首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
急性缺氧和急性低糖对脑片tau蛋白磷酸化的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨急性缺氧对tau蛋白磷酸化的影响,将Wistar大鼠脑片进行不同时间的缺氧培养后,对tau蛋白的磷酸化状态及相关磷酸酯酶的活性和表达进行检测.结果显示,急性缺氧使tau蛋白多个丝氨酸位点磷酸化水平下降,蛋白磷酸酯酶~2A(PP-2A)的活性升高,其催化亚单位表达上调,而蛋白磷酸酯酶-1(PP-1)的活性及催化亚单位表达均无明显改变.该研究结果表明:急性缺氧可能通过蛋白磷酸酯酶-2A的上调而使tau蛋白多个丝氨酸位点发生去磷酸化作用.  相似文献   

2.
观察蛋白磷酸酯酶-1和蛋白磷酸酯酶-2A的抑制剂冈田酸(okadaicacid,OA)对人神经母细胞瘤系SK-N-SH细胞tau蛋白磷酸化水平的变化,确定tau蛋白过度磷酸化细胞模型的合适剂量和时间。用不同剂量OA与SK-N-SH细胞共温育不同时间,用显微镜观察细胞形态变化,用Western印迹法检测磷酸化tau蛋白和非磷酸化tau蛋白在Ser202位点和Ser404位点磷酸化水平的变化。10~160nmol/LOA与SK-N-SH神经细胞温育3~24h,可引起细胞形态损伤呈剂量依赖性和时间依赖性的变化,起效剂量和时间为10nmol/L和3h。10nmol/LOA与SK-N-SH细胞温育6~24h,磷酸化tau蛋白Ser199/Ser202位点和Ser404位点的表达明显增高,非磷酸化tau蛋白Ser202位点和Ser404位点的表达明显降低,总tau蛋白含量无明显变化。OA可以作为很好的研究tau蛋白过度磷酸化的工具药,10nmol/LOA与SK-N-SH神经细胞共温育6h可以作为制备细胞模型的适宜条件。  相似文献   

3.
糖尿病大鼠脑GSK-3与PP-2A失调诱导tau蛋白过度磷酸化   总被引:1,自引:1,他引:0  
探讨胰岛素缺乏的糖尿病大鼠皮层糖原合酶激酶-3(GSK-3)及蛋白磷酯酶-2A(PP-2A)变化及其对tau蛋白磷酸化的作用.用链脲佐菌素(streptozotocin,STZ)建立胰岛素缺乏的糖尿病大鼠模型,用放射性配体结合实验检测了GSK-3和PP-2A的活性,蛋白质印迹检测了tau蛋白的磷酸化水平及PP-2A的表达.结果提示:在糖尿病大鼠皮层,GSK-3活性升高,PP-2A活性及表达降低,tau蛋白在Ser198/Ser199/Ser202和Ser396/Ser404位点磷酸化.应用GSK-3的选择性抑制剂Li2CO3后,GSK-3活性降低,PP-2A活性及表达恢复,tau蛋白在Ser198/Ser199/Ser202和Ser396/Ser404位点磷酸化水平降低.研究提示:糖尿病大鼠皮层GSK-3升高可能抑制PP-2A的活性,升高的GSK-3和降低的PP-2A协同促进tau蛋白的磷酸化.  相似文献   

4.
为了进一步研究饥饿处理对大鼠空间学习、记忆的影响,通过饥饿2 d、恢复喂食3 d的方法,连续60 d,用Morris水迷宫检测大鼠的空间学习能力.免疫印迹检测神经元骨架蛋白—tau蛋白和神经细丝(Neurofilament,NF)磷酸化水平与分布变化,以及骨架蛋白磷酸化调节的关键酯酶磷酸酯酶PP-2A催化亚单位蛋白水平与分布.反复饥饿的大鼠空间学习能力明显差于对照组(P0.05),tau蛋白在Ser199/202位点和Ser396/404位点发生了过度磷酸化(P0.05),NF磷酸化水平无明显改变,PP-2A的催化亚单位蛋白水平下调(P0.05).反复饥饿可以引起大鼠出现空间学习记忆障碍,下调PP-2A催化亚单位蛋白水平,PP-2A活性抑制及tau蛋白发生过度磷酸化.  相似文献   

5.
目的:探讨胰岛素样生长因子-1(IGF-1)对冈田酸(OA)诱导的细胞损伤和tau蛋白过度磷酸化的保护作用。方法:模型组以OA40nmol/L作用于SH-SY5Y细胞24h;IGF-1预处理组分别以100、200和400ng/mlIGF-1预处理2h,再加入OA作用24h。倒置显微镜观察细胞形态学变化;MTT法检测细胞活力;Hoechst染色和分光光度法检测Caspase-3活化程度观察细胞损伤;蛋白免疫印迹法检测tau蛋白磷酸化程度。结果:与模型组比较,IGF-1预处理组细胞形态改善,细胞活力增强,Caspase-3活化程度降低,且磷酸化tau蛋白(Ser396)水平下降。结论:IGF-1可能通过抑制tau蛋白过度磷酸化对OA诱导的细胞损伤具有保护作用。  相似文献   

6.
Hu ZH  Tian Q  Wang JZ 《生理科学进展》2006,37(2):173-174
Tau蛋白过度磷酸化在阿尔采末病(Alzheimer’s disease,AD)发病过程中发挥重要作用,抑制蛋白磷酸酯酶活性,可诱导tau的过度磷酸化和聚积。本文拟就近年来蛋白磷酸酯酶在tau蛋白异常磷酸化中的作用作一综述。  相似文献   

7.
蛋白磷酸酶降低参与阿尔茨海默病(AD)神经元退化,本旨在探讨一氧化氮(NO)在tau蛋白过度磷酸化引起AD脑神经元退化中的可能作用。采用β-还原型尼克酰胺腺嘌呤二核苷酸磷酸-黄递酶(β-NADPH-d)组织化学技术研究不同剂量蛋白磷酸酶抑制剂岗田酸(OA)对嗜铬细胞瘤细胞株(PC12)一氧化氮合成酶(NOS)活性的影响。结果显示1nmol/LOA与PC12共培养48小时,NOS活性轻度增强;当增加OA浓度至10nmol/L时,培养24和48小时均可见NOS活性明显增强,结果表明根据1nmol/LOA抑制蛋白磷酸酶(PP)-2A,而10nmol/LOA除完全抑制PP-2A外,还部分抑制PP-1,提示PP-2A和PP-1的抑制均可增强NOS活性使NO产生增加,关于蛋白磷酸酶活性降低和NO产生增多与AD的关系和作用有待继续研究。  相似文献   

8.
Hong DJ  Pei AL  Sun FY  Zhu CQ 《生理学报》2003,55(2):142-146
近年来研究发现,阿尔茨海默病(Alzheimer′s disease,AD)病人脑内神经元细胞周期相关蛋白的异常表达与AD相关病理改变存在关联。为探讨β-淀粉样蛋白(β—amyloid,Aβ)的毒性作用能否导致成年脑神经元表达细胞周期相关蛋白,以及细胞周期相关蛋白表达与神经损伤之间的关系,我们运用免疫组化、积分光密度分析等方法对Aβ25-35多肽片段单侧杏仁核注射的大鼠脑进行了研究。结果显示,Aβ25-35注射的大鼠脑内除了有与神经纤维缠结相关的磷酸化tau蛋白和凋亡相关蛋白Bax蛋白水平增加外,术后7d细胞周期相关蛋白cyclin A和cyclin B1蛋白在神经元内异常表达,但术后21d时cyclin A的表达有所降低,而cyclin B1在脑内神经元中已检测不到;免疫荧光双标结果显示Aβ25-35注射后7d的大鼠脑内有较多的cyclin B1和Bax、cyclin B1和磷酸化tau蛋白共存的神经元,而Bax与磷酸化tau蛋白阳性信号很少共存在同一细胞上。以上结果提示,Aβ可导致成年脑神经元表达细胞周期相关蛋白,这些神经元可能会通过与Bax相关的凋亡途径死亡,或首先导致与AD神经纤维缠结相关的tau蛋白磷酸化。  相似文献   

9.
细胞内高度磷酸化tau蛋白形成的神经纤维缠结是阿尔兹海默病的主要病理特征之一。过度磷酸化的tau蛋白将引起细胞内微管的紊乱,从而造成神经元突触连接的丢失。Tau蛋白的磷酸化受到多种因素的影响,这些因素的失常将会导致tau蛋白的异常磷酸化。Tau蛋白的基本功能和结构、翻译后的主要修饰以及蛋白激酶和磷酸酯酶的调节,在阿尔兹海默病理以及预防治疗中发挥重要作用。  相似文献   

10.
阿尔茨海默病(Alzheimer’s disease,AD)是一种老年人常见的神经系统退行性疾病,是痴呆最常见的病因。AD患者越来越多,给家属及社会带来严重负担造成了巨大的家庭和社会负担,这就迫使我们进一步探讨AD发病机制。在AD的众多发病机制中,tau蛋白假说倍受青睐。在蛋白磷酸酯酶2A(protein phosphatase 2A,PP2A)、糖原合酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)、细胞周期依赖性蛋白激酶-5(cyclin-dependent kinase 5,CDK-5)和Bcl-2等蛋白酶及调节蛋白作用下,微管相关蛋白tau蛋白以其异常磷酸化结构或是形成二聚体、寡聚体和神经原纤维缠结等形式,参与到AD的病理过程。Tau蛋白及其相关结构,可能启动或促进了AD的凋亡,亦可能抑制了急性凋亡却促进了慢性的神经细胞变性。揭开这一谜底,可能揭开AD病理改变的神秘面纱。  相似文献   

11.
Abnormal phosphorylation of microtubule-associated protein tau plays a critical role in Alzheimer's disease (AD), together with a distinct decrease of energy metabolism in the affected brain regions. To explore the effect of acute energy crisis on tau phosphorylation and the underlying mechanisms, we incubated rat brain slices in artificial cerebrospinal fluid (aCSF) at 37 degrees C with or without an oxygen supply, or in aCSF with low glucose concentrations. Then, the levels of total, phosphorylated and unphosphorylated tau, as well as the activities and levels of protein phosphatase (PP)-1, PP-2A, glycogen synthase kinase 3 (GSK-3), extracellular signal-regulated protein kinase (ERK) and C-jun amino terminal kinase (JNK), were measured. It was found, unexpectedly, that tau was significantly dephosphorylated at Ser396/Ser404 (PHF-1), Ser422 (R145), Ser199/Ser202 (Tau-1), Thr181 (AT270), Ser202/Thr205 (AT8) and Thr231 (AT180) by acute anoxia for 30 min or 120 min. The activity of PP-2A and the level of dephosphorylated PP-2A catalytic subunit at tyrosine 307 (Tyr307) were simultaneously increased. The active forms of ERK1/2 and JNK1/2 were decreased under anoxic incubation. The PP-2A inhibitor, okadaic acid (OA, 0.75 microm), completely prevented tau from acute anoxia-induced dephosphorylation and restored the active forms of ERK1/2 and JNK1/2 to the control level. The activities and protein levels of GSK-3 and PP-1 showed no change during acute anoxia. These data suggest that acute anoxia induces tau dephosphorylation, and that PP-2A may play a key role in tau dephosphorylation induced by acute anoxia.  相似文献   

12.
Apoptosis or programmed cell death is considered to be involved in neurodegenerative disorders, including Alzheimer's disease (AD). AD is characterized by intracellular aggregates of hyperphosphorylated tau, a microtubule-associated protein. To investigate the induction of apoptosis by abnormal tau resembling AD, cultured cells may be useful tools. We developed a cell culture model and established NG108-15 and P19 cells stably transfected with human tau, naming them tau/NG and tau/P19 cells, respectively. Increased accumulation and phosphorylation of tau were observed during neural differentiation in tau/NG cells. Tau/P19 cells underwent drastic apoptosis during neural differentiation induced by retinoic acid (RA). Tau protein was distributed throughout the cytoplasm and in specific zones of the nucleus. The cytoplasmic tau was associated with microtubules, but the nucleic tau was observed to form clusters and was associated with RA receptor (RAR). The apoptosis induced by RA was inhibited by the treatment of glycogen synthase kinase 3 (GSK3) inhibitor in tau/P19 cells. We propose that translocation of tau into nucleus affects RA signaling in apoptosis via GSK3 in the cells. These cells are useful for monitoring the apoptosis by abundant tau and may be applied to investigate the molecular mechanism of apoptosis resembling AD.  相似文献   

13.
Memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, reduces the clinical deterioration in moderate-to-severe Alzheimer disease (AD) for which other treatments are not available. The activity of protein phosphatase (PP)-2A is compromised in AD brain and is believed to be a cause of the abnormal hyperphosphorylation of tau and the consequent neurofibrillary degeneration. Here we show that memantine inhibits and reverses the PP-2A inhibition-induced abnormal hyperphosphorylation and accumulation of tau in organotypic culture of rat hippocampal slices. Such restorative effects of memantine were not detected either with 5,7-dichlorokynurenic acid or with D(-)-2-amino-5-phosphopentanoic acid, NMDA receptor antagonists active at the glycine binding site and at the glutamate binding site, respectively. These findings show (1) that memantine inhibits and reverses the PP-2A inhibition-induced abnormal hyperphosphorylation of tau/neurofibrillary degeneration and (2) that this drug might be useful for the treatment of AD and related tauopathies.  相似文献   

14.
In Alzheimer disease brain the activities of protein phosphatase (PP)-2A and PP-1 are decreased and the microtubule-associated protein tau is abnormally hyperphosphorylated at several sites at serine/threonine. Employing rat forebrain slices kept metabolically active in oxygenated artificial CSF as a model system, we investigated the role of PP-2A/PP-1 in the regulation of some of the major abnormally hyperphosphorylated sites of tau and the protein kinases involved. Treatment of the brain slices with 1.0 microM okadaic acid inhibited approximately 65% of PP-2A and produced hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422. No significant changes in the activities of glycogen synthase kinase-3 (GSK-3) and cyclin dependent protein kinases cdk5 and cdc2 were observed. Calyculin A (0.1 microM) inhibited approximately 50% PP-1, approximately 20% PP-2A, 50% GSK-3 and approximately 30% cdk5 but neither inhibited the activity of cyclin AMP dependent protein kinase A (PKA) nor resulted in the hyperphosphorylation of tau at any of the above sites. Treatment of brain slices with 1 microM okadaic acid plus 0.1 microM calyculin A inhibited approximately 100% of both PP-2A and PP-1, approximately 80% of GSK-3, approximately 50% of cdk5 and approximately 30% of cdc2 but neither inhibited PKA nor resulted in the hyperphosphorylation of tau at any of the above sites. These studies suggest (i) that PP-1 upregulates the phosphorylation of tau at Ser 198/199/202 and Ser 396/404 indirectly by regulating the activities of GSK-3, cdk5 and cdc2 whereas PP-2A regulates the phosphorylation of tau directly by dephosphorylation at the above sites, and (ii) that a decrease in the PP-2A activity leads to abnormal hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422.  相似文献   

15.
The regulation of the activity of CaMKII by PP-1 and PP-2A, as well as the role of this protein kinase in the phosphorylation of tau protein in forebrain were investigated. The treatment of metabolically active rat brain slices with 1.0 microM okadaic acid (OA) inhibited approximately 65% of PP-2A and had no significant effect on PP-1 in the 16000xg tissue extract. Calyculin A (CL-A), 0.1 microM under the same conditions, inhibited approximately 50% of PP-1 and approximately 20% of PP-2A activities. In contrast, a mixture of OA and CL-A practically completely inhibited both PP-2A and PP-1 activities. The inhibition of the two phosphatase activities or PP-2A alone resulted in an approximately 2-fold increase in CaMKII activity and an approximately 8-fold increase in the phosphorylation of tau at Ser 262/356 in 60 min. Treatment of the brain slices with KN-62, an inhibitor of the autophosphorylation of CaMKII at Thr 286/287, produced approximately 60% inhibition in CaMKII activity and no significant effect on tau phosphorylation at Ser 262/356. The KN-62-treated brain slices when further treated with OA and CL-A did not show any change in CaMKII activity. In vitro, both PP-2A and PP-1 dephosphorylated tau at Ser 262/356 that was phosphorylated with purified CaMKII. These studies suggest (i) that in mammalian forebrain the cytosolic CaMKII activity is regulated mainly by PP-2A, (ii) that CaMKII is the major tau Ser 262/356 kinase in brain, and (iii) that a decrease in PP-2A/PP-1 activities in the brain leads to hyperphosphorylation of tau not only by inhibition of its dephosphorylation but also by promoting the CaMKII activity.  相似文献   

16.
Tau pathology in Alzheimer disease and other tauopathies   总被引:26,自引:0,他引:26  
Just as neuronal activity is essential to normal brain function, microtubule-associated protein tau appears to be critical to normal neuronal activity in the mammalian brain, especially in the evolutionary most advanced species, the homo sapiens. While the loss of functional tau can be compensated by the other two neuronal microtubule-associated proteins, MAP1A/MAP1B and MAP2, it is the dysfunctional, i.e., the toxic tau, which forces an affected neuron in a long and losing battle resulting in a slow but progressive retrograde neurodegeneration. It is this pathology which is characteristic of Alzheimer disease (AD) and other tauopathies. To date, the most established and the most compelling cause of dysfunctional tau in AD and other tauopathies is the abnormal hyperphosphorylation of tau. The abnormal hyperphosphorylation not only results in the loss of tau function of promoting assembly and stabilizing microtubules but also in a gain of a toxic function whereby the pathological tau sequesters normal tau, MAP1A/MAP1B and MAP2, and causes inhibition and disruption of microtubules. This toxic gain of function of the pathological tau appears to be solely due to its abnormal hyperphosphorylation because dephosphorylation converts it functionally into a normal-like state. The affected neurons battle the toxic tau both by continually synthesizing new normal tau and as well as by packaging the abnormally hyperphosphorylated tau into inert polymers, i.e., neurofibrillary tangles of paired helical filaments, twisted ribbons and straight filaments. Slowly but progressively, the affected neurons undergo a retrograde degeneration. The hyperphosphorylation of tau results both from an imbalance between the activities of tau kinases and tau phosphatases and as well as changes in tau's conformation which affect its interaction with these enzymes. A decrease in the activity of protein phosphatase-2A (PP-2A) in AD brain and certain missense mutations seen in frontotemporal dementia promotes the abnormal hyperphosphorylation of tau. Inhibition of this tau abnormality is one of the most promising therapeutic approaches to AD and other tauopathies.  相似文献   

17.
Alzheimer disease (AD) is multi-factorial and heterogeneous. Independent of the aetiology, this disease is characterized clinically by chronic and progressive dementia and histopathologically by neurofibrillary degeneration of abnormally hyperphosphorylated tau seen as intraneuronal neurofibrillary tangles, neuropil threads and dystrophic neurites, and by neuritic (senile) plaques of beta-amyloid. The neurofibrillary degeneration is apparently required for the clinical expression of AD, and in related tauopathies it leads to dementia in the absence of amyloid plaques. While normal tau promotes assembly and stabilizes microtubules, the abnormally hyperphosphorylated tau sequesters normal tau, MAP1 and MAP2, and disrupts microtubules. The abnormal hyperphosphorylation of tau also promotes its self-assembly into tangles of paired helical and or straight filaments. Tau is phosphorylated by a number of protein kinases. Glycogen synthase kinase-3 (GSK-3) and cyclin dependent protein kinase 5 (cdk5) are among the kinases most implicated in the abnormal hyperphosphorylation of tau. Among the phosphatases which regulate the phosphorylation of tau, protein phosphatase-2A (PP-2A), the activity of which is down-regulated in AD brain, is by far the major enzyme. The inhibition of abnormal hyperphosphorylation of tau is one of the most promising therapeutic targets for the development of disease modifying drugs. A great advantage of inhibiting neurofibrillary degeneration is that it can be monitored by evaluating the levels of total tau and tau phosphorylated at various known abnormally hyperphosphorylated sites in the cerebrospinal fluid of patients, obtained by lumbar puncture. There are at least five subgroups of AD, each is probably caused by a different etiopathogenic mechanism. The AD subgroup identification of patients can help increase the success of clinical trials and the development of specific and potent disease modifying drugs.  相似文献   

18.
Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer''s disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on the axonal transport impairment induced by CA in N2a cells. The results showed that Berberine could protect the cell from CA -induced toxicity in metabolism and viability, as well as hyperphosphorylation of tau and neurofilaments (NFs). Furthermore, Berberine could reverse CA-induced axonal transport impairment significantly. Berberine also partially reversed the phosphorylation of the catalytic subunit of PP-2A at Tyrosine 307, a crucial site negatively regulating the activity of PP-2A, and reduced the levels of malondialdehyde and the activity of superoxide dismutase, markers of oxidative stress, induced by CA. The present work for the first time demonstrates that Berberine may play a role in protecting against CA-induced axonal transport impairment by modulating the activity of PP-2A and oxidative stress. Our findings also suggest that Berberine may be a potential therapeutic drug for AD.  相似文献   

19.
An imbalanced phosphorylation system is recognized to be one of the main reasons for Alzheimer-like hyperphosphorylation of cytoskeletal proteins. However, little is known about the strategies rectifying the lesions caused by this disrupted phosphorylation. To search for the means to arrest Alzheimer-like damages and explore the underlying mechanisms, in this study we treated N2a/peuht40 cells with okadaic acid (OA), a specific inhibitor of protein phosphatase-2A (PP-2A) and PP-1, to mimic an Alzheimer-like phosphatase-deficient system and then used heat preconditioning (42 degrees C for 1 hour) to induce the expression of inducible heat shock protein 70 (Hsp70) in the cells. We observed that heat preconditioning arrested OA-induced hyperphosphorylation of neurofilament (NF) protein at SMI34 and SMI33 epitopes as well as hyperphosphorylation of tau at Tau-1 and PHF-1 epitopes. It counteracted OA-induced decrease in PP-2A activity with a concurrent inhibition in constitutive activity of mitogen-activated protein kinases (MAPKs) and cyclic adenosine 5'-monophosphate-dependent protein kinase A (PKA). Conversely, quercetin, a recognized blocker of stress-responsive Hsp70 expression, diminished the effects caused by heat preconditioning. These results suggested that Hsp70 antagonized OA-induced Alzheimer-like NF and tau hyperphosphorylation, and the restoration of PP-2A and inhibition of MAPKs-PKA activity might be part of the underlying mechanisms for the rectification of OA-induced hyperphosphorylation.  相似文献   

20.
Ren QG  Liao XM  Wang ZF  Qu ZS  Wang JZ 《FEBS letters》2006,580(10):2503-2511
Here, we demonstrated that lactacystin inhibited proteasome dose-dependently in HEK293 cells stably expressing tau. Simultaneously, it induces accumulation of both non-phosphorylated and hyperphosphorylated tau and decreases the binding of tau to the taxol-stabilized microtubules. Lactacystin activates glycogen synthase kinsase-3 (GSK-3) and decreases the phosphorylation of GSK-3 at serine-9. LiCl inhibits GSK-3 and thus reverses the lactacystin-induced accumulation of the phosphorylated tau. Lactacystin also inhibits protein phosphase-2A (PP-2A) and it significantly increases the level of inhibitor 1 of PP-2A. These results suggest that inhibition of proteasome by lactacystin induces tau accumulation and activation of GSK-3 and inhibition of PP-2A are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号