首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Thyroid hormone is known to play a critical role in growth and development of rat testes with a specific effect on the differentiation of Sertoli cells leading to a normal evolution of germ cells. In the present study, we aimed to compare the effect of induced hypothyroidism during fetal and post-natal life on the structure and function of the testis in adult. Pregnant or lactating mothers were treated with 6-propyl-2-thiouracil (PTU) during 21 days and weight gain of pups was steady until adult age. Plasma hormonal levels were determined by RIA and morphology of testis was studied on sections stained with Masson's trichrome. Pre and early post natal hypothyroidism resulted in an impairment of body development and a diminution of thyroid hormone levels of treated rats. No significant effect on testicular development has been observed when hypothyroidism is induced in fetal life while it was associated with reduction in testis weight, diameter of seminiferous tubules and hormonal levels and delay in maturation of germ cells, when induced during early post natal life.  相似文献   

2.
Testes and blood samples were obtained from 201 stallions aged 6 months to 20 years in either December-January (nonbreeding season) or June-July (breeding season) to study the effect of age and season on reproductive parameters. Seasonal differences in the Sertoli cell population of adult (4-20 years old) horses were characterized by a 36% larger number of Sertoli cells in the breeding season than in the nonbreeding season. Seasonal elevation in the Sertoli cell population was associated with an increase in testicular weight and daily sperm production per testis (DSP/testis). Concentrations of luteinizing hormone (LH) and testosterone in serum varied with season. Although follicle-stimulating hormone (FSH) concentrations also tended to be higher in the breeding season, this trend was not statistically significant (P less than 0.08). Sertoli cell numbers averaged over both seasons, like testicular weights, increased with age until 4-5 years of age, but were stabilized thereafter. This age-related difference was also associated with increased concentrations of FSH, LH and testosterone, and with increased DSP/testis. The Sertoli cell population was capable of increasing in the adult horse by fluctuating its size with season. The number of elongated spermatids per Sertoli cell over both seasons increased with age up to 4-5 years of age and was stabilized thereafter. Thus, seasonal and/or age-related differences in DSP/testis were associated with significant elevations in serum concentrations of FSH, LH and testosterone, testicular weights, numbers of elongated spermatids per Sertoli cell and elevation of the Sertoli cell population.  相似文献   

3.
We have previously shown that retinoic acid (RA) is able to act on the development of Leydig, Sertoli, and germ cells in the testis in culture (Livera et al., Biol Reprod 2000; 62:1303-1314). To identify which receptors mediate these effects, we have now added selective agonists and antagonists of retinoic acid receptors (RARs) or retinoid X receptors (RXRs) in the same organotypic culture system. The RAR alpha agonist mimicked most of the effects of RA on the cultured fetal or neonatal testis, whereas the RAR beta, gamma, and pan RXR agonists did not. The RAR alpha agonist decreased the testosterone production, the number of gonocytes, and the cAMP response to FSH of fetal testis explanted at 14.5 days postconception (dpc). The RAR alpha agonist disorganized the cords of the 14.5-dpc cultured testis and increased the cord diameter in cultured 3-days-postpartum (dpp) testis in the same way as RA. All these RA effects could be reversed by an RAR alpha antagonist and were unchanged by an RAR beta/gamma antagonist. The RAR beta agonist, however, increased Sertoli cell proliferation in the 3-dpp testis in the same way as RA, and this effect was blocked by an RAR beta antagonist. The RAR gamma and the pan RXR agonists had no selective effect. These results suggest that all the effects of RA on development of the fetal and neonatal testis are mediated via RAR alpha, except for its effect on Sertoli cell proliferation, which involves RAR beta.  相似文献   

4.
Neonatal hypothyroidism increases adult Sertoli cell populations by extending Sertoli cell proliferation. Conversely, hyperthyroidism induces premature cessation of Sertoli cell proliferation and stimulates maturational events like seminiferous tubule canalization. Thyroid hormone receptors alpha1 and beta1, which are commonly referred to as TRalpha1 and TRbeta1, respectively, are expressed in neonatal Sertoli cells. We determined the relative roles of TRalpha1 and TRbeta1 in the thyroid hormone effect on testicular development and Sertoli cell proliferation using Thra knockout (TRalphaKO), Thrb knockout (TRbetaKO), and wild-type (WT) mice. Triiodothyronine (T3) treatment from birth until Postnatal Day 10 reduced Sertoli cell proliferation to minimal levels in WT and TRbetaKO mice versus that in their untreated controls, whereas T3 had a diminished effect on TRalphaKO Sertoli cell proliferation. Seminiferous tubule patency and luminal diameter were increased in T3-treated WT and TRbetaKO testes. In contrast, T3 had no effect on these parameters in TRalphaKO mice. In untreated adult TRalphaKO mice, Sertoli cell number, testis weight, and daily sperm production were increased or trended toward an increase, but the increase in magnitude was smaller than that seen in WT mice following neonatal hypothyroidism. Conversely, in TRbetaKO mice, Sertoli cell number, testis weight, and daily sperm production were similar to those in untreated WT mice. In addition, Sertoli cell number and testis weight in adult WT and TRbetaKO mice showed comparable increases following hypothyroidism. Our results show that TRalphaKO mice have testicular effects similar to those seen in WT mice following neonatal hypothyroidism and that TRbetaKO mice, but not TRalphaKO mice, have normal Sertoli cell responsiveness to T3. Thus, effects of exogenous manipulation of T3 on neonatal Sertoli cell development are predominately mediated through TRalpha1.  相似文献   

5.
Stereological methods were employed in two experiments with adult stallions: to confirm seasonal variation in number of Sertoli cells and to characterize the annual cycle of the Sertoli cell population. In the first experiment, testes from 28 adult (4-20 years old) horses obtained in the non-breeding season (December-January) were compared to testes from 28 adult horses in the breeding season (June-July). Sertoli cell numbers were calculated from the nuclear volume density, parenchymal volume, and volume of an individual Sertoli cell nucleus determined by reconstruction of serial sections or from average height and width measurements. The number of Sertoli cells per testis was significantly greater in the breeding season. In a second experiment involving 43-48 adult horses in each 3-month period, the Sertoli cell population was higher (P less than 0.05) in May-July than other periods and higher (P less than 0.01) than in November-January. These combined studies confirm seasonal differences in the Sertoli cell numbers per testis and define the annual cycle of the Sertoli cell population in adult stallions.  相似文献   

6.
Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH) acts through receptors (FSHR) on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR) on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice) and/or ARs ubiquitously (ARKO mice) or specifically on the Sertoli cells (SCARKO mice). Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control). Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.  相似文献   

7.
Perinatal and juvenile oral treatment of rats with the insecticide, methoxychlor (MXC), reduced testicular size and other reproductive indices including the number of epididymal spermatozoa in those animals as adults 161. The objective was to determine if these males exposed during development had fewer Sertoli cells which might explain these testicular effects. Rat dams were gavaged with MXC at 0, 5, 50, or 150 mg x kg(-1) x day(-1) for the week before and after they gave birth. Resulting male pups (15/group) then were dosed directly from postnatal day 7 to 42. Testes were fixed in Bouin's and in OsO4, embedded in Epon and sectioned at 0.5 microm, stained with toluidine blue, and evaluated stereologically or cut at 20 microm to measure Sertoli cell nuclei with Nomarski optics. Sertoli cell number was calculated as the volume density of the nucleus times the parenchymal weight (90% of testicular weight) divided by the volume of a single Sertoli cell nucleus. Across dose groups, there were no changes in the nuclear volume density, the volume of a single nucleus, or the number of Sertoli cells per g parenchyma. There were highly significant dose-related changes in the volume of Sertoli cell nuclei per testis and the number of Sertoli cells per testis. Reduced testicular weight (r = 0.94) and reduced numbers of epididymal spermatozoa (r = 0.43) were significantly (p < 0.01) correlated to reduced number of Sertoli cells per testis. Hence, perinatal and juvenile oral exposure to MXC can reduce spermatogenic potential of males as adults by reducing their number of Sertoli cells.  相似文献   

8.
Changes in Sertoli cell numbers and testicular structure during normal development and compensatory hypertrophy were assessed in crossbred Meishan x White Composite males. Boars were assigned at birth to unilateral castration at 1, 10, 56, or 112 days or to remain as intact controls through 220 days. The first testes removed were compared to assess testicular development. At 220 days, testicular structure was evaluated in boars representing the 25% with the largest (Lg) testis and the 25% with the smallest (Sm) testis in each treatment group. The number of Sertoli cells per testis reached a maximum by Day 56 in Sm testis but not until Day 112 in Lg testis boars, indicating a longer duration of Sertoli cell proliferation in Lg testis boars. Unilateral castration of Lg testis boars on Days 1, 10, 56, and 112 caused the weight of the remaining testis to hypertrophy by 149%, 135%, 119%, and 120%, respectively, and total sperm production to increase to 127%, 128%, 97%, and 106%, respectively. However, Sertoli cell numbers changed little in hemicastrate boars. In Lg testis boars, compensatory hypertrophy primarily involved proliferation of Leydig cells and expansion of existing Sertoli cells with little increase in Sertoli cell numbers, but in Sm testis boars, it involved expansion of existing Leydig and Sertoli cells without increase in cell numbers. These results indicate that Lg and Sm testis boars display intriguing differences during both development and compensatory hypertrophy, and they identify a unique animal model for further studies of factors that program and control Sertoli cell proliferation.  相似文献   

9.
The objective was to ascertain fibroblast growth factor-2 (FGF2), epidermal growth factor (EGF), and transforming growth factor-alpha (TGFalpha) mRNA expression and testis morphology during accelerated testicular growth after hemicastration in the neonatal boar. On Day 10 after birth (Day 0), boars were assigned to control (n = 28), no treatment; hemicastrated (n = 28), left testis removed. The right testis in both groups (n = 7) was removed on Days 5, 10, 15, and 20. Expression of mRNA for FGF2, EGF, and TGFalpha was determined by qRT-PCR using TaqMan. Testicular morphology was determined on Day 15. On Day 10, hemicastrated boars had a greater (P = 0.01) testis weight (6.2 +/- 0.8 g; mean +/- SEM) than controls (4.3 +/- 0.4 g) and on Day 15 testis weight in hemicastrated boars (8.8 +/- 0.8 g) was twice (P < 0.01) that of control boars (4.2 +/- 0.3 g). Seminiferous tubule volume was approximately doubled in hemicastrated boars (P < 0.01) and was associated with an increase (P < 0.01) in Sertoli cell number. Interstitial compartment volume was greater (P < 0.01) in hemicastrated boars. Leydig cell numbers were similar (P = 0.14) but volume was greater (P < 0.01) for hemicastrates. There were no differences (P > 0.05) between control and hemicastrated boars in TGFalpha or FGF2 expression on Day 5 or Day 10, and EGF was not detected. It was concluded that upregulation of TGFalpha or FGF2 expression is not a pre-requisite for enhanced testicular growth and increased Sertoli cell proliferation that occurs subsequent to hemicastration in the neonatal boar.  相似文献   

10.
To evaluate the effect of age and season on Sertoli cell number per paired testes, ratio of germ cells per Sertoli cell, and daily sperm production, testes were obtained from 184 adult (4-20 yr) stallions at slaughter throughout one year. Numbers of Sertoli cells or germ cells were derived from nuclear volume density, volume of individual nuclei, and parenchymal volume. Germ cell to Sertoli cell ratios were calculated from cell numbers. Regression analysis was used to detect age-related differences in the breeding season (May-Jul) or throughout the year. A two-way analysis of variance was used to evaluate time periods (Nov-Jan, Feb-Apr, May-Jul, and Aug-Oct) and age groups (4-5.5, 6-12.5, or 13-20 yr). Paired parenchymal weight and daily sperm production per horse increased significantly with age. Neither regression nor analysis of variance revealed an effect of age on Sertoli cell number. While season contributed (p less than 0.01) to variation in Sertoli cell number per horse, there was no (p greater than 0.05) age x season interaction or age effect on Sertoli cell number. In testes obtained from adult stallions, age had no effect on the number of Sertoli cells per horse, the ratio of maturation-phase spermatids to Sertoli cells, or the ratio of all stage VIII germ cells to Sertoli cells. Given no age effect within a given season on Sertoli cell number per horse, the number of Sertoli cells in the recrudesced testis of the breeding season probably is not significantly different for a given stallion between 4 and 20 yr of age.  相似文献   

11.
Thyroid hormone inhibits neonatal Sertoli cell proliferation and recent results have shown that thyroid hormone upregulates cyclin-dependent kinase inhibitors (CDKIs) p27Kip1 and p21Cip1 (also known as CDKN1B and CDKN1A, respectively) in neonatal Sertoli cells. This suggests that these CDKIs, which negatively regulate the cell cycle, could be critical in Sertoli cell proliferation. Consistent with this hypothesis, mice lacking p27Kip1 develop testicular organomegaly, but Sertoli cell numbers have not been determined. Likewise, effects of loss of p21Cip1 or both p27 and p21 on Sertoli cell number and testicular development were unknown. To determine if p27 and/or p21 regulate Sertoli cell proliferation, we measured Sertoli cell proliferation at Postnatal Day 16 and testis weight, Sertoli cell number, and daily sperm production (DSP) in 4-mo-old wild-type (WT), p21 knockout (p21KO), p27 knockout (p27KO), and p27/p21 double-knockout (DBKO) mice. Testis weights were increased 27%, 42%, and 86% in adult p21KO, p27KO, and DBKO mice, respectively, compared with WT. Sertoli cell number also was increased 48%, 126%, and 126% in p21KO, p27KO, and DBKO mice, respectively, versus WT. DSP in p21KO, p27KO, and DBKO testes also showed significant increases compared with WT mice. Although DSP was increased, there were increased spermatogenic defects observed in both p27KO and DBKO mice compared with WT. These data indicate that both p27 and p21 play an inhibitory role in regulating adult Sertoli cell number such that loss of either CDKI produces primary increases in Sertoli cell number and secondary increases in DSP and testis weight. Furthermore, loss of both CDKIs causes additive effects on DSP and testis weight, suggesting a central role for these CDKIs in testis development.  相似文献   

12.
This study provides quantitative information on the testes of seasonally breeding golden hamsters during active and regressed states of gonadal activity. Seminiferous tubules occupied 92.5% of testis volume in adult gonadally active animals. Leydig cells constituted 1.4% of the testicular volume. The mean volume of an individual Leydig cell was 1092 microns 3, and each testis contained about 25.4 million Leydig cells. The volume of an average Sertoli cell nucleus during stage VII-VIII of the cycle was 502 microns 3. A gram of hamster testis during the active state of gonadal activity contained 44.5 million Sertoli cells, and the entire testis contained approximately 73.8 million Sertoli cells. Testes of the hamsters exposed to short photoperiods for 12-13 wk displayed a 90% reduction in testis volume that was associated with a decrease in the volume of seminiferous tubules (90.8% reduction), tubular lumena (98.8%), interstitium (72.7%), Leydig cell compartment (79.3%), individual Leydig cells (69.7%), Leydig cell nuclei (50.0%), blood vessels (85.5%), macrophages (68.9%), and Sertoli cell nuclei (34.1%). The diameter (61.1%) and the length (36.8%) of the seminiferous tubules were also decreased. Although the number of Leydig cells per testis was significantly lower (p less than 0.02) after short-photoperiod exposure, the number of Sertoli cells per testis remained unchanged. The individual Sertoli cell in gonadally active hamsters accommodated, on the average, 2.27 pre-leptotene spermatocytes, 2.46 pachytene spermatocytes, and 8.17 round spermatids; the corresponding numbers in the regressed testes were 0.96, 0.20, and 0.04, respectively. The striking differences in the testicular structure between the active and regressed states of gonadal activity follow photoperiod-induced changes in endocrine function and suggest that the golden hamster may be used as a model to study structure-function relationships in the testis.  相似文献   

13.
Increased Sertoli cell proliferation during the neonatal period, transient negative effects on epididymal sperm maturation, larger postpuberal testis size reflective of increased Sertoli cell numbers, and increased testicular sperm production characterized boars subjected to continuous inhibition of endogenous estrogen production. The objective in the present experiment was to extend these previous observations to evaluate the effects of a shorter period of reduced estrogen production during the neonatal and juvenile periods on Sertoli cell proliferation, postpuberal testis size, sperm production and epididymal function. Experiments were designed to detect cumulative effects on accessory sex glands as well. Four pairs of littermate boars were assigned to the experiment with one member of each pair randomly selected to receive weekly oral treatment with the aromatase inhibitor, Letrozole, beginning at 1 week of age; the littermates received weekly oral treatment with the corn oil vehicle. Treatment stopped at 12 weeks of age and effects were examined at 10 months. Treated animals had approximately 25% larger testes (P<0.05) correlated with increased Sertoli cell numbers (P<0.05) and larger epididymides. Sperm quality was approximately equivalent in treated and control littermates. Accessory sex glands tended to be smaller in the treated boars. Sertoli cell proliferation during the neonatal and juvenile interval appears to be influenced by endogenous estrogen levels in the boar. A relatively short postnatal interval of Letrozole treatment effectively increased postpuberal testis size. Increased sperm production capacity in response to decreased endogenous estrogens has intriguing possibilities for animal agricultural production.  相似文献   

14.
Di(n-butyl) phthalate (DBP) is commonly used in personal care products and as a plasticizer to soften consumer plastic products. Male rats exposed to DBP in utero have malformations of the male reproductive tract and testicular atrophy characterized by degeneration of seminiferous epithelium and decreased sperm production. In the fetal testis, in utero exposure to DBP reportedly resulted in reduced testosterone levels, Leydig cell aggregates, and multinucleated gonocytes (MNG). We investigated whether exposure in utero to DBP affects rat fetal Sertoli cells and compromises interactions between Sertoli and germ cells in the developing testis. Histological examination showed that MNG occurred at low frequency in the normal fetal rat testis. Exposure in utero at the dose level of DBP above estimated environmental or occupational human exposure levels significantly increased the number of these abnormal germ cells. Postnatally, MNG exhibited aberrant mitoses and were detected at the basal lamina. MNG were not apoptotic in the fetal and postnatal rat testes, as indicated by TUNEL. Sertoli cells in DBP-exposed fetal testis had retracted apical processes, altered organization of the vimentin cytoskeleton, and abnormal cell-cell contacts with gonocytes. The effect of DBP on Sertoli cell morphology at the level of light microscopy was reversed after birth and cessation of exposure. Our data indicate that fetal Sertoli cells are targeted by exposure in utero to DBP and suggest that abnormal interactions between Sertoli and germ cells during fetal life play a role in the development of MNG.  相似文献   

15.
Today, many patients, who are often young, undergo total body irradiation (TBI) followed by bone marrow transplantation. This procedure can have serious consequences for fertility, but the long-term intratesticular effects of this treatment in primates have not yet been studied. Testes and epididymides of rhesus monkeys that received doses of 4-8.5 Gy of TBI at 2-4 yr of age were studied 3-8 yr after irradiation. In all irradiated monkeys, at least some seminiferous tubule cross-sections lacked germ cells, indicating extensive stem cell killing that was not completely repaired by enhanced stem cell renewal, even after many years. Testes totally devoid of germ cells were only found in monkeys receiving doses of 8 Gy or higher and in both monkeys that received two fractions of 6 Gy each. By correlating the percentage of repopulated tubules (repopulation index) with testicular weight, it could be deduced that considerable numbers of proliferating immature Sertoli cells were killed by the irradiation. Because of their finite period of proliferation, Sertoli cell numbers did not recover, and potential adult testis size decreased from approximately 23 to 13 g. Most testes showed some dilated seminiferous tubules, indicating obstructed flow of the tubular fluid at some time after irradiation. Also, in 8 of the 29 irradiated monkeys, aberrant, densely packed Sertoli cells were found. The irradiation did not induce stable chromosomal translocations in spermatogonial stem cells. No apparent changes were seen in the epididymides of the irradiated monkeys, and the size of the epididymis adjusted itself to the size of the testis. In the irradiated monkeys, testosterone and estradiol levels were normal, whereas FSH levels were higher and inhibin levels lower when testicular weight and spermatogenic repopulation were low. It is concluded that irradiation before adulthood has considerable long-term effects on the testis. Potential testis size is reduced, repopulation of the seminiferous epithelium is generally not complete, and aberrant Sertoli cells and dilated tubules are formed. The latter two phenomena may have further consequences at still longer intervals after irradiation.  相似文献   

16.
了解牛睾丸支持细胞体外培养的生物学特性,试验采用组合酶消化和选择贴壁法,将5月龄、6月龄牛胎儿及新生牛睾丸支持细胞分离纯化后进行体外培养。试验结果显示,这一阶段牛睾丸适宜支持细胞分离纯化用;采用0.25 %胰蛋白酶+0.02 %EDTA二次消化法是一种经济有效的牛胎儿睾丸支持细胞分离方案;试验发现,牛胎儿睾丸支持细胞体外研究时间应控制在3天~20天内,处于对数生长期的牛胎儿睾丸支持细胞,对牛体外受精卵体外发育有明显的促进作用。  相似文献   

17.
The extent of Sertoli cell proliferation during fetal and neonatal development determines the final adult testis size and potential for sperm output. To gain further knowledge of the factors that regulate Sertoli cell proliferation, the present study used a new approach to analyse changes in morphology and proliferation in the postnatal testis by combining organ culture with morphometric analysis. Fragments of rat testes from days 0 to 10 postpartum were cultured in contact with DMEM for 6 h or 72 h and fixed. The effects of ovine follicle-stimulating hormone (FSH) and activin were studied in an additional 72-h organ culture experiment using day 9 testes. Bromodeoxyuridine (BrdU) was added for the last 6 h of culture to mark proliferating cells. Two-microm sections of the fragments were analysed for morphological changes of the seminiferous cords, and the proportion of BrdU-labelled Sertoli and germ cells was determined. Assessment of 6-h samples revealed growth characteristics consistent with those observed in vivo during days 1-10 of postnatal development. From day 2 onwards, the volume fraction of seminiferous cords began to increase, while significant growth in cross-sectional area of the cords occurred only after day 6. In these culture conditions, germ cell proliferation and testicular architecture was consistent with that expected for the age of the tissue at time of explant. The proportion of dividing Sertoli cells declined from 15-20% at days 0-4 postpartum to below % at day 10 postpartum in the 6-h culture, and it was low or abolished in the 3-day culture at all time points. Activin and FSH together, but not singly, stimulated Sertoli cell proliferation in the 72-h culture. This paper presents a new approach to analysis of in vitro testis development. The combination of fragment culture and stereological analysis permits rigorous and detailed assessment of developmental changes in the postnatal testis.  相似文献   

18.
The primary purpose of this study was to establish whether Sertoli cells proliferate in the neonatal period in the marmoset monkey (Callithrix jacchus) and whether administration of a long-acting GnRH antagonist (GnRHa) during this phase induced any transient or permanent effects on Sertoli cell number or on any other aspect of testicular development. Male marmoset co-twins (n = 9) were treated during Weeks 1-14 with either vehicle or GnRHa. Four sets of co-twins were examined at Weeks 18-22 (start of infancy) and 5 sets in adulthood (92+ wk), and Sertoli cell number was determined using either the nucleator or optical disector methods; other testicular morphometric analyses (e.g., germ cell volume, Leydig cell volume) used standard point-counting. Data for the marmoset were compared with that obtained in similarly treated rats. Sertoli cell number in marmosets treated neonatally with GnRHa was reduced by 35% compared with that of controls at Weeks 18-22 but was comparable to control values in adulthood. However, seminiferous epithelium volume was reduced significantly in adult marmosets treated neonatally with GnRHa, and there was a tendency for reduced germ cell volume per Sertoli cell. In the same animals, there was significant expansion of the interstitium and an increase in Leydig cell volume per testis when compared with co-twin controls; a similar increase in Leydig cell volume was evident in adult rats treated neonatally with GnRHa. Comparison of Sertoli cell numbers in 6 infantile (18-24 wk) and 10 adult marmosets showed that adult numbers of Sertoli cells were present by the start of infancy but, unlike rats, marmosets were still able to replicate Sertoli cells beyond this period. However, marmoset Sertoli cells supported only approximately 20% of the germ cell volume supported by rat Sertoli cells, indicative of poor efficiency of spermatogenesis, as shown previously in the human. This finding, together with the demonstration of a temporal pattern of Sertoli cell replication similar to that in the human, supports the use of marmosets as a model for human male testicular development and function.  相似文献   

19.
Previous studies have shown that androgens have direct inhibitory effects on steroidogenesis in active Leydig cells. It is not clear what effect androgens have on inactive Leydig cell either through direct action on the cell itself or indirectly through stimulation of Sertoli cell activity. The hpg mouse has undetectable levels of circulating gonadotrophins and the gonads fail to develop post-natally. The effect of androgen treatment on testicular steroidogenesis and morphology was examined in these animals. Treatment with testosterone propionate for two weeks significantly increased testicular and seminal vesicle weight. Seminiferous tubules showed marked development in androgen-treated animals, indicating increased Sertoli cell activity, but the abnormal Leydig cell morphology of the hpg testis was unchanged. Androgen production per testis in vitro was low in control hpg animals and remained unaffected by treatment with androgen. Similarly, the pattern of [3H]pregnenolone metabolism was not significantly affected by androgen treatment. The androgen content of the testis was higher in androgen-treated animals but this could be accounted for by uptake of administered steroid from the circulation. It is concluded that androgens have no direct trophic effect on Leydig cells and that stimulation of Sertoli cell activity is not, in itself, sufficient to affect Leydig cell function.  相似文献   

20.
To determine the relationship between germ cell degeneration or germ cell:Sertoli cell ratio and daily sperm production, testes were obtained during the months of May to July (breeding season) and November to January (nonbreeding season) from adult (4 to 20-yr-old) stallions with either high (n = 15) or low (n = 15) sperm production. Serum was assayed for concentrations of LH, FSH and testosterone. Testes were assayed for testosterone content and for the number of elongated spermatids, after which parenchymal samples were prepared for histologic assessment. Using morphometric procedures, the types and numbers of spermatogonia, germ cells and Sertoli cells were determined. High sperm producing stallions had greater serum testosterone concentration, total intratesticular testosterone content, testicular parenchymal weight, seminiferous epithelial height, diameter of seminiferous tubules, numbers of A and B spermatogonia per testis, number of Sertoli cells per testis, and number of B spermatogonia, late primary spermatocytes, round spermatids and elongated spermatids per Sertoli cell than low sperm producing stallions (P < 0.05). The number of germ cells (total number of all spermatocytes and spermatids in Stage VIII tubules) accommodated by Sertoli cells was reduced in low sperm producing stallions (18.6 +/- 1.3 germ cells/Sertoli cell) compared with that of high sperm producing stallions (25.4 +/- 1.3 germ cells/Sertoli cell; P < 0.001). The conversion from (yield between) early to late primary spermatocytes and round to elongated spermatids was less efficient for the low sperm producing stallions (P < 0.05). Increased germ cell degeneration during early meiosis and spermiogenesis and reduced germ cell:Sertoli cell ratio was associated with low daily sperm production. These findings can be explained either by a compromised ability of the Sertoli cells to support germ cell division and/or maturation or the presence of defects in germ cells that predisposed them to degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号