首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
山羊GOLA-DQB1基因外显子2多态性与免疫性状的相关分析   总被引:1,自引:0,他引:1  
邢凤  李培培  李珏  李成渤  王建民 《遗传》2008,30(7):870-876
利用PCR-RFLP技术, 对莱芜黑山羊、鲁波山羊和波尔山羊3个山羊种群共 175 只个体的GOLA-DQB1基因外显子2进行遗传多态性研究, 并对山羊种群的血液免疫指标的效应进行了分析。结果表明: 3个山羊种群共检测到(AA、BB、CC、AB、AC、BC、DD)7种基因型, GOLA-DQB1基因外显子2的第24、151位的碱基表现出多态性。多数指标品种效应是主要效应。莱芜黑山羊中, BC基因型的淋巴细胞百分比(W-SCR)显著高于AC 、CC基因型(P<0.05), 中性球比例(W-LCR)显著低于CC基因型(P<0.05), 大型白细胞数(W-LCC)低于AC、CC基因型, 但差异不显著(P>0.05)。波尔山羊中, BC基因型的W-LCC低于AA 、AB 、BB基因型, 但差异不显著(P>0.05)。鲁波山羊中, BC 、AC基因型的W-LCC显著低于AA基因型(P<0.05)。揭示GOLA-DQB1基因与血液免疫性状有一定的相关性。  相似文献   

2.
韩冰  王艳芳  杨劼  苏婧 《生态学杂志》2008,27(3):349-354
以分布于内蒙古的草甸草原(森林草原)、典型草原、荒漠草原上的7种针茅属植物为材料,利用聚合酶链反应-单链构象多态性(PCR-SSCP)方法,分析了水孔蛋白基因的外显子1和内含子1的遗传多态性.结果表明:外显子1有AA、BB和CC 3种基因型,内含子1有DD、EE、FF和GG 4种基因型;种间存在基因多态性,种内没有多态性,所有种均表现出遗传的单态性和100%的纯合度.从基因型地理分布看,AA基因型在草甸草原、森林草原、典型草原及荒漠草原区的针茅种上均有分布,BB、CC基因型只分布在荒漠草原区的针茅中;DD基因型分布于草甸草原、森林草原及典型草原区的针茅属植物中,荒漠草原区分布有EE、FF、GG等3种基因型.荒漠草原区的植物是旱生程度最强的一类草原群落,该区的3种针茅具有丰富的遗传多态性.  相似文献   

3.
MC4R、POU1F1基因对京海黄鸡生长性能的遗传效应   总被引:8,自引:0,他引:8  
以MC4R和POU1F1基因为候选基因, 采用PCR-SSCP和DNA测序技术检测两个候选基因在京海黄鸡群体中的单核苷酸多态性(SNPs), 同时对候选基因与京海黄鸡生长性能的相关性进行了研究。结果表明, MC4R基因编码区第662 bp位置有G→C碱基的点突变, 在京海黄鸡中检测到AA、AB、BB 3种基因型, A等位基因频率为0.929, B等位基因频率为0.071; 在POU1F1基因exon3在序列的第5 231 bp位置有一个A→T碱基的点突变, 检测到CC、CD、DD 3种基因型, C等位基因频率为0.500, D等位基因频率为0.500。采用GLM模型分析基因型对生长性能的遗传效应, 结果表明, MC4R基因AA基因型个体的4、8、12周龄体重显著地高于BB型个体(P<0.05), 16周龄体重差异极显著(P<0.01); POU1F1基因CD基因型个体体重极显著高于CC型和DD型(P<0.01)。因此推测MC4R和POU1F1基因可能是影响鸡生长性状的主效基因或与主效基因紧密连锁的标记基因, 能够在分子标记辅助选择中用于对鸡生长性状的遗传改良。  相似文献   

4.
水貂GH基因SNP_S与皮张长度的相关性研究   总被引:1,自引:0,他引:1  
以水貂生长激素(GH)基因作为控制水貂皮张长度性状主基因的候选基因,以大兴安岭水貂养殖基地养殖的水貂群为试验材料,通过PCR-SSCP方法对GH基因进行多态性检测。在该基因内含子1中发现1处碱基突变:C→A,并检测到3种基因型(AA、AB、BB),BB基因型个体与AA基因型个体皮张长度有一定的差异(P0.05)。在外显子2中发现2处碱基突变:T→A、C→G,并由此检测到了3种基因型,分别命名CC、CD、DD,但3种基因型对水貂皮长的影响没有显著的差异(P0.05)。统计各基因型之间的组合给水貂皮长带来的影响时,发现多数组合基因型对所检测的水貂皮长有显著影响(P0.05)。  相似文献   

5.
影响大蜡螟幼虫体色的环境因素初探   总被引:1,自引:0,他引:1  
大蜡螟幼虫体色各式各样 ,通过对比实验分析了温度、湿度、密度、光照和食物等环境因素对大蜡螟幼虫体色的影响。实验结果表明 :不同温度、湿度、密度、光照条件下大蜡螟幼虫的体色均未变化。在研究食物对大蜡螟幼虫体色的影响实验中食蜂巢的白黄色幼虫身体内部发黑 ,这可能是黑色的蜂巢透射出的颜色。实验为进一步研究大蜡螟幼虫体色的遗传机制打下了基础。  相似文献   

6.
鸡Myostatin基因单核苷酸多态性与骨骼肌和脂肪生长的关系   总被引:17,自引:1,他引:16  
肌肉生长抑制素是控制骨骼肌生长发育的重要细胞因子. 采用PCR-SSCP 和DNA测序的方法检测了Myostatin基因单核苷酸多态性, 利用CAU资源家系对所发现的Myostatin单核苷酸多态性与屠体重、胸肌重、腿肌重、肝重和腹脂重等性状进行了关联分析. 结果表明, P60/61位点基因型(AA, BB和AB型)对12周龄腹脂重、腹脂率、初生重、胸肌率有影响(P < 0.05): AA型腹脂重显著高于BB型(P < 0.05); AA和AB型腹脂率显著高于BB型(P < 0.05); AA型的初生重显著高于BB型(P < 0.05); AA型胸肌率显著高于AB型(P < 0.05). P80/P81位点基因型(CC, DD和CD型)与胸肌重(P < 0.05)和胸肌率(P < 0.01)相关: CC型与DD型之间的胸肌重差异显著(P < 0.05), CC型的胸肌重较高; CC型与DD型之间的胸肌率差异极显著(P < 0.01), CC型和CD型之间差异显著(P < 0.05), CC型比CD和DD型的胸肌率高, 而CD型的胸肌率也比DD型的高(P < 0.05). P93/94位点基因型(EF和EE型)与胸肌率有显著相关(P < 0.05): EF型比EE型具有更高的胸肌率. 研究表明, Myostatin基因的功能不但与骨骼肌的生长发育有关, 而且, 更重要的是可能参与脂肪的代谢与沉积.  相似文献   

7.
猪IGF2基因的遗传多态性及其遗传效应分析   总被引:9,自引:0,他引:9  
薛慧良  徐来祥 《遗传》2008,30(2):179-179―184
采用PCR-SSCP方法检测胰岛素样生长因子2 (insulin-like growth factor 2, IGF2)基因外显子7, 8, 9的多态性, 并分析其对初生重、断奶重、6月龄重和6月龄背膘厚的遗传效应。根据猪IGF2基因的DNA序列(AY044828)设计3对引物, 结果在Ex8引物对扩增的片段上发现了多态性, 并对纯合子进行测序, 发现exon8的53位存在C→T转换, 且检测到3种基因型(AA、AB、BB)。统计结果表明, 3种基因型在各品种中的分布不一致, 长白猪与大白猪比较, 莱芜猪与大薄莲猪比较, 沂蒙黑猪和里岔黑猪比较差异不显著(P > 0.05); 其他猪种间基因型分布的差异均显著(P < 0.01)。固定效应模型分析结果表明, 初生重和6月龄背膘厚基因型间差异显著(P < 0.05), 而断奶重和6月龄重基因型间差异不显著(P > 0.05)。最小二乘分析结果表明, BB基因型个体同AA和AB基因型个体比较初生重的差异显著(P < 0.05), 3种基因型在初生重的大小排列顺序为AB > AA > BB; AA基因型个体同AB和BB基因型个体比较6月龄背膘厚的差异显著(P < 0.05), 3种基因型在6月龄背膘厚的大小排列顺序为BB > AB > AA。因此, 推测IGF2基因对个体的初生重和胴体瘦肉率存在一定的影响, 将IGF2基因应用于猪育种过程中的标记辅助选择可以加快猪的育种进程。  相似文献   

8.
采用PCR-SSCP方法检测猪胰岛素样生长因子2(insulin-like growth factor 2,IGF2)基因外显子4b的多态性,并分析其对初生重、断奶重、6月龄重和背膘厚的遗传效应。根据猪IGF2基因的DNA序列(AY044828)设计引物,在exon4b上发现了一个多态性位点,并对纯合子进行测序,发现13位C→A转换,且存在3种基因型(AA、AB、BB)。统计结果表明,3种基因型在各品种中的分布不一致,长白猪与大白猪比较,莱芜猪与大薄莲猪比较,沂蒙黑猪和里岔黑猪比较差异不显著(P>0.05);其他猪种间基因型分布的差异均显著(P<0.05)。固定效应模型分析结果表明,初生重,断奶重和背膘厚基因型间差异显著(P<0.05),而6月龄重基因型间差异不显著(P>0.05)。最小二乘分析结果表明,BB基因型个体同AA和AB、基因型个体比较初生重和断奶重的差异显著(P<0.05),3种基因型在初生重和断奶重的大小排列顺序为AA>AB>BB;AA基因型个体同AB和BB基因型个体比较背膘厚的差异显著(P<0.05),3种基因型在背膘厚的大小排列顺序为BB>AB>AA。因此,推测IGF2基因对个体的生长速度和胴体瘦肉率存在一定的影响,将IGF2基因应用于猪育种过程中的标记辅助选择可以加快猪的育种进程。  相似文献   

9.
牛乳铁蛋白(Lactoferrin, LF)是保护乳腺组织的防御因子之一, 是具有多种功能的糖蛋白。关于牛LF基因的多态性研究的报道较多, 但其多态性与奶牛乳腺炎相关性的研究较少。文章采用PCR-RFLP、CRS-PCR对268头中国荷斯坦牛LF基因启动子区的-926(G/A)、-915(T/G)、-478(/G)、+72(T/C)突变进行基因型分型, 应用最小二乘线性模型分析LF基因多态性与体细胞评分(Somatic cell score, SCS)的相关性。结果表明, 新发现+72(T/C)和-478(/G)对SCS有显著影响, 而其他两个位点对SCS影响不显著(P>0.05)。+72(T/C)的AB基因型是优良基因型, 其个体的SCS值均显著低于AA型(P<0.01)、BB型个体(P<0.05)。-478(/G)位点的C等位基因是优良的等位基因, CC基因型个体的SCS值极显著低于CD、DD基因型个体(P<0.01)。因此, LF基因+72(T/C)的AB基因型和-478(/G)位点的CC基因型均是奶牛乳腺炎抗性的优良基因型, 可作为分子标记应用于奶牛乳腺炎抗性筛选。  相似文献   

10.
牛乳铁蛋白(Lactoferrin,LF)是保护乳腺组织的防御因子之一,是具有多种功能的糖蛋白,关于牛LF基因的多态性研究的报道较多,但其多态性与奶牛乳腺炎相关性的研究较少,文章采用PCR-RFLP、CRS-PCR对268头中国荷斯坦牛LF基因启动子区的-926(G/A)、-915(T/G)、-478(/G)、+72(T/C)突变进行基因型分型,应用最小二乘线性模型分析LF基因多态性与体细胞评分(Somatic cell score,SCS)的相关性,结果表明,新发现+72(T/C)和-478(/G)对SCS有显著影响,而其他两个位点对SCS影响不显著(P>0.05),+72(T/C)的AB基因型是优良基因型,其个体的SCS值均显著低于AA型(P<0.01),BB型个体(P<0.05).-478(/G)位点的C等位基因是优良的等位基因,CC基因型个体的SCS值极显著低于CD、DD基因型个体(P<0.01).因此,LF基因+72(T/C)的AB基因型和-478(/G)位点的CC基因型均是奶牛乳腺炎抗性的优良基因型,可作为分子标记应用于奶牛乳腺炎抗性筛选.  相似文献   

11.
金针菇子实体颜色的遗传规律研究   总被引:11,自引:0,他引:11  
以金针菇黄色菌株F19和白色菌株F8801为亲本,原生质体单核化获得两亲本的单核菌株,配对杂交获得F1,从F1的子实体分离单孢菌株,与两亲本的原生质体单核化菌株进行回交配对,出菇观察子实体颜色,分析菇体颜色的遗传规律。研究结果表明,黄色为显性、白色为隐性,菇体颜色受一对基因(Cc)控制,与不亲和性因子A或B都没有连锁。  相似文献   

12.
13.
14.
Yellow seed is an important trait inBrassica napus. To know the genet ic basis of yellow seed color inBrassica napus, we carried out genetic studies by using conventional genetics analyses. The conventional genetics was studied in generations (F1 F2 reciprocal F2, BC1, and F23) ofB. napus derived from crosses between a yellow-seeded (No. 2127-17) and nine different black-seeded parents. The results indicated that seed color was mainly controlled by the maternal genotype but influenced by the interact ion between the maternal and endosperm and/or embryonic genotypes. In the combinations which included black-seeded lines SW0780, 94560, 94545 and 1141B, the yellow seed is partially dominant over black with two or three dominance epistasis ratio. A dominant yellow-seeded gene Y which exhibits epistatic effects on the two independent dominant black-seeded genes B and C was ident ified in DH line No. 2127-17. These observations are in agreement with our previous reports. But in the rests, including the crosses with HS No.4, HS No. 3, XY No. 15, 94570 and ZS No. 10, the black seed color was dominant over yellow seed color. The inheritance of this trait in the segregating populations fits the model of a digenic dominance epistasis or triplicate dominance epistasis. A new locus was identified and designated as D: the dominant gene D for black seed color inhibits the dominant gene Y. Therefore, in combination with the Y, B and C, we found that the seed color was influenced by at least four genes. Identifying seed color genes and defining their inheritance should further our understanding of yellow seed color trait and facilitate development of new and better yellow-seeded cult ivars ofBrassics napus.  相似文献   

15.
进行黄色鲤(Cyprinus carpio)、蓝色鲤及红色鲤的自交和杂交试验,统计分析子代的体色及鳞被分离情况。结果表明,实验选择的亲本,红色鲤的体色和鳞被都是纯合基因型;蓝色鲤的体色是纯合型,鳞被是杂合型;黄色鲤的体色和鳞被都是杂合型。它们彼此杂交的体色遗传规律较复杂,子代中不但具有亲本的红、黄、蓝体色,还出现了其他色彩,如青灰色、白色、青黄色和蓝白色,部分红色个体的背部还呈暗黑色。同时,实验还观察了不同体色鲤的鳞片、鳍条色素细胞分布情况,分析和讨论了鲤杂交的体色遗传特性。  相似文献   

16.
Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is a diverse species, with fruits of different sizes, shapes, rind patterns, and flesh colors. This study measured the inheritance of novel rind phenotypes and verified the genetics of white, red, salmon yellow, and canary yellow flesh colors. For each of the 11 crosses, six generations (P(a)S1, P(b)S1, F1, F2, BC1P(a), and BC1P(b)) were produced to form 11 families. Three new genes were identified and designated as follows: Scr for the scarlet red flesh color of Dixielee and Red-N-Sweet, Yb for the yellow belly (ground spot) of Black Diamond Yellow Belly, and ins for the intermittent stripes of Navajo Sweet. The inheritance of the C gene for the canary yellow flesh color was verified as single dominant, and a new inbred type line was developed possessing that gene. Aberrations in the segregation of red, white, and salmon yellow flesh colors were recorded, raising questions on the inheritance of these traits. Finally, the spotted phenotype from Moon and Stars was combined with light green and gray rind patterns for the development of novel cultivars with distinctive rind patterns.  相似文献   

17.
Safflower (Carthamus tinctorius L.) flowers are used for coloring and flavoring food and also as fresh-cut and dried flowers. The most important characteristics which contribute to the ornamental value of safflower are flower color and spinelessness. The objective of this study was to determine the inheritance mode and the number of genes controlling spininess and flower color in some Iranian genotypes of safflower. The results indicated that the existence of spines on the leaves and bracts of safflower is controlled by a single dominant gene in which the spiny phenotype was completely dominant to spineless. In some crosses, flower color was controlled by two epistatic loci each with two alleles, resulting in a ratio of 13:3 in the segregating F2 population for plants with orange and yellow flowers. Also, other mechanisms of genetic control, such as duplicate dominance and duplicate recessive types of epistasis, were observed for flower color in other crosses that led to ratios of 7:9 and 15:1 for plants with orange and yellow flowers, respectively. The results suggest that for ornamental use or in the food dying industry, genotypes with orange or yellow flowers and without spines on the leaves and bracts can be produced.  相似文献   

18.
Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in a few reported vertebrates. In Gyrfalcon (Falco rusticolus), plumage color variation exists throughout their arctic and subarctic circumpolar distribution, from white to gray and almost black. Multiple color variants do exist within the majority of populations; however, a few areas (e.g., northern Greenland and Iceland) possess a single color variant. Here, we show that the white/melanic color pattern observed in Gyrfalcons is explained by allelic variation at MC1R. Six nucleotide substitutions in MC1R resulted in 9 alleles that differed in geographic frequency with at least 2 MC1R alleles observed in almost all sampled populations in Greenland, Iceland, Canada, and Alaska. In north Greenland, where white Gyrfalcons predominate, a single MC1R allele was observed at high frequency (>98%), whereas in Iceland, where only gray Gyrfalcons are known to breed, 7 alleles were observed. Of the 6 nucleotide substitutions, 3 resulted in amino acid substitutions, one of which (Val(128)Ile) was perfectly associated with the white/melanic polymorphism. Furthermore, the degree of melanism was correlated with number of MC1R variant alleles, with silver Gyrfalcons all heterozygous and the majority of dark gray individuals homozygous (Ile(128)). These results provide strong support that MC1R is associated with plumage color in this species.  相似文献   

19.
Pickerelweed (Pontederia cordata L.) is a diploid (2n = 2x = 16), erect, emergent, herbaceous aquatic perennial. The showy inflorescences of pickerelweed make this species a prime candidate for inclusion in water gardens and aquascapes. The objective of this experiment was to determine the number of loci, number of alleles, and gene action controlling flower color (blue vs. white) in pickerelweed. Two blue-flowered and one white-flowered parental lines were used in this experiment to create S(1) and F(1) populations. F(2) populations were produced through self-pollination of F(1) plants. Evaluation of S(1), F(1), and F(2) generations revealed that flower color in these populations was controlled by 2 alleles at one locus with blue flower color completely dominant to white. We propose that this locus be named white flower with alleles W and w.  相似文献   

20.
Seed coat color inheritance in Brassica napus was studied in F1, F2, F3 and backcross progenies from crosses of five black seeded varieties/lines to three pure breeding yellow seeded lines. Maternal inheritance was observed for seed coat color in B. napus, but a pollen effect was also found when yellow seeded lines were used as the female parent. Seed coat color segregated from black to dark brown, light brown, dark yellow, light yellow, and yellow. Seed coat color was found to be controlled by three genes, the first two genes were responsible for black/brown seed coat color and the third gene was responsible for dark/light yellow seed coat color in B. napus. All three seed coat color alleles were dominant over yellow color alleles at all three loci. Sequence related amplified polymorphism (SRAP) was used for the development of molecular markers co-segregating with the seed coat color genes. A SRAP marker (SA12BG18388) tightly linked to one of the black/brown seed coat color genes was identified in the F2 and backcross populations. This marker was found to be anchored on linkage group A9/N9 of the A-genome of B. napus. This SRAP marker was converted into sequence-characterized amplification region (SCAR) markers using chromosome-walking technology. A second SRAP marker (SA7BG29245), very close to another black/brown seed coat color gene, was identified from a high density genetic map developed in our laboratory using primer walking from an anchoring marker. The marker was located on linkage group C3/N13 of the C-genome of B. napus. This marker also co-segregated with the black/brown seed coat color gene in B. rapa. Based on the sequence information of the flanking sequences, 24 single nucleotide polymorphisms (SNPs) were identified between the yellow seeded and black/brown seeded lines. SNP detection and genotyping clearly differentiated the black/brown seeded plants from dark/light/yellow-seeded plants and also differentiated between homozygous (Y2Y2) and heterozygous (Y2y2) black/brown seeded plants. A total of 768 SRAP primer pair combinations were screened in dark/light yellow seed coat color plants and a close marker (DC1GA27197) linked to the dark/light yellow seed coat color gene was developed. These three markers linked to the three different yellow seed coat color genes in B. napus can be used to screen for yellow seeded lines in canola/rapeseed breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号