首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
The present study was undertaken to document morphological changes in the testis of the seasonally breeding golden hamster, an animal model which has been studied extensively from an endocrine standpoint but for which morphological data is inadequate. Germ cells, Sertoli cells and Leydig cells were studied during active and regressed state of gonadal activity by exposing the animals to long (16L:8D) and short photoperiods (6L:18D), respectively. Testis of the hamster exposed to short photoperiods displayed more than a ten-fold reduction in weight and decreased seminiferous tubule diameter. The seminiferous tubules contained primarily Sertoli cell and spermatogonia but also occasional spermatocytes and round spermatids. Leydig cells were decreased in size, a change which appeared to be primarily due to a decrease in cytoplasmic volume. The Leydig cell endoplasmic reticulum which was atypically saccular displayed both rough and smooth components and was decreased during short photoperiods. Mitochondria generally appeared larger and showed considerable structural heterogeneity. Short photoperiod-induced changes in the Sertoli cells included a marked reduction in cell height and an apparent reduction in cell volume, absence of lateral processes, presence of small, almost spheroidal nuclei with inconspicuous nucleoli, an increase in the amount of lipid and decreases in the amount of smooth endoplasmic reticulum and glycogen. The striking differences in the testicular structure between the active and regressed state of gonadal activity follows photoperiod-induced changes in endocrine parameters and suggests that the hamster would be an ideal model to study structure-function relationships in the testis, and especially those related to the Sertoli cell.  相似文献   

2.
Myoid cells were examined quantitatively in adult golden hamsters with active spermatogenesis and compared with hamsters in which the testes were regressed due to a modification in the light-dark cycle. A detailed morphometric study was undertaken utilizing animals previously examined. The cell-surface area and volumes of most organelles were not significantly different in animals which were gonadally active as compared with regressed animals. A slight, but significant, increase in nuclear volume (31%) and a slight, but significant, decrease (28%) in cell volume were recorded for regressed animals. The total volume of pinocytotic vesicles was increased dramatically (approximately threefold) in active animals in comparison with inactive animals (P less than 0.01), indicating that an increase in non-specific transport across the myoid cell is associated with spermatogenic activity. Intravascularly injected horseradish peroxidase was capable of entering pinocytotic vesicles in both active and inactive animals. Plasma luteinizing hormone (LH) as well as plasma and testicular testosterone levels were weakly (r = 0.64, 0.68, and 0.65, respectively), but significantly (P less than 0.05), correlated with cell size. Plasma and testicular testosterone were correlated with the total volume of pinocytotic vesicles (r = 0.74 and 0.68, respectively). The data indicate that although the rat myoid cell possesses receptors for testosterone, there are few structural manifestations of the hamster myoid cell that correlate well with testosterone levels. Thus, the hamster myoid cell differs from two other hormone-responsive somatic cells in the testis, the Sertoli cell and the Leydig cell, that show dramatic structural alterations with changes in gonadal activity and striking correlations of structural features with functional measures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The present study was undertaken (1) to document structural and functional changes in the testes of seasonally breeding woodchuck during active and inactive states of spermatogenesis and (2) to evaluate the ability of exogenous gonadotropins to reinitiate spermatogenesis outside the breeding season. During seasonal gonadal inactivity, there were significant (P less than 0.05) reductions in volumes of several testicular features (testis, seminiferous tubules, tubular lumen, interstitial tissue, individual Leydig cells, Leydig cell nuclei, and Leydig cell cytoplasm) as compared with gonadally active animals. The diameter of the seminiferous tubules was decreased by 26%, and Leydig cell numbers also declined in the regressed testes. These changes were accompanied by a decline in testosterone (T) levels in both plasma and testis, and reduction in epithelial height of accessory reproductive organs. A hormonal regimen was developed that would reinitiate spermatogenesis in captive, sexually quiescent woodchucks. A combination of PMSG and hCG markedly stimulated testicular growth and function and restored spermatogenesis qualitatively. Quantitatively normal spermatogenesis was restored in 2 of 6 treated males. Morphometric analyses revealed substantial increases in seminiferous tubular diameter and in the volume of seminiferous tubules, tubular lumen, total Leydig cells, and individual Leydig cells in the hormone-treated animals. These increased values corresponded to 99, 75, 68, 51, and 200%, respectively, of the values measured in naturally active woodchucks. Leydig cell numbers, however, remained unchanged and approximated only 31% of the number found in naturally active testes. Hormonal stimulation also resulted in a significant rise in serum T as well as in the total content of testicular T, and a marked increase in epithelial height in various accessory reproductive glands. The most effective hormonal protocol for stimulating spermatogenesis was treatment with 12.5 IU of PMSG twice a week for 4 weeks followed by 12.5 IU of PMSG + 25 IU of hCG twice a week for 4 weeks.  相似文献   

4.
The number of Leydig cells was determined by stereologic procedures in adult Syrian hamsters housed in long days (14L:10D) to maintain testicular activity (active), in short days (5L:19D) for 12-13 wk to induce testicular regression (photoperiod-induced regressed), or in short days for a period of 21 wk or more to allow spontaneous gonadal recrudescence (spontaneously recrudesced). Testes were removed, sliced, fixed, embedded in Epon 812, and observed by bright-field microscopy. Testicular and seminal vesicle weights, plasma testosterone concentration, total Leydig cell volume per testis, and volume of single Leydig cell were greater (p less than 0.01) in active and recrudesced animals than in regressed animals. The density of Leydig cells was greater in the regressed testes, but the total number per testis was not influenced by photoperiod. In Experiment 2, the rate of recruitment of Leydig cells was determined in 5 adult hamsters exposed to long days (active) or 5 hamsters whose testes were regressed by exposure of animals to short days for 13 wk followed by long-day exposure to initiate testicular growth (photoperiod-induced recrudescing). Hamsters were injected for 3 days/wk for 3 wk with tritiated thymidine, 0.5 or 1 microCi/g body weight. Testes were fixed and tissues prepared, as above, and processed for autoradiography. Again, the photoperiod did not influence the number of Leydig cells per testis. Labeling of Leydig cell nuclei revealed that recruitment of new Leydig cells occurred at approximately 1.3% per day in recrudescing testes but also occurred at approximately 0.6% per day in active testes. Without change in the total number of Leydig cells, new Leydig cells were added continually to the existing population in adult hamsters with either recrudescing or active testes.  相似文献   

5.
Macroscopical and histological characteristics were examined in both testes from three healthy boars, three boars with unilateral abdominal cryptorchidism on the right side, and three boars with bilateral abdominal cryptorchidism. Abdominal cryptorchidism, unilateral and bilateral, provoked a significant decrease of the weight and volume of the ectopic testes. The scrotal testis of the unilateral cryptorchid boars showed an increase in its volume and weight. Cryptorchidism also induced abnormalities in the histological structure of seminiferous tubules, lamina propria, and interstitial tissue of the abdominal testes. The number of seminiferous tubules decreased; the seminiferous epithelium was constituted by few spermatogonia with an atypical pattern and by abnormal Sertoli cells. The lamina propria showed a variable degree of thickening and collagenization. The interstitial tissue was very developed but displayed a decrease in the Leydig cell population. These abnormalities were more critical in bilateral cryptorchidism than in unilateral cryptorchidism. The scrotal testis of the unilateral cryptorchid boars showed normal appearance, but a decrease of the number of seminiferous tubules was observed. Moreover, the seminiferous tubules showed impaired spermatid maturation. The alterations observed in the abdominal testes of the unilateral and bilateral cryptorchid boars were attributed to defective proliferation and differentiation of Sertoli cells and Leydig cells. The anomalies in the scrotal testis of the unilateral cryptorchid boars were due to disturbances in the Sertoli cell activity.  相似文献   

6.
We have reported [1,2] in immature golden hamster testis that 5 beta-reductase is localized in the seminiferous tubules, while 5a-reductase is present in the interstitial tissue and that the 17 beta-ol-dehydrogenase activity is found predominantly in the seminiferous tubules. In the present study, we show the intratubular localization of these enzymes. The left testis of golden hamster was irradiated with 2000R or 8000R of X-rays at 22 days of age. The hamsters were killed at 28 days of age. Homogenates of the left irradiated and right intact testes were incubated with [14C]-4-androstone-3,17-dione and NADPH, and enzyme activity was estimated. Both testes were also examined histologically. The X-irradiation of the testis resulted in an almost complete disappearance of germ cells with a significant decrease in testis weight, but the interstitial tissue and tubular nongerm cells including Sertoli cells remained almost unchanged. However, the activities of 5 beta-reductase and 17 beta-ol-dehydrogenase expressed as nmol formed/testis/h did not decrease at all. These results show that 5 beta-reductase is localized in the tubular nongerm cells including the Sertoli cells and 17 beta-ol-dehydrogenase is present in the tubular nongerm cells and interstitial tissue in immature golden hamster testis.  相似文献   

7.
Summary Leydig cells in testes of adult rats were selectively destroyed by a single intraperitoneal injection of ethane dimethane sulphonate. Four days later rats were made unilaterally cryptorchid and 1, 2 and 4 weeks later the histology of the testes was examined by light microscopy and morphometry. After induction of unilateral cryptorchidism, the volume of abdominal compared to scrotal testes was reduced by 45–60% due to rapid impairment of spermatogenesis in abdominal testes. Leydig cells were not present in either scrotal or abdominal testes in the 1-week unilateral crytorchid group. A new generation of foetal-type Leydig cells was observed in scrotal testes of the 2-week unilateral crytorchid group although their total volume per testis estimated by morphometry, was small, being approximately 1 l. In contrast, the abdominal testis exhibited a remarkable proliferation of foetal-type Leydig cells (total volume per testis, 16 l) which predominantly surrounded the peritubular tissues of the seminiferous tubules. A similar morphology and pattern of Leydig cell development was observed in scrotal and abdominal testes of the 4-week unilateral cryptorchid group where total Leydig cell volume was 7 l vs 21 l, respectively. The results show that regeneration of a new population of Leydig cells occurs more rapidly in the abdominal testis than in the scrotal testis of the same animal. These observations suggest the possibility that augmentation of Leydig cell growth is mediated by local intratesticular stimulatory factors within the abdominal testis. Development of new Leydig cells from the peritubular tissue provides circumstantial evidence that the seminiferous tubules and in particular the Sertoli cells, are a likely source of agents that stimulate the growth of Leydig cells.  相似文献   

8.
Although much research has focused on transferring exogenous genes into living mouse testis to investigate specific gene functions in spermatogenic, Sertoli, and Leydig cells, relatively little is known regarding real-time gene expression in vivo. In this study, we constructed a bicistronic lentiviral vector (LV) encoding firefly luciferase and enhanced green fluorescence protein (EGFP); this was a highly efficient in vivo gene transfer tool. After microinjecting LV into the seminiferous tubules the ICR mouse testis, we detected luciferase and EGFP expression in vivo and ex vivo in the injected tubules using bioluminescence imaging (BLI) with the IVIS-200 system and fibered confocal fluorescence microscopy (CellViZio), respectively. In addition, with an in vivo BLI system, luciferase expression in the testis was detected for ∼3 mo. Furthermore, EGFP expression in seminiferous tubules was confirmed in excised testes via three-dimensional fluorescent imaging with a confocal laser-scanning microscope. With immunostaining, EGFP expression was confirmed in several male germ cell types in the seminiferous tubules, as well as in Sertoli and Leydig cells. In conclusion, we demonstrated that real-time in vivo BLI analysis can be used to noninvasively (in vivo) monitor long-term luciferase expression in mouse testis, and we verified that EGFP expression is localized in seminiferous tubules after bicistronic LV-mediated gene transfer into mouse testes. Furthermore, we anticipate the future use of in vivo BLI technology for real-time study of specific genes involved in spermatogenesis.  相似文献   

9.
Some males of a mutant strain of King-Holtzman rats exhibit an anomalous heritable defect manifested as either unilateral or bilateral ectopic testes. In the adult, these testes contain seemingly immature Sertoli and Leydig cells, seminiferous tubules greatly reduced in diameter, and exhibit arrested spermatogenesis. Thus, the affected testis is essentially sterile. An inability to produce normal amounts of testosterone and androstenedione by these gonads is probably a reflection of changes that have been effected in their Leydig cells. Thus, this study suggests that abnormal function of the Leydig and Sertoli cells and seminiferous tubule failure in these mutant animals result from the physiologically cryptorchid condition.  相似文献   

10.
1,25(OH)2D3 receptors were studied in whole testes, Sertoli cells, seminiferous tubules, Leydig cells and spermatogonia of adult NMRI mice and SD rats. Specific reversible high affinity binding (KD 1.4 x 10(-10)M; Nmax 72 fmol/mg protein) by a 3.5 S macromolecule was demonstrated in whole testes, Sertoli cells and seminiferous tubules. With identical techniques, no receptors were found in Leydig cells despite previous reports of 1,25(OH)2D3 actions on Leydig cell function.  相似文献   

11.
Seminiferous tubule differentiation was related to the occurrence of germ cell neoplasia in 38 men, aged 17-47, treated surgically in childhood for cryptorchidism. Tissues from 46 testes obtained from biopsies taken as a neoplastic preventive procedure or whole testes removed because of GCT were evaluated quantitatively. Paraffin sections were treated with antibodies against placental like alkaline phosphatase (PLAP), a marker of germ cell neoplasia, and cytokeratin 18 (CK-18), a marker of immature Sertoli cells. Quality of spermatogenesis and number Leydig cells were assessed with a score count. Seminiferous tubules diameter, thickness of basal membrane and size of intertubular spaces were measured with image analysis software. In 17.4% of testes spermatogenesis was normal (9.9 points) (N) and neoplasia was not found there. In the other 38 specimens (83%) spermatogenesis was abnormal (A). When spermatogenesis was arrested or when germ cells were absent (3.7+/-1.8 points), neoplastic lesions were found in 13.1% of the specimens. In A group 5.1+/-7.1% of tubules contained immature Sertoli cells, while in N they were not found. Tubular diameter was significantly lower in A (161.5+/-31.8 microm) than in N (184.6+/-24.3 microm) and the percentage of seminiferous tubules with the thickening of tubular basal membrane was also greater in A. Intertubular spaces were significantly larger in A (49.9+/-18.6%) in comparison to N group (32.6+/-12.5%). Mean number of Leydig cells was similar in both groups. To conclude, in most of the formerly cryptorchid testes, despite surgical treatment, impaired seminiferous tubules differentiation is predominant. Germ cell neoplasia is present in testes with retarded seminiferous tubules differentiation. Retardation of seminiferous tubule differentiation consists of inhibited spermatogenesis, presence of tubules with immature Sertoli cells, decreased tubular diameter, increased thickness of basal membrane and enlarged intertubular spaces. Examination of testicular biopsy with respect to the state of seminiferous tubule differentiation may be helpful to predict the appearance of germ cell neoplasia in adult men with cryptorchidism in anamnesis. Orchiopexy of cryptorchid testes may not prevent the occurrence of features of testicular dysgenesis and the associated germ cell neoplasia.  相似文献   

12.
The objective of the present studies was to determine the localization of epidermal growth factor (EGF) and the epidermal growth factor receptor (EGFR) in testicular tissue collected from male alpacas at 12 and 24 months of age. In the testes of 12-month-old alpacas, positive staining for EGF was not detected. EGFR was localized to Leydig cells within the 12-month-old alpaca testis, but staining was absent within seminiferous tubules. At 24 months of age, EGF was localized to Leydig cells, peritubular myoid cells, Sertoli cells and germ cells of the alpaca testis, with a preferential adluminal compartment staining within the seminiferous tubules. EGFR was also localized to the Leydig cells, peritubular myoid cells, Sertoli cells and germ cells within the 24-month-old alpaca testis, but staining within the tubules was primarily within the basal compartment. Results indicate distinct temporal and spatial regulation of EGF and EGFR in the alpaca testis and support a potential role for EGF and its related ligands in alpaca testis development and spermatogenesis.  相似文献   

13.
Male rats were injected with 50 mg ethylene-1,2-dimethanesulphonate/kg from Day 5 to Day 16 after birth and control rats received injections of the same volume of vehicle. Testes were studied at various times from Day 6 to Day 108 using histochemistry, light and electron microscopy. Fine structural degenerative changes were observed in the Leydig cells and seminiferous tubules of EDS-treated animals as early as Day 6. By Day 11 no Leydig cells could be detected and the interstitia of EDS-treated testes contained large numbers of fibroblast-like cells which formed peritubular collars 3-5 cells thick; the tubules contained Sertoli cells with heterogeneous inclusions and large numbers of lipid droplets. A small number of Leydig cells was found at Day 14 and their numbers increased so that, in animals of 28 days and older, large clusters of Leydig cells were present between severely atrophic tubules. These tubules contained Sertoli cells with few organelles; germinal cells were not observed after 28 days in EDS-treated animals. These results show that EDS destroys the fetal population of Leydig cells postnatally and this mimics the well documented effect of EDS on adult Leydig cells. The seminiferous tubules were permanently damaged by EDS in the present experiments. Tubular damage could have been due to a direct cytotoxic effect of multiple injections of EDS on the tubule before the blood-testis barrier develops or due to withdrawal of androgen support secondary to Leydig cell destruction.  相似文献   

14.
The intermediate filament protein nestin is predominantly expressed in some stem/progenitor cells and appears to be a useful molecular tool to characterise tumours originating from precursor cells of neuroectodermal and mesenchymal lineages. Leydig cells originate in the adult testis by differentiation from stem cells and express a variety of neural and neuroendocrine markers. The possible expression of the neural stem cell marker nestin in Leydig cells and testicular tumour cells was determined by analysing the patterns of nestin expression in normal and pathological human testes by Western blot and immunohistochemical methods. In normal testis, nestin was found in some vascular endothelial cells, a subset of peritubular spindle-shaped cells and some Leydig cells; spermatogenic and Sertoli cells were unstained. In normal Leydig cells, nestin was distributed in the perinuclear cytoplasm and accumulated in the crystalloids of Reinke with ageing. In non-tumour pathologies (cryptorchidism, impaired spermatogenesis), the seminiferous tubules were immunonegative, whereas hyperplastic Leydig cells showed cytoplasmic immunolabelling. In testicular malignancies, nestin was localised in the Sertoli cells of the seminiferous tubules affected with intratubular germ cell neoplasia, in the hyperplastic Leydig cells associated with these tumours and in some components (mesenchymal and neuroepithelial cells) of teratomas; spermatocytic and non-spermatocytic seminomas were unstained. Some vascular endothelial cells were immunolabelled in all tumour samples. Thus, nestin is expressed in a population of normal and hyperplastic Leydig cells and in Sertoli cells in the presence of intratubular germ-cell neoplasia. Nestin may be a good marker for identifying components of testicular teratomas.The two first authors participated equally in this workThis work was supported by a grant from the Fondo de Investigaciones Sanitarias (FIS 02/3003 to M.V.T. Lobo)  相似文献   

15.
Using the mouse cryptorchid model, degenerations of germ cells were observed as well as a reduced size of seminiferous tubules, while the area of the interstitial tissue increased. Aromatase, the enzyme responsible for the conversion of androgens into oestrogens, was immunolocalized in Leydig cells and in germ cells from both scrotal and abdominal testes, and in Sertoli cells only in a control testis. In the cryptorchid testis, aromatase was strongly expressed in a few tubules, including those spermatids that were still present. Other cells inside the tubules were negative for aromatase. In both testes, oestrogen receptors alpha were expressed only in Leydig cells. Strong aromatase expression in germ cells indicates an additional source of oestrogens in the testis besides the interstitial tissue.  相似文献   

16.
《遗传学报》2023,50(2):99-107
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected more than 600 million people worldwide. Several organs including lung, intestine, and brain are infected by SARS-CoV-2. It has been reported that SARS-CoV-2 receptor angiotensin-converting enzyme-2 (ACE2) is expressed in human testis. However, whether testis is also affected by SARS-CoV-2 is still unclear. In this study, we generate a human ACE2 (hACE2) transgenic mouse model in which the expression of hACE2 gene is regulated by hACE2 promoter. Sertoli and Leydig cells from hACE2 transgenic mice can be infected by SARS-CoV-2 pseudovirus in vitro, and severe pathological changes are observed after injecting the SARS-CoV-2 pseudovirus into the seminiferous tubules. Further studies reveal that Sertoli and Leydig cells from hACE2 transgenic mice are also infected by authentic SARS-CoV-2 virus in vitro. After testis interstitium injection, authentic SARS-CoV-2 viruses are first disseminated to the interstitial cells, and then detected inside the seminiferous tubules which in turn cause germ cell loss and disruption of seminiferous tubules. Our study demonstrates that testis is most likely a target of SARS-CoV-2 virus. Attention should be paid to the reproductive function in SARS-CoV-2 patients.  相似文献   

17.
Although seminiferous tubule maturation in horses begins in the central area of the testis, this process is thought to occur randomly throughout the testis in most mammals. Studies in our laboratory revealed that the establishment of spermatogenesis may not be a synchronous event in the testicular parenchyma of pigs. The objectives of the present study were to evaluate the pattern of seminiferous cord/tubule maturation and the morphological and functional characteristics of testicular somatic cells during postnatal development in three regions of the pig testis: a) near the tunica albuginea (TA); b) in the transitional area between the seminiferous tubules and mediastinum (TR); and c) in the intermediate area (ID) between the TA and TR. Based on the diameter of seminiferous cords/tubules, nucleus size of Sertoli cells and fluid secretion, mainly at 90 and 120 d of age, seminiferous tubule maturation was more advanced in the ID and TR. The mitotic activity of Sertoli cells was higher (P < 0.05) in the TR than the ID and TA at 7 and 120 d. Except for the mitotic index of the Leydig cells, which was lower (P < 0.05) in the ID at 7, 30, and 180 d than in the TA and TR, other Leydig cell ebd points, e.g., individual cell size, nuclear volume, and cytoplasmic volume, were consistently higher (P < 0.05) in the ID, suggesting that steroidogenesis was more active in this region during the period investigated. Overall, we inferred that Leydig cells in the ID may play a pivotal role in postnatal testis development in pigs and this type of cell is likely related to asynchronous testicular parenchyma development, with the transitional area providing the primary zone for growth of seminiferous tubules.  相似文献   

18.
Dax1 is an orphan nuclear receptor expressed in both Leydig and Sertoli cells of the testis. Mutation of DAX1 in humans causes adrenal failure and hypogonadotropic hypogonadism. Targeted mutagenesis of Dax1 in mice reveals a primary gonadal defect characterized by overexpression of aromatase and cellular obstruction of the seminiferous tubules and efferent ductules, leading to germ cell death and infertility. Transgenic expression of DAX1 under the control of the müllerian-inhibiting substance promoter, which is selectively expressed in Sertoli cells, improves fertility but does not fully correct the histological abnormalities in the testes of Dax1 knockout (Dax1KO) mice. We therefore hypothesized that Dax1 may also play a crucial role in other somatic cells of the testis, namely the Leydig cells. A 2.1-kilobase fragment of the murine LH receptor 5'-promoter (LHR-DAX1) was used to generate transgenic mice that selectively express DAX1 in Leydig cells. Expression of the LHR-DAX1 transgene caused no observable phenotype in wild-type mice but improved fertility when expressed in Dax1KO males (rescue [RS]). Although testicular size was not increased in LHR-DAX1 RS animals, aromatase expression was restored to normal levels, and sperm production was increased. Testicular pathology was only slightly improved in RS mice compared to Dax1KO animals. Taken together with the result of previous studies of DAX1 expression in Sertoli cells, we conclude that the testis phenotype of Dax1KO mice reflects the combined effects of Dax1 deficiency in both Sertoli and Leydig cells.  相似文献   

19.
The wild boar is a natural inhabitant of Europe, Asia, and North Africa and is phylogenetically the ancestor of the domestic pig. Because of its phylogenetic and economic importance, this species is an interesting model for studying testis function in boars. Therefore, the present study was performed to investigate the testis structure, spermatogenic cycle length, and Sertoli cell (SC) and spermatogenic efficiencies in eight adult wild boars. Each spermatogenic cycle lasted 9.05 days, and the total duration of spermatogenesis was estimated as lasting approximately 41 days. The percentages of testis volume occupied by seminiferous tubules and by Leydig cells were 87% and 6%, respectively. The mean number of SCs per gram of testis was 42 million. The SC (round spermatids per SC) and spermatogenic (daily sperm production per gram of testis) efficiencies were 6.6 cells and 28.6 million, respectively. In general, the testis structure, overall germ cell associations at the different stages of the seminiferous epithelium cycle, and duration of spermatogenesis in the wild boar were similar to those in domestic pigs. Probably because of the small size of Leydig cells (400 microm3), their number per gram of testis (157 million) was the highest among investigated mammalian species. Although the SC efficiency in wild boars was low, their spermatogenic efficiency was comparable to that observed in domestic pigs, mainly because of the higher number of SCs per gram of testis in wild boars. These data suggest that SCs became more efficient during evolution, genetic selection, and domestication in pigs.  相似文献   

20.
There is very little information regarding the testis structure and function in domestic cats, mainly data related to the cycle of seminiferous epithelium and sperm production. The testis weight in cats investigated in the present study was 1.2 g. Compared with most mammalian species investigated, the value of 0.08% found for testes mass related to the body mass (gonadosomatic index) in cats is very low. The tunica albuginea volume density (%) in these animals was relatively high and comprised about 19% of the testis. Seminiferous tubule and Leydig cell volume density (%) in cats were approximately 90% and 6%, respectively. The mean tubular diameter was 220 microm, and 23 m of seminiferous tubule were found per testis and per gram of testis. The frequencies of the eight stages of the cycle, characterized according to the tubular morphology system, were as follows: stage 1, 24.9%; stage 2, 12.9%; stage 3, 7.7%; stage 4, 17.6%; stage 5, 7.2%; stage 6, 11.9%; stage 7, 6.8%; and stage 8, 11 %. The premeiotic and postmeiotic stage frequency was 46% and 37%, respectively. The duration of each cycle of seminiferous epithelium was 10.4 days and the total duration of spermatogenesis based on 4.5 cycles was 46.8 days. The number of round spermatids for each pachytene primary spermatocytes (meiotic index) was 2.8, meaning that significant cell loss (30%) occurred during the two meiotic divisions. The total number of germ cells and the number of round spermatids per each Sertoli cell nucleolus at stage 1 of the cycle were 9.8 and 5.1, respectively. The Leydig cell volume was approximately 2000 microm3 and the nucleus volume 260 microm3. Both Leydig and Sertoli cell numbers per gram of testis in cats were approximately 30 million. The daily sperm production per gram of testis in cats (efficiency of spermatogenesis) was approximately 16 million. To our knowledge, this is the first investigation to perform a more detailed and comprehensive study of the testis structure and function in domestic cats. Also, this is the first report in the literature showing Sertoli and Leydig cell number per gram of testis and the daily sperm production in any kind of feline species. In this regard, besides providing a background for comparative studies with other fields, the data obtained in the present work might be useful in future studies in which the domestic cat could be utilized as an appropriate receptor model for preservation of genetic stock from rare or endangered wild felines using the germ cell transplantation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号