首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The freezing and desiccation tolerance of 12 Klebsormidium strains, isolated from various habitats (aeroterrestrial, terrestrial, and hydro-terrestrial) from distinct geographical regions (Antarctic — South Shetlands, King George Island, Arctic — Ellesmere Island, Svalbard, Central Europe — Slovakia) were studied. Each strain was exposed to several freezing (−4°C, −40°C, −196°C) and desiccation (+4°C and + 20°C) regimes, simulating both natural and semi-natural freeze-thaw and desiccation cycles. The level of resistance (or the survival capacity) was evaluated by chlorophyll a content, viability, and chlorophyll fluorescence evaluations. No statistical differences (Kruskal-Wallis tests) between strains originating from different regions were observed. All strains tested were highly resistant to both freezing and desiccation injuries. Freezing down to −196°C was the most harmful regime for all studied strains. Freezing at −4°C did not influence the survival of studied strains. Further, freezing down to −40°C (at a speed of 4°C/min) was not fatal for most of the strains. RDA analysis showed that certain Antarctic and Arctic strains did not survive desiccation at +4°C; however, freezing at −40°C, as well as desiccation at +20°C was not fatal to them. On the other hand, other strains from the Antarctic, the Arctic, and Central Europe (Slovakia) survived desiccation at temperatures of +4°C, and freezing down to −40°C. It appears that species of Klebsormidium which occupy an environment where both seasonal and diurnal variations of water availability prevail, are well adapted to freezing and desiccation injuries. Freezing and desiccation tolerance is not species-specific nor is the resilience only found in polar strains as it is also a feature of temperate strains. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia. This paper is dedicated to the memory of the late Dr. Bohuslav Fott (1908–1976), Professor of Botany at the Charles University in Prague, to mark the centenary of his birth.  相似文献   

2.
A microorganism with the ability to catalyze the resolution of racemic phenyloxirane was isolated and identified as Aspergillus niger SQ-6. Chiral capillary electrophoresis was successfully applied to separate both phenyloxirane and phenylethanediol. The epoxide hydrolase (EH) involved in this resolution process was (R)-stereospecific and constitutively expressed. When whole cells were used during the biotransformation process, the optimum temperature and pH for stereospecific vicinal diol production were 35°C and 7.0, respectively. After a 24-h conversion, the enantiomer excess of (R)-phenylethanediol produced was found to be >99%, with a conversion rate of 56%. In fed-batch fermentations at 30°C for 44 h, glycerol (20 g L−1) and corn steep liquor (CSL) (30 g L−1) were chosen as the best initial carbon and nitrogen sources, and EH production was markedly improved by pulsed feeding of sucrose (2 g L−1 h−1) and continuous feeding of CSL (1 g L−1 h−1) at a fermentation time of 28 h. After optimization, the maximum dry cell weight achieved was 24.5±0.8 g L−1; maximum EH production was 351.2±13.1 U L−1 with a specific activity of 14.3±0.5 U g−1. Partially purified EH exhibited a temperature optimum at 37°C and pH optimum at 7.5 in 0.1 M phosphate buffer. This study presents the first evidence for the existence of a predicted epoxide racemase, which might be important in the synthesis of epoxide intermediates.  相似文献   

3.
Nitrogenous excretion in two snails, Littorina saxatilis (high intertidal) and L. obtusata (low intertidal) was studied in relation to temperature acclimation (at 4° and 21°C), including total N excretion rates, the fraction of urea in N excretion, corresponding O:N ratios and the partitioning of deaminated protein between catabolic and anabolic processes at 4°, 11° and 21°C. Aggregate N excretion rates in both species showed no significant compensatory adjustments following acclimation. Total weight specific N excretion rates at 21°C were higher in standard 3 mg L. saxatilis (739 ng N mg−1 h−1) than standard 5 mg L. obtusata (257 ng N mg−1 h−1) for snails acclimated to 21°C. Comparisons of Q10 values of total weight specific N excretion to Q10 values for weight specific oxygen consumption ({xxV}O2) between 4° to 11 °C and 11° to 21°C indicated that, while total rates of catabolic metabolism ({xxV}O2) and protein deamination in L. obtusata were essentially parallel, the relationship between N excretion and {xxV}O2 in L. saxatilis revealed the partitioning of a larger share of deaminated protein carbon into anabolism at 4° and 21°C than at 11°C. Urea N accounted for a larger share of aggregate N excreted in L. saxatilis than in L. obtusata, but in both species urea N is a greater proportion of total N excreted when acclimated at 4°C (urea N: ammonia N ratio range: 1 to 2.15) than in snails acclimated to 21°C (urea N: ammonia N ratio range: 0.46 to 1.39). Molar O:N ratios indicate that the proportion of metabolism supported by protein catabolism is greater in L. saxatilis (O:N range: 2.5–8.4) than in L. obtusata (O:N range: 7.3–13.0). In both species, regardless of acclimation temperature, the O:N ratios are generally lowest (high protein catabolism) at 4°C and highest at 21°C.  相似文献   

4.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

5.
Antarctic marine organisms are considered to have extremely limited ability to respond to environmental temperature change. However, here we show that the Antarctic notothenioid fish Pagothenia borchgrevinki is an exception to this theory. P. borchgrevinki was able to acclimate its resting metabolic rate and resting ventilation frequency after a 5°C rise in temperature. Acute exposure to 4°C resulted in an elevation in metabolic rate (57.8 ± 4.79 mg O2 kg−1 h−1) and resting ventilation rate (40.38 ± 1.61 breaths min−1) compared with fish at −1°C (metabolic rate 34.45 ± 3.12 mg O2 kg−1 h−1; ventilation rate 29.88 ± 3.72 breaths min−1). However, after a 1-month acclimation period, there was no significant difference in the metabolic rate (cold fish 29.52 ± 3.01; warm fish 31.13 ± 2.30 mg O2 kg−1 h−1), or the resting ventilation rate (cold fish 28.75 ± 0.98; warm fish 34.25 ± 2.28 breaths min−1) of cold and warm acclimated fish. Acclimation changes to the rate of oxygen consumption following exhaustive exercise were complex. The pattern of oxygen consumption during recovery from exhaustive exercise was not significantly different in either cold or warm acclimated fish.  相似文献   

6.
The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.  相似文献   

7.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

8.
Oxygen consumption by ammocoetes of the lampreyGeotria australis in air   总被引:1,自引:0,他引:1  
 When covered by moistened lint-free gauze, the larvae (ammocoetes) of the lamprey Geotria australis survived, without apparent discomfort, for 4 days in water-saturated air at 10, 15 and 20 °C. In air, the mean standard rates of O2 consumption of medium to large ammocoetes of G. australis (xˉ=0.52 g) at 10, 15 and 20 °C were 14.5, 35.7 and 52.1 μl⋅g-1⋅h-1, respectively. At 15 °C, the slope of the relationship between log O2 consumption (μl O2⋅h-1) and log body weight for ammocoetes over a wide range in body weight was 0.987. The Q 10s for rate of O2 consumption between 10 and 15 °C, 15 and 20 °C and 10 and 20 °C were 4.9, 2.9 and 3.6, respectively. Our results and observations of the ammocoetes suggest that, when out of water, larval G. australis derives most of its O2 requirements from cutaneous respiration, particularly at lower temperatures. This would be facilitated by the small size and elongate shape (and thus a relatively high surface-to-volume ratio), low metabolic rate, thin dermis, extensive subdermal capillary network and high haemoglobin concentration of larval G. australis. Accepted: 28 March 1996  相似文献   

9.
The effects of temperature (20, 24 and 28 °C) and irradiance (15 and 40 μmol photon m−2 s−1) on the nitrate and ammonium uptake rates of the subtropical red alga, Laurencia brongniartii, were investigated to prepare for tank cultivation. Nitrate uptake followed saturation kinetics and was faster at higher irradiances and temperatures. In contrast, ammonium uptake was linear over the experimental range and was not affected by an increase in temperature. A parameter, β, was calculated to compare substrate uptake rates of nitrate along the linear portion of the uptake curve with that of ammonium. For nitrate, β was lower at low irradiance and higher at high irradiance (β = 0.007 ± 0.003 and 0.030 ± 0.002 [μmol N L−1 (μmol N gww−1 d)−1], respectively). However, β was 0.023 ± 0.002 and 0.034 ± 0.002 [μmol N L−1 (μmol N gww−1 d−1)−1] for ammonium, suggesting a preference for ammonium over nitrate.  相似文献   

10.
Two new effective microbial producers of inulinases were isolated from Jerusalem artichoke tubers grown in Thailand and identified as Aspergillus niger TISTR 3570 and Candida guilliermondii TISTR 5844. The inulinases produced by both these microorganisms were appropriate for hydrolysing inulin to fructose as the principal product. An initial inulin concentration of ∼100 g l−1 and the enzyme concentration of 0.2 U g−1 of substrate, yielded 37.5 g l−1 of fructose in 20 h at 40°C when A. niger TISTR 3570 inulinase was the biocatalyst. The yield of fructose on inulin was 0.39 g g−1. Under identical conditions, the yeast inulinase afforded 35.3 g l−1 of fructose in 25 h. The fructose yield was 0.35 g g−1 of substrate. The fructose productivities were 1.9 g l−1 h−1 and 1.4 g l−1 h−1 for the mold and yeast enzymes, respectively. After 20 h of reaction, the mold enzyme hydrolysate contained 53% fructose and more than 41% of initial inulin had been hydrolysed. Using the yeast enzymes, the hydrolysate contained nearly 38% fructose at 25 h and nearly 36% of initial inulin had been hydrolysed. The A. niger TISTR 3570 inulinases exhibited both endo-inulinase and exo-inulinase activities. In contrast, the yeast inulinases displayed mainly exo-inulinase activity. The mold and yeast crude inulinases mixed in the activity ratio of 5:1 proved superior to individual crude inulinases in hydrolysing inulin to fructose. The enzyme mixture provided a better combination of endo- and exo-inulinase activities than did the crude extracts of either the mold or the yeast individually.  相似文献   

11.
In a two-phase operation, E. coli containing λSNNU1 (Q S ) in the chromosome is typically cultured at 33°C and cloned gene expression is induced by elevating the temperature. At least 40°C is necessary for complete induction of cloned gene expression; however, temperatures above 40°C have been shown to inhibit cloned gene expression. This suggests that a three-phase operation, which has an induction phase between the growth and production phases, may result in higher gene expression. In this study, optimal temperature management strategies were investigated for the three-phase operation of cloned gene expression in thermally inducible E. coli/bacteriophage systems. The optimal temperature for the induction phase was determined to be 40°C. When the temperature of the production stage was 33°C, the optimal time period for the induction phase at 40°C was determined to be 60 min. In contrast, when the temperature of the production phase was 37°C, the optimal period for the induction phase at 40°C was 20∼30 min. When the three-phase temperature and temporal profile were set at a growth phase of 33°C, an induction phase at 40°C for 30 min, and a production phase at 37°C, the highest level of cloned gene expression was achieved.  相似文献   

12.
In short-term field trials at combinations of ambient temperature (°C) and insolation (W·m−2), larval Colorado potato beetles (Leptinotarsa decemlineata [Say] [Coleoptera: Chrysomelidae]) were observed after their release on the adaxial surface of leaflets on potato plants (Solanum tuberosum L. Solanaceae). The larvae either began feeding or moved under the leaflet; mean interval from release to expression of these behaviors (2.9±0.05 min [n =358]) was independent of air temperature and insolation. Proportion of larvae moving under the leaflet increased logistically with both air temperature and insolation. A 1 W·m−2 change in insolation (P) evoked the same effect on this proportion as a 0.0838 °C change in air temperature (T a ), so the two quantities were combined as T*=T a +P·0.0838 °C/(W·m−2), which has units of °C. The proportion of larvae moving under the leaflet increased logistically with T*. In 1-day field trials we monitored air temperature, insolation and proportion of larvae under the leaflet, and compared the latter to predictions from the logistic regression derived from the short-term trials. Consistently more larvae occurred under leaflets than predicted from the logistic regression; this bias diminished as T* increased until at T*≥40 °C, observed and predicted proportions were equal. This pattern of deviation from the predictions of the logistic regression is consistent with a thermoregulatory strategy in which larvae move away from hostile conditions, rather than seek optimal conditions.  相似文献   

13.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

14.
The oxygen consumption rate during embryogenesis of Acartia tonsa subitaneous eggs were measured at different temperatures (10, 15, 17, 21, 24 and 28°C) with nanorespirometry. The oxygen consumption was constant during the embryogenesis but increased rapidly at hatching time. The mean ± SD oxygen consumption rate increased exponentially with temperature and ranged from 0.09 ± 0.04 (10°C) to 0.54 ± 0.09 nmol O2 egg−1 h−1 (28°C). The mean ± SD Q10-value was 2.51 ± 0.15. Calculations of energy consumption during embryogenesis ranged from 1.86 to 18.28 mJ depending on temperature and development time. We conclude that the effect of temperature on oxygen consumption rate was far less important than the prolonged development time when calculating the energy consumed during embryogenesis.  相似文献   

15.
Morphology and culture studies on germlings of Sargassum thunbergii (Mertens et Roth) Kuntze were carried out under controlled laboratory conditions. Growth characteristics of these germlings grown under different temperatures (from 10 to 25°C), irradiances (from 9 to 88 μmol photons m−2 s−1), and under blue and white light conditions are described. The development of embryonic germlings follows the classic “8 nuclei 1 egg” type described for Sargassaceae. Fertilized eggs spent 5–6 h developing into multicellular germlings with abundant rhizoids after fertilization. Under conditions of 20°C, 44 μmol photons m−2 s−1 and photoperiod of 12 h, young germlings with one or two leaflets reached 2–3 mm in length after 8 weeks. Temperature variations (10, 15, 20, 25°C) under 88 μmol photons m−2 s−1 significantly influenced the growth rate within the first week, although this effect became less obvious after 8 weeks, especially at 15 and 20°C. Variation in germling growth was highly significant under different irradiances (9, 18, 44, 88 μmol photons m−2 s−1) at 25°C. Low temperature (10°C) reduced germling growth. Growth of germlings cultured under blue light was lower than in white light. Optimal growth of these germlings occurred at 25°C and 44 μmol photons m−2 s−1.  相似文献   

16.
Four temperature treatments were studied in the climate controlled growth chambers of the Georgia Envirotron: 25/20, 30/25, 35/30, and 40/35 °C during 14/10 h light/dark cycle. For the first growth stage (V3-5), the highest net photosynthetic rate (P N) of sweet corn was found for the lowest temperature of 28–34 μmol m−2 s−1 while the P N for the highest temperature treatment was 50–60 % lower. We detected a gradual decline of about 1 P N unit per 1 °C increase in temperature. Maximum transpiration rate (E) fluctuated between 0.36 and 0.54 mm h−1 (≈5.0–6.5 mm d−1) for the high temperature treatment and the minimum E fluctuated between 0.25 and 0.36 mm h−1 (≈3.5–5.0 mm d−1) for the low temperature treatment. Cumulative CO2 fixation of the 40/35 °C treatment was 33.7 g m−2 d−1 and it increased by about 50 % as temperature declined. The corresponding water use efficiency (WUE) decreased from 14 to 5 g(CO2) kg−1(H2O) for the lowest and highest temperature treatments, respectively. Three main factors affected WUE, P N, and E of Zea: the high temperature which reduced P N, vapor pressure deficit (VPD) that was directly related to E but did not affect P N, and quasi stem conductance (QC) that was directly related to P N but did not affect E. As a result, WUE of the 25/20 °C temperature treatment was almost three times larger than that of 40/35 °C temperature treatment.  相似文献   

17.
Athrycia cinerea Coq. is a univoltine parasitoid of the bertha armyworm,Mamestra configurata Walker (Lepidoptera: Noctuidae), in western Canada. This parasitoid overwinters as a pupa in the soil. These pupae are less sensitive than their host to increased cold stress caused by lower temperatures or danger durations of exposure. Exposure to −7.5°C for 140 days did not significantly reduce survival. Survival decreased with exposure to temperatures from −10 to −20°C, but survival was 48% even after 40 days exposure to −20°C. The frequency distribution ofA. cinerea puparia per host is highly contagious. Other aspects of the life history are described. Contribution No. 1403 Winnipeg Research Station.  相似文献   

18.
More than 80% of diphenyl phthalate (DPP) at 100 mg l−1 was degraded by Sphingomonas chungbukensis KCTC 2955 in a mineral salts medium at pH 7.0 and 30°C within 48 h. The maximum specific degradation rate was 5 mg DPP l−1 h−1. It was rapidly converted to monophenyl phthalate and phthalic acid which were further degraded.  相似文献   

19.
Xanthomonas campestris pv phaseoli produced an extracellular endoinulinase (9.24 ± 0.03 U mL−1) in an optimized medium comprising of 3% sucrose and 2.5% tryptone. X. campestris pv. phaseoli was further subjected to ethylmethanesulfonate mutagenesis and the resulting mutant, X. campestris pv. phaseoli KM 24 demonstrated inulinase production of 22.09 ± 0.03 U mL−1 after 18 h, which was 2.4-fold higher than that of the wild type. Inulinase production by this mutant was scaled up using sucrose as a carbon source in a 5-L fermenter yielding maximum volumetric (21,865 U L−1 h−1) and specific (119,025 U g−1 h−1) productivities of inulinase after 18 h with an inulinase/invertase ratio of 2.6. A maximum FOS production of 11.9 g L−1 h−1 and specific productivity of 72 g g−1 h−1 FOS from inulin were observed in a fermenter, when the mutant was grown on medium containing 3% inulin and 2.5% tryptone. The detection of mono- and oligosaccharides in inulin hydrolysates by TLC analysis indicated the presence of an endoinulinase. This mutant has potential for large-scale production of inulinase and fructooligosaccharides.  相似文献   

20.
Antarctic fish, such as the Trematomus bernacchii, living at −1.9°C maintain a serum osmolality of around 600 mOsm kg−1, nearly twice that of temperate fish. Upon warm acclimation, Antarctic fish significantly lower their serum osmolality. It has been suggested that this response to warm acclimation is due to stress. The purpose of this study was to determine, whether upon warm acclimation there was a change in the levels of the stress hormone cortisol and hematocrit associated with the decrease in serum osmolality. T. bernacchii were warm acclimated up to 4 weeks and serum osmolality, cortisol and hematocrit were measured. Upon warm acclimation to +1.6 and +3.8°C over the course of 4 weeks, T. bernacchii significantly lowered their serum osmolality (from 547 ± 4 mOsm kg−1 to 494 ± 6 and 489 ± 4 mOsm kg−1, respectively), yet did not alter their serum cortisol (29 ± 6 nl ml−1) or hematocrit (22 ± 1%) levels. These results suggest that warm acclimation does not induce a stress response in T. bernacchii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号