首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Late Endosomal ClC-6 Mediates Proton/Chloride Countertransport in Heterologous Plasma Membrane Expression
Authors:Ioana Neagoe  Tobias Stauber  Pawel Fidzinski  Eun-Yeong Bergsdorf  Thomas J Jentsch
Institution:From the Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany
Abstract:Members of the CLC protein family of Cl channels and transporters display the remarkable ability to function as either chloride channels or Cl/H+ antiporters. Due to the intracellular localization of ClC-6 and ClC-7, it has not yet been possible to study the biophysical properties of these members of the late endosomal/lysosomal CLC branch in heterologous expression. Whereas recent data suggest that ClC-7 functions as an antiporter, transport characteristics of ClC-6 have remained entirely unknown. Here, we report that fusing the green fluorescent protein (GFP) to the N terminus of ClC-6 increased its cell surface expression, allowing us to functionally characterize ClC-6. Compatible with ClC-6 mediating Cl/H+ exchange, Xenopus oocytes expressing GFP-tagged ClC-6 alkalinized upon depolarization. This alkalinization was dependent on the presence of extracellular anions and could occur against an electrochemical proton gradient. As observed in other CLC exchangers, ClC-6-mediated H+ transport was abolished by mutations in either the “gating” or “proton” glutamate. Overexpression of GFP-tagged ClC-6 in CHO cells elicited small, outwardly rectifying currents with a Cl > I conductance sequence. Mutating the gating glutamate of ClC-6 yielded an ohmic anion conductance that was increased by additionally mutating the “anion-coordinating” tyrosine. Additionally changing the chloride-coordinating serine 157 to proline increased the NO3 conductance of this mutant. Taken together, these data demonstrate for the first time that ClC-6 is a Cl/H+ antiporter.
Keywords:Chloride Transport  Endosomes  Exchangers  Ion Channels  Proton Transport  Counterion  Exchanger  Ion Homeostasis  Patch Clamp  Two-electrode Voltage Clamp (TEVC)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号