal-muscle-specific transgenic (TG) mice expressing the Na+-Ca2+ exchanger 1 (NCX1) to model its identified augmentation during muscular dystrophy. The NCX1 transgene induced dystrophy-like disease in all hind-limb musculature, as well as exacerbated the muscle disease phenotypes in δ-sarcoglycan (Sgcd−/−), Dysf−/−, and mdx mouse models of muscular dystrophy. Antithetically, muscle-specific deletion of the Slc8a1 (NCX1) gene diminished hind-limb pathology in Sgcd−/− mice. Measured increases in baseline Na+ and Ca2+ in dystrophic muscle fibers of the hind-limb musculature predicts a net Ca2+ influx state due to reverse-mode operation of NCX1, which mediates disease. However, the opposite effect is observed in the diaphragm, where NCX1 overexpression mildly protects from dystrophic disease through a predicted enhancement in forward-mode NCX1 operation that reduces Ca2+ levels. Indeed, Atp1a2+/− (encoding Na+-K+ ATPase α2) mice, which have reduced Na+ clearance rates that would favor NCX1 reverse-mode operation, showed exacerbated disease in the hind limbs of NCX1 TG mice, similar to treatment with the Na+-K+ ATPase inhibitor digoxin. Treatment of Sgcd−/− mice with ranolazine, a broadly acting Na+ channel inhibitor that should increase NCX1 forward-mode operation, reduced muscular pathology.  相似文献   

2.
3.
Pheromones are substances released from animals that, when detected by the vomeronasal organ of other individuals of the same species, affect their physiology and behavior. Pheromone binding to receptors on microvilli on the dendritic knobs of vomeronasal sensory neurons activates a second messenger cascade to produce an increase in intracellular Ca2+ concentration. Here, we used whole-cell and inside-out patch-clamp analysis to provide a functional characterization of currents activated by Ca2+ in isolated mouse vomeronasal sensory neurons in the absence of intracellular K+. In whole-cell recordings, the average current in 1.5 µM Ca2+ and symmetrical Cl was −382 pA at −100 mV. Ion substitution experiments and partial blockade by commonly used Cl channel blockers indicated that Ca2+ activates mainly anionic currents in these neurons. Recordings from inside-out patches from dendritic knobs of mouse vomeronasal sensory neurons confirmed the presence of Ca2+-activated Cl channels in the knobs and/or microvilli. We compared the electrophysiological properties of the native currents with those mediated by heterologously expressed TMEM16A/anoctamin1 or TMEM16B/anoctamin2 Ca2+-activated Cl channels, which are coexpressed in microvilli of mouse vomeronasal sensory neurons, and found a closer resemblance to those of TMEM16A. We used the Cre–loxP system to selectively knock out TMEM16A in cells expressing the olfactory marker protein, which is found in mature vomeronasal sensory neurons. Immunohistochemistry confirmed the specific ablation of TMEM16A in vomeronasal neurons. Ca2+-activated currents were abolished in vomeronasal sensory neurons of TMEM16A conditional knockout mice, demonstrating that TMEM16A is an essential component of Ca2+-activated Cl currents in mouse vomeronasal sensory neurons.  相似文献   

4.
Intracellular Cl concentrations ([Cl]i) of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG) and olfactory sensory neurons (OSNs), Cl is accumulated by the Na+-K+-2Cl cotransporter 1 (NKCC1), resulting in a [Cl]i above electrochemical equilibrium and a depolarizing Cl efflux upon Cl channel opening. Here, we investigate the [Cl]i and function of Cl in primary sensory neurons of trigeminal ganglia (TG) of wild type (WT) and NKCC1−/− mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl]i of WT TG neurons indicated active NKCC1-dependent Cl accumulation. Gamma-aminobutyric acid (GABA)A receptor activation induced a reduction of [Cl]i as well as Ca2+ transients in a corresponding fraction of TG neurons. Ca2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca2+ channels (VGCCs). Ca2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1) were diminished in NKCC1−/− TG neurons, but elevated under conditions of a lowered [Cl]o suggesting a Cl-dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS), we found expression of different Ca2+-activated Cl channels (CaCCs) in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1−/− mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca2+-activated Cl-dependent signal amplification mechanism in TG neurons that requires intracellular Cl accumulation by NKCC1 and the activation of CaCCs.  相似文献   

5.
Transcellular Cl movement across acinar cells is the rate-limiting step for salivary gland fluid secretion. Basolateral Nkcc1 Na+-K+-2Cl cotransporters play a critical role in fluid secretion by promoting the intracellular accumulation of Cl above its equilibrium potential. However, salivation is only partially abolished in the absence of Nkcc1 cotransporter activity, suggesting that another Cl uptake pathway concentrates Cl ions in acinar cells. To identify alternative molecular mechanisms, we studied mice lacking Ae2 and Ae4 Cl/HCO3 exchangers. We found that salivation stimulated by muscarinic and β-adrenergic receptor agonists was normal in the submandibular glands of Ae2−/− mice. In contrast, saliva secretion was reduced by 35% in Ae4−/− mice. The decrease in salivation was not related to loss of Na+-K+-2Cl cotransporter or Na+/H+ exchanger activity in Ae4−/− mice but correlated with reduced Cl uptake during β-adrenergic receptor activation of cAMP signaling. Direct measurements of Cl/HCO3 exchanger activity revealed that HCO3-dependent Cl uptake was reduced in the acinar cells of Ae2−/− and Ae4−/− mice. Moreover, Cl/HCO3 exchanger activity was nearly abolished in double Ae4/Ae2 knock-out mice, suggesting that most of the Cl/HCO3 exchanger activity in submandibular acinar cells depends on Ae2 and Ae4 expression. In conclusion, both Ae2 and Ae4 anion exchangers are functionally expressed in submandibular acinar cells; however, only Ae4 expression appears to be important for cAMP-dependent regulation of fluid secretion.  相似文献   

6.
Anoctamin 1 (TMEM16A, Ano1) is a recently identified Ca2+-activated chloride channel and a member of a large protein family comprising 10 paralogues. Before Ano1 was identified as a chloride channel protein, it was known as the cancer marker DOG1. DOG1/Ano1 is expressed in gastrointestinal stromal tumours (GIST) and particularly in head and neck squamous cell carcinoma, at very high levels never detected in other tissues. It is now emerging that Ano1 is part of the 11q13 locus, amplified in several types of tumour, where it is thought to augment cell proliferation, cell migration and metastasis. Notably, Ano1 is upregulated through histone deacetylase (HDAC), corresponding to the known role of HDAC in HNSCC. As Ano1 does not enhance proliferation in every cell type, its function is perhaps modulated by cell-specific factors, or by the abundance of other anoctamins. Thus Ano6, by regulating Ca2+-induced membrane phospholipid scrambling and annexin V binding, supports cellular apoptosis rather than proliferation. Current findings implicate other cellular functions of anoctamins, apart from their role as Ca2+-activated Cl channels.  相似文献   

7.
8.
In vertebrate olfactory receptor neurons (ORNs), odorant-induced activation of the transduction cascade culminates in production of cyclic AMP, which opens cyclic nucleotide–gated channels in the ciliary membrane enabling Ca2+ influx. The ensuing elevation of the intraciliary Ca2+ concentration opens Ca2+-activated Cl channels, which mediate an excitatory Cl efflux from the cilia. In order for the response to terminate, the Cl channel must close, which requires that the intraciliary Ca2+ concentration return to basal levels. Hitherto, the extrusion of Ca2+ from the cilia has been thought to depend principally on a Na+–Ca2+ exchanger.In this study, we show using simultaneous suction pipette recording and Ca2+-sensitive dye fluorescence measurements that in fire salamander ORNs, withdrawal of external Na+ from the solution bathing the cilia, which incapacitates Na+–Ca2+exchange, has only a modest effect on the recovery of the electrical response and the accompanying decay of intraciliary Ca2+ concentration. In contrast, exposure of the cilia to vanadate or carboxyeosin, a manipulation designed to block Ca2+-ATPase, has a substantial effect on response recovery kinetics. Therefore, we conclude that Ca2+-ATPase contributes to Ca2+ extrusion in ORNs, and that Na+–Ca2+exchange makes only a modest contribution to Ca2+ homeostasis in this species.  相似文献   

9.
Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca2+-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl channels, though the role of Cl fluxes in platelet procoagulant activity has not been explored. We found that Cl channel blockers or removal of extracellular Cl inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca2+-dependent scrambling since Ca2+ ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca2+−dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl channel. Instead, Cl channel blockade inhibited agonist-induced Ca2+ entry. Importantly, Cl channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl entry through Cl channels is required for this hyperpolarization, maintaining the driving force for Ca2+ entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl channels in controlling platelet death and procoagulant activity.  相似文献   

10.
We have cloned the squid neuronal Na+–Ca2+ exchanger, NCX-SQ1, expressed it in Xenopus oocytes, and characterized its regulatory and ion transport properties in giant excised membrane patches. The squid exchanger shows 58% identity with the canine Na+–Ca2+ exchanger (NCX1.1). Regions determined to be of functional importance in NCX1 are well conserved. Unique among exchanger sequences to date, NCX-SQ1 has a potential protein kinase C phosphorylation site (threonine 184) between transmembrane segments 3 and 4 and a tyrosine kinase site in the Ca2+ binding region (tyrosine 462). There is a deletion of 47 amino acids in the large intracellular loop of NCX-SQ1 in comparison with NCX1. Similar to NCX1, expression of NCX-SQ1 in Xenopus oocytes induced cytoplasmic Na+-dependent 45Ca2+ uptake; the uptake was inhibited by injection of Ca2+ chelators. In giant excised membrane patches, the NCX-SQ1 outward exchange current showed Na+-dependent inactivation, secondary activation by cytoplasmic Ca2+, and activation by chymotrypsin. The NCX-SQ1 exchange current was strongly stimulated by both ATP and the ATP-thioester, ATPγS, in the presence of F (0.2 mM) and vanadate (50 μM), and both effects reversed on application of a phosphatidylinositol-4′,5′-bisphosphate antibody. NCX1 current was stimulated by ATP, but not by ATPγS. Like NCX1 current, NCX-SQ1 current was strongly stimulated by phosphatidylinositol-4′,5′-bisphosphate liposomes. In contrast to results in squid axon, NCX-SQ1 was not stimulated by phosphoarginine (5–10 mM). After chymotrypsin treatment, both the outward and inward NCX-SQ1 exchange currents were more strongly voltage dependent than NCX1 currents. Ion concentration jump experiments were performed to estimate the relative electrogenicity of Na+ and Ca2+ transport reactions. Outward current transients associated with Na+ extrusion were much smaller for NCX-SQ1 than NCX1, and inward current transients associated with Ca2+ extrusion were much larger. For NCX-SQ1, charge movements of Ca2+ transport could be defined in voltage jump experiments with a low cytoplasmic Ca2+ (2 μM) in the presence of high extracellular Ca2+ (4 mM). The rates of charge movements showed “U”-shaped dependence on voltage, and the slopes of both charge–voltage and rate–voltage relations (1,600 s−1 at 0 mV) indicated an apparent valency of −0.6 charges for the underlying reaction. Evidently, more negative charge moves into the membrane field in NCX-SQ1 than in NCX1 when ions are occluded into binding sites.  相似文献   

11.
NGF induces neuronal differentiation by modulating [Ca2+]i. However, the role of the three isoforms of the main Ca2+-extruding system, the Na+/Ca2+ exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca2+]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca2+ content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na+ currents and 1,3-benzenedicarboxylic acid, 4,4′-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na+]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca2+ content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca2+]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation through the modulation of ER Ca2+ content and PI3K signaling.  相似文献   

12.
Interstitial cells of Cajal (ICC-MY) are pacemakers that generate and propagate electrical slow waves in gastrointestinal (GI) muscles. Slow waves appear to be generated by the release of Ca2+ from intracellular stores and activation of Ca2+-activated Cl channels (Ano1). Conduction of slow waves to smooth muscle cells coordinates rhythmic contractions. Mitochondrial Ca2+ handling is currently thought to be critical for ICC pacemaking. Protonophores, inhibitors of the electron transport chain (FCCP, CCCP or antimycin) or mitochondrial Na+/Ca2+ exchange blockers inhibited slow waves in several GI muscles. Here we utilized Ca2+ imaging of ICC in small intestinal muscles in situ to determine the effects of mitochondrial drugs on Ca2+ transients in ICC. Muscles were obtained from mice expressing a genetically encoded Ca2+ indicator (GCaMP3) in ICC. FCCP, CCCP, antimycin, a uniporter blocker, Ru360, and a mitochondrial Na+/Ca2+ exchange inhibitor, CGP-37157 inhibited Ca2+ transients in ICC-MY. Effects were not due to depletion of ATP, as oligomycin did not affect Ca2+ transients. Patch-clamp experiments were performed to test the effects of the mitochondrial drugs on key pacemaker conductances, Ano1 and T-type Ca2+ (CaV3.2), in HEK293 cells. Antimycin blocked Ano1 and reduced CaV3.2 currents. CCCP blocked CaV3.2 current but did not affect Ano1 current. Ano1 and Cav3.2 currents were inhibited by CGP-37157. Inhibitory effects of mitochondrial drugs on slow waves and Ca2+ signalling in ICC can be explained by direct antagonism of key pacemaker conductances in ICC that generate and propagate slow waves. A direct obligatory role for mitochondria in pacemaker activity is therefore questionable.  相似文献   

13.
Fast inhibitory glycinergic transmission occurs in spinal cord, brainstem, and retina to modulate the processing of motor and sensory information. After synaptic vesicle fusion, glycine is recovered back to the presynaptic terminal by the neuronal glycine transporter 2 (GlyT2) to maintain quantal glycine content in synaptic vesicles. The loss of presynaptic GlyT2 drastically impairs the refilling of glycinergic synaptic vesicles and severely disrupts neurotransmission. Indeed, mutations in the gene encoding GlyT2 are the main presynaptic cause of hyperekplexia in humans. Here, we show a novel endogenous regulatory mechanism that can modulate GlyT2 activity based on a compartmentalized interaction between GlyT2, neuronal plasma membrane Ca2+-ATPase (PMCA) isoforms 2 and 3, and Na+/Ca2+-exchanger 1 (NCX1). This GlyT2·PMCA2,3·NCX1 complex is found in lipid raft subdomains where GlyT2 has been previously found to be fully active. We show that endogenous PMCA and NCX activities are necessary for GlyT2 activity and that this modulation depends on lipid raft integrity. Besides, we propose a model in which GlyT2·PMCA2–3·NCX complex would help Na+/K+-ATPase in controlling local Na+ increases derived from GlyT2 activity after neurotransmitter release.  相似文献   

14.
Cyclic AMP-activated intestinal Cl secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl secretion in human intestinal epithelial (T84) cells with IC50 of ∼20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl current showed that diclofenac reversibly inhibited CFTR Cl channel activity (IC50∼10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na+-K+ ATPases and Na+-K+-Cl cotransporters, but inhibited cAMP-activated basolateral K+ channels with IC50 of ∼3 µM. In addition, diclofenac suppressed Ca2+-activated Cl channels, inwardly rectifying Cl channels, and Ca2+-activated basolateral K+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca2+-activated Cl secretion by inhibiting both apical Cl channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal hypersecretion of Cl.  相似文献   

15.
Members of the CLC protein family of Cl channels and transporters display the remarkable ability to function as either chloride channels or Cl/H+ antiporters. Due to the intracellular localization of ClC-6 and ClC-7, it has not yet been possible to study the biophysical properties of these members of the late endosomal/lysosomal CLC branch in heterologous expression. Whereas recent data suggest that ClC-7 functions as an antiporter, transport characteristics of ClC-6 have remained entirely unknown. Here, we report that fusing the green fluorescent protein (GFP) to the N terminus of ClC-6 increased its cell surface expression, allowing us to functionally characterize ClC-6. Compatible with ClC-6 mediating Cl/H+ exchange, Xenopus oocytes expressing GFP-tagged ClC-6 alkalinized upon depolarization. This alkalinization was dependent on the presence of extracellular anions and could occur against an electrochemical proton gradient. As observed in other CLC exchangers, ClC-6-mediated H+ transport was abolished by mutations in either the “gating” or “proton” glutamate. Overexpression of GFP-tagged ClC-6 in CHO cells elicited small, outwardly rectifying currents with a Cl > I conductance sequence. Mutating the gating glutamate of ClC-6 yielded an ohmic anion conductance that was increased by additionally mutating the “anion-coordinating” tyrosine. Additionally changing the chloride-coordinating serine 157 to proline increased the NO3 conductance of this mutant. Taken together, these data demonstrate for the first time that ClC-6 is a Cl/H+ antiporter.  相似文献   

16.
Fluid and electrolyte releasing from secretory epithelia are elaborately regulated by orchestrated activity of ion channels. The activity of chloride channel at the apical membrane decides on the direction and the rate of secretory fluid and electrolyte. Chloride-dependent secretion is conventionally associated with intracellular increases in two second messengers, cAMP and Ca2+, responding to luminal purinergic and basolateral adrenergic or cholinergic stimulation. While it is broadly regarded that cAMP-dependent Cl secretion is regulated by cystic fibrosis transmembrane conductance regulator (CFTR), Ca2+-activated Cl channel (CaCC) had been veiled for quite some time. Now, Anoctamin 1 (ANO1 or TMEM16A) confers Ca2+-activated Cl currents. Ano 1 and its paralogs have been actively investigated for multiple functions underlying Ca2+-activated Cl efflux and fluid secretion in a variety of secretory epithelial cells. In this review, we will discuss recent advances in the secretory function and signaling of ANO1 in the secretory epithelia, such as airways, intestines, and salivary glands.  相似文献   

17.
Current understanding of chloride cells (CCs) is briefly reviewed with emphasis on molecular aspects of their channels, transporters and regulators. Seawater-type and freshwater-type CCs have been identified based on their shape, location and response to different ionic conditions. Among the freshwater-type CCs, subpopulations are emerging that are implicated in the uptake of Na+, Cl and Ca2+, respectively, and can be distinguished by their shape of apical crypt and affinity for lectins. The major function of the seawater CC is transcellular secretion of Cl, which is accomplished by four major channels and transporters: (1) CFTR Cl channel, (2) Na+,K+-ATPase, (3) Na+/K+/2Cl cotransporter and (4) a K+ channel. The first three components have been cloned and characterized, but concerning the K+ channel that is essential for the continued generation of the driving force by Na+,K+-ATPase, only one candidate is identified. Although controversial, freshwater CCs seem to perform the uptake of Na+, Cl and Ca2+ in a manner analogous to but slightly different from that seen in the absorptive epithelia of mammalian kidney and intestine since freshwater CCs face larger concentration gradients than ordinary epithelial cells. The components involved in these processes are beginning to be cloned, but their CC localization remains to be established definitively. The most important yet controversial issue is the mechanism of Na+ uptake. Two models have been postulated: (i) the original one involves amiloride-sensitive electroneutral Na+/H+ exchanger (NHE) with the driving force generated by Na+,K+-ATPase and carbonic anhydrase (CA) and (ii) the current model suggests that Na+ uptake occurs through an amiloride-sensitive epithelial sodium channel (ENaC) electrogenically coupled to H+-ATPase. While fish ENaC remains to be identified by molecular cloning and database mining, fish NHE has been cloned and shown to be highly expressed on the apical membrane of CCs, reviving the original model. The CC is also involved in acid–base regulation. Analysis using Osorezan dace (Tribolodon hakonensis) living in a pH 3.5 lake demonstrated marked inductions of Na+,K+-ATPase, CA-II, NHE3, Na+/HCO3 cotransporter-1 and aquaporin-3 in the CCs on acidification, leading to a working hypothesis for the mechanism of Na+ retention and acid–base regulation.  相似文献   

18.
The Ca2+-activated Cl channel anoctamin-1 (Ano1; Tmem16A) plays a variety of physiological roles, including epithelial fluid secretion. Ano1 is activated by increases in intracellular Ca2+, but there is uncertainty whether Ca2+ binds directly to Ano1 or whether phosphorylation or additional Ca2+-binding subunits like calmodulin (CaM) are required. Here we show that CaM is not necessary for activation of Ano1 by Ca2+ for the following reasons. (a) Exogenous CaM has no effect on Ano1 currents in inside-out excised patches. (b) Overexpression of Ca2+-insensitive mutants of CaM have no effect on Ano1 currents, whereas they eliminate the current mediated by the small-conductance Ca2+-activated K+ (SK2) channel. (c) Ano1 does not coimmunoprecipitate with CaM, whereas SK2 does. Furthermore, Ano1 binds very weakly to CaM in pull-down assays. (d) Ano1 is activated in excised patches by low concentrations of Ba2+, which does not activate CaM. In addition, we conclude that reversible phosphorylation/dephosphorylation is not required for current activation by Ca2+ because the current can be repeatedly activated in excised patches in the absence of ATP or other high-energy compounds. Although Ano1 is blocked by the CaM inhibitor trifluoperazine (TFP), we propose that TFP inhibits the channel in a CaM-independent manner because TFP does not inhibit Ano1 when applied to the cytoplasmic side of excised patches. These experiments lead us to conclude that CaM is not required for activation of Ano1 by Ca2+. Although CaM is not required for channel opening by Ca2+, work of other investigators suggests that CaM may have effects in modulating the biophysical properties of the channel.  相似文献   

19.
NCX1 is a Na+/Ca2+ exchanger, which is believed to provide a key route for basolateral Ca2+ efflux in the renal epithelia, thus contributing to renal Ca2+ reabsorption. Altered mineral homeostasis, including intestinal and renal Ca2+ transport may represent a significant component of the pathophysiology of the bone mineral density loss associated with Inflammatory Bowel Diseases (IBD). The objective of our research was to investigate the effects of TNBS and DSS colitis and related inflammatory mediators on renal Ncx1 expression. Colitis was associated with decreased renal Ncx1 expression, as examined by real-time RT-PCR, Western blotting, and immunofluorescence. In mIMCD3 cells, IFNγ significantly reduced Ncx1 mRNA and protein expression. Similar effects were observed in cells transiently transfected with a reporter construct bearing the promoter region of the kidney-specific Ncx1 gene. This inhibitory effect of IFNγ is mediated by STAT1 recruitment to the proximal promoter region of Ncx1. Further in vivo study with Stat1−/− mice confirmed that STAT1 is indeed required for the IFNγ mediated Ncx1 gene regulation. These results strongly support the hypothesis that impaired renal Ca2+ handling occurs in experimental colitis. Negative regulation of NCX1- mediated renal Ca2+ absorption by IFNγ may significantly contribute to the altered Ca2+ homeostasis in IBD patients and to IBD-associated loss of bone mineral density.  相似文献   

20.
《Cellular signalling》2014,26(12):2826-2833
Eight paralogue members form the family of transmembrane channel-like (TMC) proteins that share considerable sequence homology to anoctamin 1 (Ano1, TMEM16A). Ano1 is a Ca2 + activated Cl channel that is related to head and neck cancer, often caused by human papilloma virus (HPV) infection. Mutations in TMC 6 and 8 (EVER1, EVER2) cause epidermodysplasia verruciformis. This rare skin disease is characterized by abnormal susceptibility to HPV infection and cancer. We found that in contrast to Ano1 the common paralogues TMC4–TMC8 did not produce Ca2 + activated Cl currents when expressed in HEK293 cells. On the contrary, TMC8 was found to be localized in the endoplasmic reticulum (ER), where it inhibited receptor mediated Ca2 + release, activation of Ano1 and volume regulated LRRC8-related Cl currents. Zn2 + is co-released from the ER together with Ca2 + and thereby further augments Ca2 + store release. Because TMC8 is required to lower cytosolic Zn2 + concentrations by the Zn2 + transporter ZnT-1, we hypothesize that HPV infections and cancer caused by mutations in TMC8 are related to upregulated Zn2 +/Ca2 + signaling and activation of Ano1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号