首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 121 毫秒
1.
黑曲霉产纤维素酶的研究   总被引:16,自引:0,他引:16  
从土壤中筛选获得一株产纤维素酶的优良菌株黑曲霉Asp.n-21,采用固体培养产生纤维素酶,产酶活力FPA137U/g干曲、GMCase320~388U/g干曲、β-葡萄糖苷酶84~149U/g干曲,对培养基成份进行优化,并分析其酶系组成,该菌所产酶可作为饲料用酶。  相似文献   

2.
里氏木霉液体发酵产纤维素酶的研究   总被引:11,自引:0,他引:11  
在摇瓶试验基础上,采用里氏木霉(Trichoderma reesei)HC-415菌株进行5L自控罐产纤维素酶深层发酵试验。在通气量为 0.2—0.6vvm、搅拌速度为 400r/min、发酵液pH控制在5.8—6.1的条件下,发酵液的羧甲基纤维素(CMC)酶酶活最高为325.0mg糖/ml,滤纸糖酶(FPA)酶活最高达17.9mg糖/ml。发酵周期为108h。所得冻干纤维素酶粉CMC酶活最高3111IU/g,FPA最高135IU/g ,对发酵液得率平均6.7g/L。酶活总收率CMC酶活平均78.2%,FPA酶活平均73.5%。  相似文献   

3.
秸秆纤维素分解菌的酶活力测定   总被引:8,自引:0,他引:8  
目的:测定秸秆纤维素分解菌的酶活力。方法:从土壤中分离出具有分解纤维素能力的菌株,采用刚果红染色法进行粗选,得到7株透明圈较大的菌株。将这7株菌株液体发酵培养6d,再分别用滤纸分解度观察、羧甲基纤维素酶活法(CMC)、滤纸酶活法(FPA)和天然纤维素酶活法测定其酶活力。结果:在7株菌株中,F-1、F-2、F-3、F-5的酶活力测定结果与其溶解圈的测定结果、滤纸分解结果基本相同。且天然纤维素酶活力高的菌株,其CMC酶活、FPA酶活也高,滤纸分解效果也比较明显。结论:CMC法、FPA法和天然纤维素酶活法适于测定秸秆纤维素分解菌的酶活力。  相似文献   

4.
两株高产纤维素酶细菌的筛选、鉴定及酶学特性   总被引:6,自引:0,他引:6  
从腐烂枯叶及附近土壤筛选分离得到2株产纤维素酶的菌株。经细菌形态观察、生理生化实验并结合16S rRNA序列分析,将其初步鉴定为地衣芽孢杆菌CT1(Bacillus licheniformis CT1)和枯草芽孢杆菌CM2(Bacillus subtilis CM2)。经摇瓶发酵,测定其CMCase、FPA酶活力,结果表明CT1和CM2在液体摇瓶培养4 d后的CMC酶活最大,分别可达163.3 U/mL和167.17 U/mL;CT1摇瓶培养2 d后,FPA酶活达到了211.17 U/mL,CM2摇瓶培养3 d后,FPA酶活为207.83 U/mL。进行不同碳源对菌株产酶能力影响的试验,并通过SDS-聚丙烯酰胺凝胶电泳、银染后初步分析纤维素酶谱条带,发现菌株对不同来源纤维素的降解能力及产纤维素酶的种类均有所不同。  相似文献   

5.
本研究以褐色高温单孢菌(Thermomonospora fusca)为出发菌株,通过紫外线和60Co-γ射线联合诱变,获得了一株纤维素酶高产菌株AV8,CMC酶活力达到0.679 IU/mL,与出发菌株相比,其产酶能力提高3.53倍。通过对AV8产纤维素酶的培养条件进行测定,结果显示:产纤维素酶最适应温度为55℃;该菌的最适产CMC酶初始PH值为7.0,最适产FPA酶初始PH值为8.0;当培养到第7天时,产CMC酶达到高峰。当培养到第8天时产FPA酶达到高峰。  相似文献   

6.
以斜卧青霉(Penieillium decumbens)A10为出发菌株,经450Gy ^60Coγ-射线诱变处理,选育出一株具有较高纤维素酶活力且传代稳定的正突变株A50,发酵60h后,其CMC酶活和滤纸酶活分别为27.28IU/mL和1.98IU/mL,较出发菌株A10分别提高了33.2%和45.59%。对突变株A50的产酶组分进行研究,通过SDS—PAGE电泳分析,从蛋白质水平上证明突变株A50确实是A10在遗传物质上发生改变的菌株,其CMC酶活最适作用pH值为4.0,最适作用温度为60℃;而滤纸酶活的最适作用pH值为5.2,最适作用温度45℃,二者在一定范围内具有较高的稳定性。  相似文献   

7.
产纤维素酶菌种TP1202的选育及产酶条件研究   总被引:6,自引:0,他引:6  
从腐木上分离到1株纤维素酶活较高的野生纤维素酶产生菌TP01,经鉴定为绿色木霉(Trichoderma viride)。以TP01为出发菌株,经紫外线、亚硝基胍、硫酸二乙酯和LiCl等物理化学诱变处理,最后得到1株高产突变株TP1202。通过对培养基中氮源、碳源、培养温度、培养时间、培养基的含水量、培养基的起始pH、培养基中葡萄糖含量的研究,测定Trichoderma viride TP1202纤维素酶的CMC和滤纸酶活,找到了产纤维素酶的较佳条件,即,稻草粉:麦麸=4:1,物料:水份=1:0.75-1,以(NH4)2SO4或NH4Cl为氮源,葡萄糖含量为1%-2%,起始pH为7.5,在30℃下培养96-120h左右,其酶活力为最高,每克干曲CMC酶和滤纸酶活分别达到28900U、604U,是出发菌株的3倍和6倍。  相似文献   

8.
一株产纤维素酶细菌的筛选鉴定   总被引:3,自引:1,他引:2  
目的:从青贮饲料中分离筛选产纤维素酶的细菌。方法:用刚果红染色法和羧甲基纤维素酶活力测定法对分离所得的细菌进行筛选。结果:筛选到1株产纤维素酶能力较强的菌株,编号为ws-6。对该菌进行形态观察、生理生化鉴定和16S rDNA序列测定,鉴定为地衣芽孢杆菌(Bacillus licheniformis)。结论:该菌最适生长pH 5.0—7.0,最适生长温度35℃,产CMC酶活力达2.55U/mL。  相似文献   

9.
利用柑橘皮固体发酵生产复合酶菌株的选育   总被引:3,自引:0,他引:3  
本试验对14个菌株以柑橘皮为主要原料固体发酵生产复合酶的生产性能进行了比较, 发现宇佐美曲霉Aspergillus usaanii具有较好的复合酶产率,为进一步提高该菌株的产酶能力, 我们利用γ-射线辐射对其进行了诱变育种,选育得到一株纤维素酶活提高26%、酸性蛋白酶提高28%、木聚糖酶提高24.5%的突变菌株AU—C33。采用正交试验方法对该菌株的基础培养基进行了优化,结果表明豆粕和尿素含量对各酶活具有极显著影响。以柑橘粉计,当添加23% 豆粕、8%麸皮、3%尿素,水分含量在60%,28℃培养60h后,CMCase、FPA、β-葡萄糖苷酶、酸性蛋白酶和木聚糖酶分别达到了20.8U/g、7.25U/g、74.7U/g、7248.4U/g和3222.6U/g。  相似文献   

10.
绿色木霉ZY-1固态发酵产纤维素酶   总被引:1,自引:0,他引:1  
利用筛选的绿色木霉ZY-1(Trichoderma viride ZY-1)固态发酵产纤维素酶,采用稻草和麸皮为底物,考察稻草与麸皮比例随发酵时间对产酶的影响。结果表明:底物中,在m(稻草):m(麸皮)为0:5和1:4时,发酵48h,pH保持4.5左右,还原糖量急剧上升,胞外蛋白产量最低;仅以稻草作底物时,整个发酵过程中pH约为7,还原糖量最低,胞外蛋白产量较高而滤纸酶活、羧甲基纤维素酶(CMCase)和β-葡萄糖苷酶(β-Gase)酶活均较低;在m(稻草):m(麸皮)为3:2时,发酵96h,滤纸酶活达最大值5.01U/g干曲;m(稻草):m(麸皮)为1:4时,发酵96h,β-Gase酶活达最大值4.6U/g干曲;m(稻草):m(麸皮)为4:1时,发酵72h,CMCase酶活达最大值6.01U/g干曲。因此,底物中存在适量的稻草和麸皮有利于Trichoderma viride ZY—1产纤维素酶。  相似文献   

11.
Trichoderma species A-001 was grown on various carbon and nitrogen sources supplemented with surfactants on shake cultures. Although the degree of growth was variable, the organism grew on all carbon substrates. Large amounts of the cellulase enzyme components were released into the growth medium during growth on filter paper. In the filter paper containing medium, the organism produced 167 U/ml of carboxymethylcellulase (CMCase), 18 U/ml of filter paper activity (FPase) and 49 U/ml of beta-glucosidase activity (BGDase). Wheat straw and grass were better carbon sources than cotton or barley husks. Nitrogen in the form of KNO3 was better than NH4Cl or urea in facilitating the production of cellulase. Of the surfactants used, Tween-80 at 0.2% concentration in the medium increased the production of cellulase several-fold. All the cellulase components were optimally active in the assay at pH 5.5 and 60°C. CMCase and FPase lost 20–33% of their activities when kept at 60°C for 4 h before assaying. On the other hand, BGDase was moderately stable; it lost only 37% of its activity when maintained at 70°C for 4 h.  相似文献   

12.
The high cost of cellulases remains the most significant barrier to the economical production of bio-ethanol from lignocellulosic biomass. The goal of this study was to optimize cellulases and xylanase production by a local indigenous fungus strain (Aspergillus niger DWA8) using agricultural waste (oil palm frond [OPF]) as substrate. The enzyme production profile before optimization indicated that the highest carboxymethyl cellulose (CMCase), filter paper (FPase), and xylanase activities of 1.06 U/g, 2.55 U/g, and 2.93 U/g were obtained on day 5, day 4, and day 5 of fermentation, respectively. Response surface methodology was used to study the effects of several key process parameters in order to optimize cellulase production. Of the five physical and two chemical factors tested, only moisture content of 75% (w/w) and substrate amount of 2.5 g had statistically significant effect on enzymes production. Under optimized conditions of 2.5 g of substrate, 75% (w/w) moisture content, initial medium of pH 4.5, 1 × 106 spores/mL of inoculum, and incubation at ambient temperature (±30°C) without additional carbon and nitrogen, the highest CMCase, FPase, and xylanase activities obtained were 2.38 U/g, 2.47 U/g, and 5.23 U/g, respectively. Thus, the optimization process increased CMCase and xylanase production by 124.5 and 78.5%, respectively. Moreover, A. niger DWA8 produced reasonably good cellulase and xylanase titers using OPF as the substrate when compared with previous researcher finding. The enzymes produced by this process could be further use to hydrolyze biomass to generate reducing sugars, which are the feedstock for bioethanol production.  相似文献   

13.
Cellulase production using residues as substrate has been well described, as it is an interesting method of reducing the costs of processes, one of the main bottlenecks for the production of enzymes. This research describes for the first time the use of raw domestic wastewater, which is largely and continuously generated, as a culture base medium for cellulase production. The strain Trichoderma harzianum HBA03 was selected according to the highest activity produced for FPase (5.4 U/mL) and CMCase (8.2 U/mL). Peptone was selected as a nitrogen source and microcrystalline cellulose as the inducer for cellulase production, resulting in FPase activities of 5.6 and 5.0 U/mL and CMCase activities of 12.0 and 14.4 U/mL. The use of domestic wastewater as the culture medium led to an increase of 1.41 and 1.14 fold of FPase and CMCase production, respectively, compared to the synthetic medium. Production was also carried out in a bubble column reactor in which the maximum productivities achieved 10.2 U/L.h (FPase) and 64.6 U/L.h (CMCase). The presented results demonstrate the feasibility of the use of domestic wastewater for cellulases production, thereby contributing to the development of a sustainable process for reusing wastewater with a significant reduction in environmental impact.  相似文献   

14.
The abundance of oil palm decanter cake (OPDC) is a problem in oil palm mills. However, this lignocellulosic biomass can be utilized for cellulase and polyoses production. The effectiveness of chemical and physical pretreatment in reducing the lignin content was studied by saccharification using a Celluclast 1.5 L and scanning electron microscope. Physicochemical pretreatment of OPDC with 1% (w/v) NaOH and autoclaving at 121°C for 20 min increased potential polyoses produced to 52.5% and removed 28.7% of the lignin content. The optimized conditions for cellulase production by a locally isolated fungus were a time of 120 h, a substrate of untreated OPDC, a spore concentration of 1 × 107 spore/mL, a temperature of 30°C, and a pH between 7.0 and 7.5. Trichoderma asperellum UPM1 produced carboxymethylcellulase (CMCase), ??-glucosidase and filter paper activity (FPase) in the following concentrations: 17.35, 0.53, and 0.28 U/mL, respectively. Aspergillus fumigatus UPM2 produced the CMCase, ??-glucosidase and FPase in the following amounts: 10.93, 0.76, and 0.24 U/mL. The cellulases from T. asperellum UPM1 produced 2.33 g/L of polyoses and the cellulases from A. fumigatus UPM2 produced 4.37 g/L of polyoses.  相似文献   

15.
Maximum cellulase production was sought by comparing the activities of the cellulases produced by differentTrichoderma reesei strains andAspergillus niger. Trichoderma reesei Rut-C30 showed higher cellulase activity than otherTrichoderma reesei strains andAspergillus niger that was isolated from soil. By optimizing the cultivation condition during shake flask culture, higher cellulase production could be achieved. The FP (filter paper) activity of 3.7 U/ml and CMCase (Carboxymethylcellulase) activity of 60 U/ml were obtained from shake flask culture. When it was grown in 2.5L fermentor, where pH and DO levels are controlled, the Enzyme activities were 133.35 U/ml (CMCase) and 11.67 U./ml (FP), respectively. Ammonium sulfate precipitation method was used to recover enzymes from fermentation broth. The dried cellulase powder showed 3074.9 U/g of CMCase activity and 166.7 U/g of FP activity with 83.5% CMCase recovery.  相似文献   

16.
Sugarcane bagasse (SCB), a lignocellulosic byproduct of juice extraction from sugarcane, is rich in cellulose (40-42%). This could be used as a substrate for the production of cellulase complex. Fermentation conditions were optimized for production of cellulase complex (CMCase, Cellulobiase and FPase) by wild type Trichoderma sp. using sugarcane bagasse as sole carbon source. Alkaline treatment (2% NaOH) of bagasse (AlSCB) was found suitable for the production of reducing sugar over the acidic pretreatment method. After 5 days of incubation period, 5% substrate concentration at pH 5.0 and 400C resulted in maximum production of CMCase (0.622 U), while maximum (3.388 U) production of cellulobiase was obtained at 300C. The CMCase was precipitated and purified to the extent of 59.06 fold by affinity chromatography with 49.09% recovery. On 12% SDS-PAGE, a single band corresponding to 33 kDa was observed. The Km and Vmax for CMCase from Trichoderma was found 507.04 mg/ml and 65.32 mM/min, respectively. The enzyme exhibited maximum activity at 300C at pH-5.0 (0.363 U) and was stable over range of 20-60°C and pH 5.0-7.5.  相似文献   

17.
A lignocellulosic decomposing fungus Z5 was isolated and identified as Aspergillus fumigatus, its capacity to produce cellulase was assessed under solid-state fermentation (SSF) using lignocellulosic materials as substrates. Cultivation conditions of A. fumigatus Z5 for cellulase production were optimized, results showed that for carboxymethyl cellulase (CMCase) and filter paper enzyme (FPase), the best condition was 50 °C, 80% initial moisture, initial pH 4.0 and 7% initial inoculum, the average activity of CMCase activity, FPase activity reached 526.3 and 144.6 U g−1 dry weight (dw) respectively, much higher than most of previous reports of this genus. Optimal temperature and pH for the CMCase activity of the crude enzyme were found to be 50 °C and 5.0, respectively. Zymogram analysis showed that eight kinds of CMCase were secreted by A. fumigatus Z5 when cellulose-containing materials were supplied in the culture. The crude enzyme secreted by the strain was further applied to hydrolyze pretreated corn stover and the enzymatic hydrolysate was used as substrate for ethanol production by Saccharomyces cerevisiae. The yield of bio-ethanol was 0.112 g g−1 dry substrate (gDS), suggesting that it is a promising fungus in the bio-ethanol production process.  相似文献   

18.
以蔗渣为原料,采用碱和微波辐射联合处理后用于里氏木霉纤维素酶的液态发酵。采用单因素试验与正交试验确定了最佳的处理条件为:0.30 mol/L的NaOH溶液浸泡,微波功率160 W,处理5 min。在此条件下得到的单位能耗的酶活净增值最高。后续发酵结束后,酶活较未经处理的蔗渣发酵后所得酶活有显著提高。其中,β-葡萄糖苷酶活、滤纸酶(FPase)活、羧甲基纤维素酶(CMCase)活分别提高了81.3%,88.2%,154.5%。  相似文献   

19.
Ethanol was produced by simultaneous saccharification and fermentation (SSF) from beech wood chips after bioorganosolve pretreatments by ethanolysis and white rot fungi, Ceriporiopsis subvermispora, Dichomitus squalens, Pleurotus ostreatus, and Coriolus versicolor. Beech wood chips were pretreated with the white rot fungi for 2-8 weeks without addition of any nutrients. The wood chips were then subjected to ethanolysis to separate them into pulp and soluble fractions (SFs). From the pulp fraction (PF), ethanol was produced by SSF using Saccharomyces cerevisiae AM12 and a commercial cellulase preparation, Meicelase, from Trichoderma viride. Among the four strains, C. subvermispora gave the highest yield on SSF. The yield of ethanol obtained after pretreatment with C. subvermispora for 8 weeks was 0.294 g g(-1) of ethanolysis pulp (74% of theoretical) and 0.176 g g(-1) of beech wood chips (62% of theoretical). The yield was 1.6 times higher than that obtained without the fungal treatments. The biological pretreatments saved 15% of the electricity needed for the ethanolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号