首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asthma is characterised by antigen-mediated mast cell degranulation resulting in secretion of inflammatory mediators. Protein phosphatase 2A (PP2A) is a serine/threonine protein phosphatase composed of a catalytic (PP2A-C) subunit together with a core scaffold (PP2A-A) subunit and a variable, regulatory (PP2A-B) subunit. Previous studies utilising pharmacological inhibition of protein phosphatases have suggested a positive regulatory role for PP2A in mast cell degranulation. In support of this we find that a high okadaic acid concentration (1 μM) inhibits mast cell degranulation. Strikingly, we now show that a low concentration of okadaic acid (0.1 μM) has the opposite effect, resulting in enhanced degranulation. Selective downregulation of the PP2A-Cα subunit by short hairpin RNA also enhanced degranulation of RBL-2H3 mast cells, suggesting that the primary role of PP2A is to negatively regulate degranulation. PP2A-B subunits are responsible for substrate specificity, and carboxymethylation of the PP2A-C subunit alters B subunit binding. We show here that carboxymethylation of PP2A-C is dynamically altered during degranulation and inhibition of methylation decreases degranulation. Moreover downregulation of the PP2A-Bα subunit resulted in decreased MK2 phosphorylation and degranulation, whilst downregulation of the PP2A-B′δ subunit enhanced p38 MAPK phosphorylation and degranulation. Taken together these data show that PP2A is both a positive and negative regulator of mast cell degranulation, and this differential role is regulated by carboxymethylation and specific PP2A-B subunit binding.  相似文献   

2.
The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH2-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.  相似文献   

3.
Interaction between the heterodimeric form of protein phosphatase 2A (PP2A) and polyomavirus middle T antigen (MT) is required for the subsequent assembly of a transformation-competent MT complex. To investigate the role of PP2A catalytic activity in MT complex formation, we undertook a mutational analysis of the PP2A 36-kDa catalytic C subunit. Several residues likely to be involved in the dephosphorylation mechanism were identified and mutated. The resultant catalytically inactive C subunit mutants were then analyzed for their ability to associate with a cellular (B subunit) or a viral (MT) B-type subunit. Strikingly, while all of the inactive mutants were severely impaired in their interaction with B subunit, most of these mutants formed complexes with polyomavirus MT. These findings indicate a potential role for these catalytically important residues in complex formation with cellular B subunit, but not in complex formation with MT. Transformation-competent MT is known to associate with, and modulate the activity of, several cellular proteins, including pp60(c-src) family kinases. To determine whether association of MT with an active PP2A A-C heterodimer is necessary for subsequent association with pp60(c-src), catalytically inactive C subunits were examined for their ability to form complexes containing pp60(c-src) in MT-expressing cells. Two catalytically inactive C subunit mutants that efficiently formed complexes with MT also formed complexes that included an active pp60(c-src) kinase, demonstrating that PP2A activity is not essential in cis in MT complexes for subsequent pp60(c-src) association.  相似文献   

4.
The prototypical form of the Ser/Thr phosphatase PP2A is a heterotrimeric complex consisting of catalytic subunit (C), and A and B regulatory subunits. C-terminal methylation of PP2A-C influences holoenzyme assembly. Using late gestation development in the rat as an in vivo model of liver growth, we found that PP2A-C protein and activity levels were higher in fetal compared to adult liver extracts. However, unmethylated PP2A-C was much higher in the adult extracts. In MonoQ fractionation, unmethylated C eluted separately from methylated C, which was present predominantly in ABC heterotrimers. Gel filtration chromatography revealed that some unmethylated C was present as free catalytic subunit in adult liver. In addition, a significant proportion of PP2A was in inactive forms that may involve novel regulatory subunits. Our results indicate that methylation of PP2A-C appears to be a primary determinant for the biogenesis of PP2A heterotrimers.  相似文献   

5.
The Ser/Thr phosphatase PP2A is a set of multisubunit enzymes that regulate many cellular processes. In yeast, the PP2A regulatory subunit Tap42 forms part of the target of rapamycin (TOR) signaling pathway that links nutrient and energy availability to cell growth. The physiological intersection between the mammalian orthologs of Tap42 and TOR, alpha4 and mTOR, has not been fully characterized. We used two in vivo models of liver growth in the rat, late gestation fetal development and regeneration after partial hepatectomy, to explore the regulation of the alpha4-containing form of PP2A. The alpha4/PP2A catalytic subunit (alpha4/PP2A-C) complex was present in both fetal and adult liver extracts. There was a trend towards higher levels of alpha4 protein in fetal liver, but the complex was more abundant in adult liver. Fractionation of extracts by ion exchange chromatography and transient transfection of the AML12 mouse hepatic cell line indicated that alpha4 associates with PP2A-C but that these complexes have low catalytic activity with both peptide and protein substrates. alpha4 was able to associate with forms of PP2A-C that were both methylated and non-methylated at the carboxy-terminus. The mTOR inhibitor rapamycin did not block the formation of alpha4/PP2A-C in liver or hepatic cells, nor did it appear to modulate PP2A activity. Furthermore, sensitivity to the growth inhibitory effects of rapamycin among a panel of hepatic cell lines did not correlate with levels of alpha4 or alpha4/PP2A-C. Our results indicate that the yeast Tap42/TOR paradigm is not conserved in hepatic cells.  相似文献   

6.
Migration of hemopoietic stem and progenitor cells (HSPC) is required for homing to bone marrow following transplantation. Therefore, it is critical to understand signals underlying directional movement of HSPC. Stromal cell-derived factor-1 (SDF-1)/CXCL12 is a potent chemoattractant for HSPC. In this study, we demonstrate that the serine-threonine protein phosphatase (PP)2A plays an important role in regulation of optimal level and duration of Akt/protein kinase B activation (a molecule important for efficient chemotaxis), in response to SDF-1. Inhibition of PP2A, using various pharmacological inhibitors of PP2A including okadaic acid (OA) as well as using genetic approaches including dominant-negative PP2A-catalytic subunit (PP2A-C) or PP2A-C small interfering RNA, in primary CD34(+) cord blood (CB) cells led to reduced chemotaxis. This was associated with impairment in polarization and slower speed of movement in response to SDF-1. Concomitantly, SDF-1-induced Akt phosphorylation was robust and prolonged. Following SDF-1 stimulation, Akt and PP2A-C translocate to plasma membrane with enhanced association of PP2A-C with Akt observed at the plasma membrane. Inhibition of PI3K by low-dose LY294002 partially recovered chemotactic activity of cells pretreated with OA. In addition to chemotaxis, adhesion of CD34(+) cells to fibronectin was impaired by OA pretreatment. Our study demonstrates PP2A plays an important role in chemotaxis and adhesion of CD34(+) CB cells in response to SDF-1. CD34(+) CB cells pretreated with OA showed impaired ability to repopulate NOD-SCID mice in vivo, suggesting physiological relevance of these observations.  相似文献   

7.
Members of the phosphoprotein phosphatase family of serine/threonine phosphatases are thought to exist in different native oligomeric complexes. Protein phosphatase 2A (PP2A) is composed of a catalytic subunit (PP2Ac) that complexes with an A subunit, which in turn also interacts with one of many B subunits that regulate substrate specificity and/or (sub)cellular localization of the enzyme. Another family member, protein phosphatase 5 (PP5), contains a tetratricopeptide repeat domain at its N terminus, which has been suggested to mediate interactions with other proteins. PP5 was not thought to interact with partners homologous to the A or B subunits that exist within PP2A. However, our results indicate that this may not be the case. A yeast two-hybrid screen revealed an interaction between PP5 and the A subunit of PP2A. This interaction was confirmed for endogenous proteins in vivo using immunoprecipitation analysis and for recombinant proteins by in vitro binding experiments. Our results also indicate that the tetratricopeptide repeat domain of PP5 is required and sufficient for this interaction. In addition, immunoprecipitated PP5 contains associated B subunits. Thus, our results suggest that PP5 can exist in a PP2A-like heterotrimeric form containing both A and B subunits.  相似文献   

8.
Li Y  Zhang C  Chen X  Yu J  Wang Y  Yang Y  Du M  Jin H  Ma Y  He B  Cao Y 《The Journal of biological chemistry》2011,286(28):24785-24792
The ICP34.5 protein of herpes simplex virus type 1 is a neurovirulence factor that plays critical roles in viral replication and anti-host responses. One of its functions is to recruit protein phosphatase 1 (PP1) that leads to the dephosphorylation of the α subunit of translation initiation factor eIF2 (eIF2α), which is inactivated by infection-induced phosphorylation. As PP1 is a protein phosphatase with a wide range of substrates, the question remains to be answered how ICP34.5 directs PP1 to specifically dephosphorylate eIF2α. Here we report that ICP34.5 not only binds PP1 but also associates with eIF2α by in vitro and in vivo assays. The binding site of eIF2α is identified at amino acids 233-248 of ICP34.5, which falls in the highly homologous region with human gene growth arrest and DNA damage 34. The interaction between ICP34.5 and eIF2α is independent of the phosphorylation status of eIF2α at serine 51. Deletion mutation of this region results in the failure of dephosphorylation of eIF2α by PP1 and, consequently, interrupts viral protein synthesis and replication. Our data illustrated that the binding between viral protein ICP34.5 and the host eIF2α is crucial for the specific dephosphorylation of eIF2α by PP1. We propose that herpes simplex virus protein ICP34.5 bridges PP1 and eIF2α via their binding motifs and thereby facilitates the protein synthesis and viral replication.  相似文献   

9.
Lee WJ  Kim DU  Lee MY  Choi KY 《Proteomics》2007,7(2):206-214
The protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of multiple signaling pathways including the Wnt/beta-catenin and the ERK pathways. To understand the complex signaling networking associated with PP2A, we searched proteins interacting with the catalytic subunit of protein phosphatase 2A (PP2Ac) by a pull-down analysis followed by 2-D gel electrophoresis and proteomic analyses. The probability of identification of the proteins interacting with PP2Ac was increased by searching proteins differently interacting with PP2Ac according to stimulation of Wnt3a, which regulates both the Wnt/beta-catenin and the ERK pathways. Around 100 proteins, pulled-down by His-tagged PP2Ac, were identified in 2-D gels stained with CBB. By MALDI-TOF-MS analyses of 45 protein spots, we identified several proteins that were previously known to interact with PP2A, such as Axin and CaMK IV. In addition, we also identified many proteins that potentially interact with PP2Ac. The interactions of several candidate proteins, such as tuberous sclerosis complex 2, RhoB, R-Ras, and Nm23H2, with PP2Ac, were confirmed by in vitro binding analyses and/or coimmunoprecipitation experiments.  相似文献   

10.
The regulation of protein phosphatase 2A (PP2A) activity by thiol-disulfide exchange and resulting formation of an intermolecular disulfide was examined following exposure of a rat brain soluble fraction to a biotinylated derivative of the model disulfide HPDP (HPDP-biotin) which would be expected to label reactive protein thiols with a disulfide-linked biotin. The results show that a low concentration (500 microM) of HPDP-biotin produced substantial inhibition of PP2A activity and promoted the binding of the catalytic subunit of PP2A to an immobilized avidin-affinity column. Both the inhibition of PP2A activity and the binding of PP2A to the avidin column were reversed by treatment with the disulfide reducing agent dithiothreitol (DTT). Furthermore, the specific activity of PP2A was up to 7-fold higher in the DTT-eluted fractions from the avidin-affinity column than in the soluble fraction. These findings demonstrate directly that PP2A is susceptible to reversible inhibitory modification by thiol-disulfide exchange and provide mechanistic support for the emerging view that PP2A is an oxidant-sensitive protein phosphatase.  相似文献   

11.
PPP2R2C encodes a gamma isoform of the subunit B55 subfamily, which is a regulatory subunit of Protein phosphatase type 2A (PP2A). Our study shows that PPP2R2C is downregulated in glioma cells and human brain cancer patient samples. Overexpression of PPP2R2C inhibited cancer cell proliferation both in vitro and in vivo through the suppression of the activity of S6K in the mTOR pathway. Moreover, exogenous expression of PPP2R2C promoted the formation of a complex with the PP2A-C subunit to further enhance the binding of PP2A-C with S6K. Our results suggest that PPP2R2C is a potential tumor suppressor gene in human brain cancers. This study will provide novel insight into the development of therapeutic strategies in the treatment of human brain tumors.  相似文献   

12.
Affinity isolation of protein serine/threonine phosphatases on the immobilized phosphatase inhibitor microcystin-LR identified histone deacetylase 1(HDAC1), HDAC6, and HDAC10 as novel components of cellular phosphatase complexes. Other HDACs, specifically HDAC2, -3, -4, and -5, were excluded from such complexes. In vitro biochemical studies showed that recombinant HDAC6, but not HDAC4, bound directly to the protein phosphatase (PP)1 catalytic subunit. No association was observed between HDAC6 and PP2A, another major protein phosphatase. PP1 binding was mapped to the second catalytic domain and adjacent C-terminal sequences in HDAC6, and treatment of cells with trichostatin A (TSA) disrupted endogenous HDAC6.PP1 complexes. Consistent with the inhibition of tubulin deactylase activity of HDAC6, TSA enhanced cellular tubulin acetylation, and acetylated tubulin was present in the PP1 complexes from TSA-treated cells. Trapoxin B, a weak HDAC6 inhibitor, and calyculin A, a cell-permeable phosphatase inhibitor, had no effect on the stability of the HDAC6.PP1 complexes or on tubulin acetylation. Mutations that inactivated HDAC6 prevented its incorporation into cellular PP1 complexes and suggested that when bound together both enzymes were active. Interestingly, TSA disrupted all the cellular HDAC.phosphatase complexes analyzed. This study provided new insight into the mechanism by which HDAC inhibitors elicited coordinate changes in cellular protein phosphorylation and acetylation and suggested that changes in these protein modifications at multiple subcellular sites may contribute to the known ability of HDAC inhibitors to suppress cell growth and transformation.  相似文献   

13.
Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxyl terminus by specific methyltransferase and methylesterase enzymes which have been purified, but not cloned. Carboxymethylation affects PP2A activity and varies during the cell cycle. Here, we report that substitution of glutamine for either of two putative active site histidines in the PP2A C subunit results in inactivation of PP2A and formation of stable complexes between PP2A and several cellular proteins. One of these cellular proteins, herein named protein phosphatase methylesterase-1 (PME-1), was purified and microsequenced, and its cDNA was cloned. PME-1 is conserved from yeast to human and contains a motif found in lipases having a catalytic triad-activated serine as their active site nucleophile. Bacterially expressed PME-1 demethylated PP2A C subunit in vitro, and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. To our knowledge, PME-1 represents the first mammalian protein methylesterase to be cloned. Several lines of evidence indicate that, although there appears to be a role for C subunit carboxyl-terminal amino acids in PME-1 binding, amino acids other than those at the extreme carboxyl terminus of the C subunit also play an important role in PME-1 binding to a catalytically inactive mutant.  相似文献   

14.
Serine/threonine protein phosphatase (PP) 2A is thought to dephosphorylate phosphorylated beta1 integrin to link with actin filaments (F-actin). However, whether PP2A participates in the regulation of F-actin assembly to which beta1 integrin is anchored is unclear. We report here that the core enzyme of PP2A (PP2A-AC), consisting of the regulatory subunit A (PP2A-A) and the catalytic subunit C (PP2A-C), forms a complex with beta1 integrin, a small GTPase Rac, and its effector IQGAP1 in non-malignant human mammary epithelial (HME) cells. Treatment of HME cells with okadaic acid (OA), an inhibitor of PP2A, caused cell rounding, reduction in F-actin assembly that links with beta1 integrin, and dissociation of IQGAP1-bound PP2A-AC from Rac-beta1 integrin. The dissociation of IQGAP1-PP2A-AC was accompanied by loss of F-actin gelating activity of Rac-beta1 integrin. In breast cancer MCF-7 cells, which possess PP2A-C but lack PP2A-A, IQGAP1 was not associated with Rac-beta1 integrin but with PP2A-C, with no distinct F-actin assembly that linked to Rac-beta1 integrin even before treatment with OA. We therefore propose that PP2A, especially PP2A-A, functions to maintain F-actin assembly to which beta1 integrin is anchored by recruitment of IQGAP1 to Rac-beta1 integrin.  相似文献   

15.
Diverse functions of protein Ser/Thr phosphatases depend on the distribution of the catalytic subunits among multiple regulatory subunits. In cells protein phosphatase 2A catalytic subunit (PP2Ac) mostly binds to a scaffold subunit (A subunit or PR65); however, PP2Ac alternatively binds to alpha-4, a subunit related to yeast Tap42 protein, which also associates with phosphatases PP4 or PP6. We mapped alpha-4 binding to PP2Ac to the helical domain, residues 19-165. We mutated selected residues and transiently expressed epitope-tagged PP2Ac to assay for association with A and alpha-4 subunits by co-precipitation. The disabling H118N mutation at the active site or the presence of the active site inhibitor microcystin-LR did not interfere with binding of PP2Ac to either the A subunit or alpha-4, showing that these are allosteric regulators. Positively charged side chains Lys(41), Arg(49), and Lys(74) on the back surface of PP2Ac are unique to PP2Ac, compared with phosphatases PP4, PP6, and PP1. Substitution of one, two, or three of these residues with Ala produced a progressive loss of binding to the A subunit, with a corresponding increase in binding to alpha-4. Conversely, mutation of Glu(42) in PP2Ac essentially eliminated PP2Ac binding to alpha-4, with an increase in binding to the A subunit. Reciprocal changes in binding because of mutations indicate competitive distribution of PP2Ac between these regulatory subunits and demonstrate that the mutated catalytic subunits retained a native conformation. Furthermore, neither the Lys(41)-Arg(49)-Lys(74) nor Glu(42) mutations affected the phosphatase-specific activity or binding to microcystin-agarose. Binding of PP2Ac to microcystin and to alpha-4 increased with temperature, consistent with an activation energy barrier for these interactions. Our results reveal that the A subunit and alpha-4 (mTap42) require charged residues in separate but overlapping surface regions to associate with the back side of PP2Ac and modulate phosphatase activity.  相似文献   

16.
Le AV  Tavalin SJ  Dodge-Kafka KL 《Biochemistry》2011,50(23):5279-5291
The ubiquitously expressed and highly promiscuous protein phosphatase 1 (PP1) regulates many cellular processes. Targeting PP1 to specific locations within the cell allows for the regulation of PP1 by conferring substrate specificity. In the present study, we identified AKAP79 as a novel PP1 regulatory subunit. Immunoprecipitaiton of the AKAP from rat brain extract found that the PP1 catalytic subunit copurified with the anchoring protein. This is a direct interaction, demonstrated by pulldown experiments using purified proteins. Interestingly, the addition of AKAP79 to purified PP1 catalytic subunit decreased phosphatase activity with an IC(50) of 811 ± 0.56 nM of the anchoring protein. Analysis of AKAP79 identified a PP1 binding site that conformed to a consensus PP1 binding motif (FxxR/KxR/K) in the first 44 amino acids of the anchoring protein. This was confirmed when a peptide mimicking this region of AKAP79 was able to bind PP1 by both pulldown assay and surface plasmon resonance. However, PP1 was still able to bind to AKAP79 upon deletion of this region, suggesting additional sites of contact between the anchoring protein and the phosphatase. Importantly, this consensus PP1 binding motif was found not to be responsible for PP1 inhibition, but rather enhanced phosphatase activity, as deletion of this domain resulted in an increased inhibition of PP1 activity. Instead, a second interaction domain localized to residues 150-250 of AKAP79 was required for the inhibition of PP1. However, the inhibitory actions of AKAP79 on PP1 are substrate dependent, as the anchoring protein did not inhibit PP1 dephosphorylation of phospho-PSD-95, a substrate found in AKAP79 complexes in the brain. These combined observations suggest that AKAP79 acts as a PP1 regulatory subunit that can direct PP1 activity toward specific targets in the AKAP79 complex.  相似文献   

17.
The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B' subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKepsilon (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.  相似文献   

18.
BackgroundThe tumor suppressor protein phosphatase 2A (PP2A) is frequently inactivated in human cancer and phosphorylation of its catalytic subunit (p-PP2A-C) at tyrosine-307 (Y307) has been described to inhibit this phosphatase. However, its molecular and clinical relevance in colorectal cancer (CRC) remains unclear.Methodsp-PP2A-C Y307 was determined by immunoblotting in 7 CRC cell lines and 35 CRC patients. CRC cells were treated with the PP2A activator forskolin alone or combined with the PP2A inhibitor okadaic acid, 5-fluorouracil and oxaliplatin. We examined cell growth, colonosphere formation, caspase activity and AKT and ERK activation.ResultsPP2A-C was found hyperphosphorylated in CRC cell lines. Forskolin dephosphorylated and activated PP2A, impairing proliferation and colonosphere formation, and inducing activation of caspase 3/7 and changes in AKT and ERK phosphorylation. Moreover, forskolin showed additive effects with 5-fluorouracil and oxaliplatin treatments. Analysis of p-PP2A-C Y307 in primary tumors confirmed the presence of this alteration in a subgroup of CRC patients.ConclusionsOur data show that PP2A-C hyperphosphorylation is a frequent event that contributes to PP2A inhibition in CRC. Antitumoral effects of forskolin-mediated PP2A activation suggest that the analysis of p-PP2A-C Y307 status could be used to identify a subgroup of patients who would benefit from treatments based on PP2A activators.  相似文献   

19.
M-type potassium channels, encoded by the KCNQ family genes (KCNQ2–5), require calmodulin as an essential co-factor. Calmodulin bound to the KCNQ2 subunit regulates channel trafficking and stabilizes channel activity. We demonstrate that phosphorylation of calmodulin by protein kinase CK2 (casein kinase 2) rapidly and reversibly modulated KCNQ2 current. CK2-mediated phosphorylation of calmodulin strengthened its binding to KCNQ2 channel, caused resistance to phosphatidylinositol 4,5-bisphosphate depletion, and increased KCNQ2 current amplitude. Accordingly, application of CK2-selective inhibitors suppressed KCNQ2 current. This suppression was prevented by co-expression of CK2 phosphomimetic calmodulin mutants or pretreatment with a protein phosphatase inhibitor, calyculin A. We also demonstrated that functional CK2 and protein phosphatase 1 (PP1) were selectively tethered to the KCNQ2 subunit. We identified a functional KVXF consensus site for PP1 binding in the N-terminal tail of KCNQ2 subunit: mutation of this site augmented current density. CK2 inhibitor treatment suppressed M-current in rat superior cervical ganglion neurons, an effect negated by overexpression of phosphomimetic calmodulin or pretreatment with calyculin A Furthermore, CK2 inhibition diminished the medium after hyperpolarization by suppressing the M-current. These findings suggest that CK2-mediated phosphorylation of calmodulin regulates the M-current, which is tonically regulated by CK2 and PP1 anchored to the KCNQ2 channel complex.  相似文献   

20.
《Autophagy》2013,9(4):623-636
Protein phosphatase 2A (PP2A) holoenzyme is a heterotrimeric complex, consisting of A, B and C subunits. The catalytic subunit PP2A-C (microtubule star/mts) binds to the C-terminal part of the scaffold protein PP2A-A (PP2A-29B). In Drosophila, there are three different forms of B subunits (widerborst/wdb, twins/tws and PP2A-B'), which determine the subcellular localization and substrate specificity of the holoenzyme. Previous studies demonstrated that PP2A is involved in the control of TOR-dependent autophagy both in yeast and mammals. Furthermore, in Drosophila, wdb genetically interacts with the PtdIns3K/PTEN/Akt signaling cascade, which is a main upstream regulatory system of dTOR. Here we demonstrate that in Drosophila, two different PP2A complexes (containing B' or wdb subunit) play essential roles in the regulation of starvation-induced autophagy. The PP2A-A/wdb/C complex acts upstream of dTOR, whereas the PP2A-A/B'/C complex functions as a target of dTOR and may regulate the elongation of autophagosomes and their subsequent fusion with lysosomes. We also identified three Drosophila Atg orthologs (Atg14, Atg17 and Atg101), which represent potential targets of the PP2A-A/B'/C complex during autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号