首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
A molecular basis for the inhibition of brain protein phosphatase 2A (PP2A) activity by oxidative stress was examined in a high-speed supernatant (HSS) fraction from rat cerebral cortex. PP2A activity was subject to substantial disulfide reducing agent-reversible inhibition in the HSS fraction. Results of gel electrophoresis support the conclusions that inhibition of PP2A activity was associated with the both the disulfide cross-linking of the catalytic subunit (PP2AC) of the enzyme to other brain proteins and with the formation of an apparent novel intramolecular disulfide bond in PP2AC. Additional findings that the vicinal dithiol cross-linking reagent phenylarsine oxide (PAO) produced a potent dithiothreitol-reversible inhibition of PP2A activity suggest that the cross-linking of PP2AC vicinal thiols to form an intramolecular disulfide bond may be sufficient to inhibit PP2A activity under oxidative stress. We propose that the dithiol–disulfide equilibrium of a vicinal thiol pair of PP2AC may confer redox sensitivity on cellular PP2A.  相似文献   

2.
The present study examined in subcellular fractions from rat brain the nature and sensitivity to hydrogen peroxide of constitutively expressed mitogen-activated protein kinase (MAPK) phosphatase activity. MAPK phosphatase activity was defined as the activity directed towards a dual-phosphorylated (pT/pY) peptide corresponding to the activation domain of the extracellular-regulated kinase (ERK) subtype of the MAPKs. The use of phosphatase inhibitors and biochemical analyses demonstrate that the MAPK phosphatase activity, which was highest in the microsomal membrane and soluble fractions, was attributable mainly, if not entirely, to protein phosphatase 2A (PP2A). Moreover, hydrogen peroxide (in the absence and presence of reduced glutathione) and glutathione disulfide inhibited the MAPK phosphatase activity by a dithiothreitol-reversible mechanism. These results provide direct support for mounting evidence that PP2A is a major regulator of MAPK phosphorylation in brain and suggest that inhibition of PP2A activity via reversible oxidation of a cysteine thiol(s) may underlie at least in part the activation of MAPKs occurring in response to hydrogen peroxide and oxidative stress.  相似文献   

3.
Abstract: We have found that modification of rat PC12 cells with pertussis toxin resulted in an ∼50% inhibition of a protein phosphatase 2A-like phosphatase. Protein phosphatase 2A (PP2A) is a major cellular serine/threonine-specific protein phosphatase. Treatment of extracts from pertussis toxin-modified PC12 cells with either immobilized alkaline phosphatase or Ca2+ reversed this inhibition. Reactivation of the PP2A-like phosphatase in Ca2+ appears to result from the dephosphorylation of a protein by the Ca2+/calmodulin-dependent protein phosphatase calcineurin. The PP2A-like phosphatase in extracts from pertussis toxin-modified PC12 cells eluted from a Mono Q column at a higher ionic strength than did the PP2A-like phosphatase in extracts from control cells. After incubation in Ca2+, the PP2A-like phosphatase in extracts from pertussis toxin-modified cells eluted from a Mono Q column at the same ionic strength as did the PP2A-like phosphatase in extracts from control cells. These results indicate that the effect of pertussis toxin on this PP2A-like activity results from the phosphorylation of either one of the subunits of the PP2A-like phosphatase or a protein that when phosphorylated binds to and inhibits this phosphatase. Pertussis toxin modification did not result in the phosphorylation of the catalytic subunit of PP2A. Because phosphorylation regulates the activities of many enzymes and cell surface receptors, a pertussis toxin-induced decrease in PP2A activity could alter signaling pathways and other cellular processes in which G proteins are not directly involved.  相似文献   

4.
Abstract: Autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr286 generates Ca2+-independent activity. As an initial step toward understanding CaMKII inactivation, protein phosphatase classes (PP1, PP2A, PP2B, or PP2C) responsible for dephosphorylation of Thr286 in rat forebrain subcellular fractions were identified using phosphatase inhibitors/activators, by fractionation using ion exchange chromatography and by immunoblotting. PP2A-like enzymes account for >70% of activity toward exogenous soluble Thr286-autophosphorylated CaMKII in crude cytosol, membrane, and cytoskeletal extracts; PP1 and PP2C account for the remaining activity. CaMKII is present in particulate fractions, specifically associated with postsynaptic densities (PSDs); each protein phosphatase is also present in isolated PSDs, but only PP1 is enriched during PSD isolation. When isolated PSDs dephosphorylated exogenous soluble Thr286-autophosphorylated CaMKII, PP2A again made the major contribution. However, CaMKII endogenous to PSDs (32P autophosphorylated in the presence of Ca2+/calmodulin) was predominantly dephosphorylated by PP1. In addition, dephosphorylation of soluble and PSD-associated CaMKII in whole forebrain extracts was catalyzed predominantly by PP2A and PP1, respectively. Thus, soluble and PSD-associated forms of CaMKII appear to be dephosphorylated by distinct enzymes, suggesting that Ca2+-independent activity of CaMKII is differentially regulated by protein phosphatases in distinct subcellular compartments.  相似文献   

5.
Emerging evidence suggests critical roles for protein phosphatase 2A (PP2A) in islet β cell function, including survival and demise (Kowluru A: Biochemical Pharmacol 69:1681–1691, 2005). Herein, we identified an okadaic acid (OKA)-sensitive PP2A-like phosphatase in the nuclear fraction from insulin-secreting INS-1 cells. Western blot analysis indicated relatively higher abundance of the catalytic subunit of protein phosphatase 4 (PP4c) compared to PP2Ac in this fraction. Autoradiographic and vapor-phase equilibration analyses suggested that the nuclear PP4c undergoes OKA-sensitive carboxylmethylation (CML) when S-adenosyl-L-(3H-methyl) methionine (SAM) was used as the methyl donor. Exposure of INS cells to interleukin-1β (IL-1β; 600 pM; 48 h) resulted in a marked increase in nitric oxide (NO) release with concomitant reduction in the degree of expression, the CML and the catalytic activity of only PP4, but not PP2A, in the nuclear fraction. Immunoprecipitation studies suggested potential complexation of PP4c with nuclear lamin-B, a key regulatory protein involved in the nuclear envelope assembly. Based on these findings, we propose that IL-1β-mediated inhibition of PP4 activity might result in the retention of lamin-B in its phosphorylated state, which is a requisite for its degradation by caspases leading to the apoptotic demise of the β cell (Veluthakal et al.: Am J Physiol Cell Physiol 287:C1152–C1162, 2004). Portions of this work were published in the abstract form in Diabetes [53; suppl 2; A377, 2004].  相似文献   

6.
This paper presents a study on the enzyme reduction of the disulfide bond and the following results have been found.

In enzyme preparation, antioxidants showed a stability effect and EDTA appeared to have both enzyme stabilization and solubilization. On the distribution of the enzyme activity in subcellular fractions, the water soluble fraction appeared to contain the major released enzyme activity. The enzyme was inhibited with several metals. Hg2+ and transition metals were the most toxic. The substrate specificity of this enzyme was wide for the low molecular substrates, but the protein disulfide reducing activity was not detected in this preparation. It was assumed that the thiol-disulfide transhydrogenase was coupled with glutathione reductase and the disulfide substrates were reduced by the system involving the two enzymes. A new method for the direct recording of an enzyme-catalyzed thiol-disulfide interchange using diphenyl disulfide and p,p-dinitro diphenyl disulfide was devised.  相似文献   

7.
Our earlier finding that the activity of protein phosphatase 2A from rat brain is inhibited by micromolar concentrations of the dithiol cross-linking reagent phenylarsine oxide (PAO) has encouraged the hypothesis that the catalytic subunit (PP2Ac) of PP2A contains one or more pairs of closely-spaced (vicinal) thiol pairs that may contribute to regulation of the enzyme. The results of the present study demonstrate using immobilized PAO-affinity chromatography that PP2Ac from rat brain formed stable DTT-sensitive adducts with PAO with or without associated regulatory subunits. In addition, a subset of the PAO-binding vicinal thiols of PP2Ac was readily oxidized to disulfide bonds in vitro. Importantly, a small fraction of PP2Ac was still found to contain disulfide bonds after applying stringent conditions designed to prevent protein disulfide bond formation during homogenization and fractionation of the brains. These findings establish the presence of potentially regulatory and redox-active PAO-binding vicinal thiols on the catalytic subunit of PP2A and suggest that a population of PP2Ac may contain disulfide bonds in vivo.  相似文献   

8.
Yokoyama N  Miller WT 《FEBS letters》2001,505(3):460-464
In this study, we report that Src kinase is inhibited by protein phosphatase 2A (PP2A), a serine/threonine phosphatase. We carried out experiments in vitro using purified PP2A (AC dimer) and full-length v-Src or truncated forms of v-Src. The inhibition of v-Src by PP2A is concentration- and time-dependent. Addition of okadaic acid, a PP2A phosphatase inhibitor, abolished the PP2A-dependent inhibition of v-Src. When experiments were carried out at 4 degrees C under conditions where PP2A activity is inhibited, Src activity was unaffected by the presence of PP2A, suggesting that PP2A binding alone is insufficient to block Src activity. These results imply that PP2A activity is essential for inhibition of v-Src. We also demonstrate that PP2A binds to the catalytic and the regulatory domains of v-Src.  相似文献   

9.
"Catch" is the state where some invertebrate muscles sustain high tension for long periods at low ATP hydrolysis rates. Physiological studies using muscle fibers have not yet fully provided the details of the initiation process of the catch state. The process was extensively studied by using an in vitro reconstitution assay with several phosphatase inhibitors. Actin filaments bound to thick filaments pretreated with the soluble protein fraction of muscle homogenate and Ca2+ (catch treatment) in the presence of MgATP at a low free Ca2+ concentration (the catch state). Catch treatment with > 50 microm okadaic acid, > 1 microm microcystin LR, 1 microm cyclosporin A, 1 microm FK506, or 0.2 mm calcineurin autoinhibitory peptide fragment produced almost no binding of the actin filaments, indicating protein phosphatase 2B (PP2B) was involved. Use of bovine calcineurin (PP2B) and its activator calmodulin instead of the soluble protein fraction initiated the catch state, indicating that only PP2B and calmodulin in the soluble protein fraction are essential for the initiation process. The initiation was reproduced with purified actin, myosin, twitchin, PP2B, and calmodulin. 32P autoradiography showed that only twitchin was dephosphorylated during the catch treatment with either the soluble protein fraction or bovine calcineurin and calmodulin. These results indicate that PP2B directly dephosphorylates twitchin and initiates the catch state and that no other component is required for the initiation process of the catch state.  相似文献   

10.
M-type potassium channels, encoded by the KCNQ family genes (KCNQ2–5), require calmodulin as an essential co-factor. Calmodulin bound to the KCNQ2 subunit regulates channel trafficking and stabilizes channel activity. We demonstrate that phosphorylation of calmodulin by protein kinase CK2 (casein kinase 2) rapidly and reversibly modulated KCNQ2 current. CK2-mediated phosphorylation of calmodulin strengthened its binding to KCNQ2 channel, caused resistance to phosphatidylinositol 4,5-bisphosphate depletion, and increased KCNQ2 current amplitude. Accordingly, application of CK2-selective inhibitors suppressed KCNQ2 current. This suppression was prevented by co-expression of CK2 phosphomimetic calmodulin mutants or pretreatment with a protein phosphatase inhibitor, calyculin A. We also demonstrated that functional CK2 and protein phosphatase 1 (PP1) were selectively tethered to the KCNQ2 subunit. We identified a functional KVXF consensus site for PP1 binding in the N-terminal tail of KCNQ2 subunit: mutation of this site augmented current density. CK2 inhibitor treatment suppressed M-current in rat superior cervical ganglion neurons, an effect negated by overexpression of phosphomimetic calmodulin or pretreatment with calyculin A Furthermore, CK2 inhibition diminished the medium after hyperpolarization by suppressing the M-current. These findings suggest that CK2-mediated phosphorylation of calmodulin regulates the M-current, which is tonically regulated by CK2 and PP1 anchored to the KCNQ2 channel complex.  相似文献   

11.
KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.  相似文献   

12.
The regulation of protein phosphatase 2A (PP2A) and protein threonine phosphorylation by H(2)O(2) was determined in Caco-2 cell monolayer. Incubation with H(2)O(2) (20 microM) resulted in threonine phosphorylation of a cluster of proteins at the molecular mass range of 170-250 kDa. PKC activity and plasma membrane localization of several isoforms of PKC were not affected by H(2)O(2). However, H(2)O(2) reduced 80-85% of okadaic acid-sensitive protein phosphatase activity. Immunocomplex protein phosphatase assay demonstrated that H(2)O(2) reduced the activity of PP2A, but not that of PP2C or PP1. Oxidized glutathione inhibited PP2A activity in plasma membranes prepared from Caco-2 cells and the phosphatase activity of an isolated PP2A. PP2A activity was also inhibited by N-ethylmaleimide, iodoacetamide, and p-chloromercuribenzoate. Inhibition of PP2A by oxidized glutathione was reversed by reduced glutathione. Glutathione also restored the PP2A activity in plasma membranes isolated from H(2)O(2)-treated Caco-2 cell monolayer. These results indicate that PP2A activity can be regulated by glutathionylation, and that H(2)O(2) inhibits PP2A in Caco-2 cells, which may involve glutathionylation of PP2A.  相似文献   

13.
Protein phosphatases are involved in many cellular processes. One of the most abundant and best studied members of this class is protein phosphatase type-2A (PP2A). In this study, PP2A was purified from the mussel Mytilus chilensis. Using both SDS-PAGE and size exclusion gel filtration under denaturant conditions, it was confirmed that the PP2A fraction was essentially pure. The isolated enzyme is a heterodimer and the molecular estimated masses of the subunits are 62 and 28 kDa. The isolated PP2A fraction has a notably high p-NPP phosphatase activity, which is inhibited by NaCl. The hydrolytic p-NPP phosphatase activity is independent of the MgCl2 concentration. The time courses of the inhibition of the PP2A activity of p-NPP hydrolysis by increasing concentrations of three phycotoxins that are specific inhibitors of PP2A are shown. Inhibitions caused by Okadaic acid, dinophysistoxin-1 (DTX1, 35-methylokadiac acid) and Microcystine L-R are dose-dependent with inhibition constants (Ki) of 1.68, 0.40 and 0.27 nM respectively. Microcystine L-R, the most potent phycotoxin inhibitor of PP2A isolated from Mytilus chilensis with an IC50 = 0.25 ng/ml, showed the highest specific inhibition effect an the p-NPP hydrolisis. The calculated IC50 for DTX1 and OA was 0.75 ng/ml and 1.8 ng/ml respectively.  相似文献   

14.
Serine/threonine phosphatase PP1gamma2 is a testis-specific protein phosphatase isoform in spermatozoa. This enzyme appears to play a key role in motility initiation and stimulation. Catalytic activity of PP1gamma2 is higher in immotile compared with motile spermatozoa. Inhibition of PP1gamma2 activity causes both motility initiation and motility stimulation. Protein phosphatases, in general, are regulated by their binding proteins. The objective of this article is to understand the mechanisms by which PP1gamma2 is regulated, first by identifying its regulatory proteins. We had previously shown that a portion of bovine sperm PP1gamma2 is present in the cytosolic fraction of sperm sonicates. We purified PP1gamma2 from soluble bovine sperm extracts by immunoaffinity chromatography. Gel electrophoresis of the purified enzyme showed that it was complexed to a protein 43 M(r) x 10(-3) in size. Microsequencing revealed that this protein is a mammalian homologue of sds22, which is a yeast PP1 binding protein. Phosphatase activity measurements showed that PP1gamma2 complexed to sds22 is catalytically inactive. The complex cannot be activated by limited proteolysis. The complex is unable to bind to microcystin sepharose. This suggests that sds22 may block the microcystin binding site in PP1gamma2. A proportion of PP1gamma2 in sperm extracts, which is presumably not complexed to sds22, is catalytically active. Fluorescence immunocytochemistry was used to determine the intrasperm localization of PP1gamma2 and sds22. Both proteins are present in the tail. They are also present in distinct locations in the head. Our data suggest that PP1gamma2 binding to sds22 inhibits its catalytic activity. Mechanisms regulating sds22 binding to PP1gamma2 are likely to be important in understanding the biochemical basis underlying development and regulation of sperm function.  相似文献   

15.
Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.  相似文献   

16.
PP5 is a unique member of serine/threonine phosphatases comprising a regulatory tetratricopeptide repeat (TPR) domain and functions in signaling pathways that control many cellular responses. We reported previously that Ca(2+)/S100 proteins directly associate with several TPR-containing proteins and lead to dissociate the interactions of TPR proteins with their client proteins. Here, we identified protein phosphatase 5 (PP5) as a novel target of S100 proteins. In vitro binding studies demonstrated that S100A1, S100A2, S100A6, and S100B proteins specifically interact with PP5-TPR and inhibited the PP5-Hsp90 interaction. In addition, the S100 proteins activate PP5 by using a synthetic phosphopeptide and a physiological protein substrate, Tau. Overexpression of S100A1 in COS-7 cells induced dephosphorylation of Tau. However, S100A1 and permanently active S100P inhibited the apoptosis signal-regulating kinase 1 (ASK1) and PP5 interaction, resulting the inhibition of dephosphorylation of phospho-ASK1 by PP5. The association of the S100 proteins with PP5 provides a Ca(2+)-dependent regulatory mechanism for the phosphorylation status of intracellular proteins through the regulation of PP5 enzymatic activity or PP5-client protein interaction.  相似文献   

17.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are signal-transducing molecules that regulate the activities of a variety of proteins. In the present investigation, we have compared the effects of superoxide (O2-), nitric oxide (NO), and hydrogen peroxide (H2O2) on the activities of three highly homologous serine/threonine phosphatases, protein phosphatase type 1 (PP1), protein phosphatase type 2A (PP2A), and calcineurin (protein phosphatase type 2B). Although superoxide, generated from xanthine/xanthine oxidase or paraquat, and NO, generated from (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide or sodium nitroprusside, potently inhibited the phosphatase activity of calcineurin in neuroblastoma cell lysates, they had relatively little effect on the activities of PP1 or PP2A. In contrast, H2O2 inhibited the activities of all three phosphatases in lysates but was not a potent inhibitor for any of the enzymes. Calcineurin inactivated by O2-, NO, and H2O2 could be partially reactivated by the reducing agent ascorbate or by the thiol-specific reagent dithiothreitol (DTT). Maximal reactivation was achieved by the addition of both reagents, which suggests that ROS and RNS inhibit calcineurin by oxidizing both a catalytic metal(s) and a critical thiol(s). Reactivation of H2O2-treated PP1 also required the combination of both ascorbate and DTT, whereas PP2A required only DTT for reactivation. These results suggest that, despite their highly homologous structures, calcineurin is the only major Ser/Thr phosphatase that is a sensitive target for inhibition by superoxide and nitric oxide and that none of the phosphatases are sensitive to inhibition by hydrogen peroxide.  相似文献   

18.
In eukaryotic cells, an ordered sequence of events leads to the initiation of DNA replication. During the G(1) phase of the cell cycle, a prereplication complex (pre-RC) consisting of ORC, Cdc6, Cdt1, and MCM2-7 is established at replication origins on the chromatin. At the G(1)/S transition, MCM10 and the protein kinases Cdc7-Dbf4 and Cdk2-cyclin E cooperate to recruit Cdc45 to the pre-RC, followed by origin unwinding, RPA binding, and recruitment of DNA polymerases. Using the soluble DNA replication system derived from Xenopus eggs, we demonstrate that immunodepletion of protein phosphatase 2A (PP2A) from egg extracts and inhibition of PP2A activity by okadaic acid abolish loading of Cdc45 to the pre-RC. Consistent with a defect in Cdc45 loading, origin unwinding and the loading of RPA and DNA polymerase alpha are also inhibited. Inhibition of PP2A has no effect on MCM10 loading and on Cdc7-Dbf4 or Cdk2 activity. The substrate of PP2A is neither a component of the pre-RC nor Cdc45. Instead, our data suggest that PP2A functions by dephosphorylating and activating a soluble factor that is required to recruit Cdc45 to the pre-RC. Furthermore, PP2A appears to counteract an unknown inhibitory kinase that phosphorylates and inactivates the same factor. Thus, the initiation of eukaryotic DNA replication is regulated at the level of Cdc45 loading by a combination of stimulatory and inhibitory phosphorylation events.  相似文献   

19.
Sucrose-phosphate synthase (SPS) purified from spinach leaves harvested in the dark, was activated by mammalian protein phosphatase 2A (PP2A). Activation of SPS in a fraction from darkened spinach leaves was largely prevented by either okadaic acid or microcystin-LR (specific inhibitors of PP1 and PP2A), while inhibitor-2 (a PP1 inhibitor) or Mg2+ (essential for PP2C) were ineffective. In vivo, okadaic add and microcystin-LR prevented the light-induced activation of SPS and decreased sucrose biosynthesis and CO2 fixation. It is concluded that PP2A is the major SPS phosphatase in spinach. This study is the first to employ microcystin-LR for modulating protein phosphorylation in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号