首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strain of Trichoderma reesei Rut C-30 was subjected to mutation after treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NG) for 6 h followed by UV irradiation for 15 min. Successive mutants showed enhanced cellulase production, clear hydrolysis zone and rapid growth on Avicel-containing plate. Particularly, the mutant NU-6 showed approximately two-fold increases in activity of both FPA and CMCase in shake flask culture when grown on basal medium containing peptone (1%) and wheat bran (1%). The enzyme production was further optimized using eight different media. When a mixture of lactose and yeast cream was used as cellulase inducer, the mutant NU-6 yielded the highest enzyme and cell production with a FPase activity of 6.2 U ml−1, a CMCase activity of 54.2 U ml−1, a β-glucosidase activity of 0.39 U ml−1, and a fungal biomass of 12.6 mg ml−1. It deserved noting that the mutant NU-6 also secreted large amounts of xylanases (291.3 U ml−1). These results suggested that NU-6 should be an attractive producer for both cellulose and xylanase production.  相似文献   

2.
Eighteen strains of xylariaceous fungi have been screened for higher activities of cellulolytic enzymes,Trichoderma reesei QM 9414 was also examined for comparison. Strains ofXylaria anisopleura andX. regalis had higher endocellulase (CMCase) and exocellulase (Avicelase) activities after 2 weeks' incubation.Hypoxylon stygium produced the highest activity of -glucosidase 3 days after inoculation. The optimum pH for these cellulolytic enzymes was approx. 5.0 and the optimum temperatures ranged from 37 to 50°C. A mixed culture process usingT. reesei QM 9414 andH. stygium was developed to obtain enhanced synthesis of cellulase. -Glucosidase activities in the mixed culture increased within 48h whenH. stygium was introduced after 24h.  相似文献   

3.
Fusarium lini, F. lycopersici, F. pallidoroseum and F. semitectum grown in shake flasks produced, respectively, 0.19, 0.33, 0.13 and 0.09 units filter-paper cellulase/ml. Trichoderma reesei, in comparison, produced 0.8 U/ml.The authors are with Defence Food Research Laboratory, Mysore-570 011, India.  相似文献   

4.
The development of agar plate screening techniques has allowed the isolation of mutants of Trichoderma reesei capable of synthesizing cellulase under the conditions of a high concentration of glucose. Mutants resistant to catabolite repression by glycerol or glucose were isolated on Walseth’s cellulose (WC) agar plates containing 5% glycerol or 5% glucose, respectively. Mutants resistant to catabolite repression by glycerol were not derepressed enough for the production of cellulase on WC agar plates containing 5% glucose or in flask cultures with a mixture of 1% Avicel and 3% glucose. On the contrary, two mutant strains resistant to catabolite repression by glucose (KDD-10 and DGD-16) produced large clearing zones on WC agar plates containing 5% glucose. Both strains could begin to produce CMCase even in the presence of residual glucose and finally produced 1.5 times the CMCase activity, in flask cultures on 1% Avicel and 3% glucose, than that with 1% Avicel alone. These results suggest that KDD-10 and DGD-16 are comparatively derepressed by glucose for cellulase production.  相似文献   

5.
Summary Most of the mutants of Trichoderma reesei had good cellulase productivity on Avicel but this was low on alkali-treated bagasse, which could be a most promising cellulosic biomass to use as an inexpensive carbon source for cellulase production. Two T. reesei mutants, PC-3-7 and X-31, in which strong cellulase activity is inducible by l-sorbose, were, however, found to produce cellulase on alkali-treated bagasse. They produced about 100 units of CMCase per ml in 5-1 jar fermentor culture with 4% alkali-treated bagasse as carbon source. They also showed higher cellulase productivity than other mutants on other easily saccharified substrates, such as alkali-treated rice straw and Walseth's cellulose.Production of Ethanol from Biomasses Part IV.Production of Ethanol from Biomasses Part IV.  相似文献   

6.
Trichoderma species A-001 was grown on various carbon and nitrogen sources supplemented with surfactants on shake cultures. Although the degree of growth was variable, the organism grew on all carbon substrates. Large amounts of the cellulase enzyme components were released into the growth medium during growth on filter paper. In the filter paper containing medium, the organism produced 167 U/ml of carboxymethylcellulase (CMCase), 18 U/ml of filter paper activity (FPase) and 49 U/ml of beta-glucosidase activity (BGDase). Wheat straw and grass were better carbon sources than cotton or barley husks. Nitrogen in the form of KNO3 was better than NH4Cl or urea in facilitating the production of cellulase. Of the surfactants used, Tween-80 at 0.2% concentration in the medium increased the production of cellulase several-fold. All the cellulase components were optimally active in the assay at pH 5.5 and 60°C. CMCase and FPase lost 20–33% of their activities when kept at 60°C for 4 h before assaying. On the other hand, BGDase was moderately stable; it lost only 37% of its activity when maintained at 70°C for 4 h.  相似文献   

7.
Summary The cellulolytic fungusTrichoderma reesei QM9414 can be cultivated on spent brewery grains for the production of cellulases. The levels of the cellulase components endoglucanase and exoglucanase synthesized, and the complexes filter paper cellulase and grain-hydrolyzing cellulase synthesized by the organism on spent grains were as high as 287, 182, 187, and 449 units per g available cellulose, respectively. Scaling up the spent grains fermentation system by up to 40-fold (200g dry substrate/tray) demonstrated that cellulase production was comparable to laboratory scale (5g dry substrate/flask) yields. Cultivation of the fungus was feasible on spent grains without pretreatment or further adjustment, although the enzyme yield was somewhat lower than that on dried grains moistened with water orTrichoderma medium. This suggested the possible reutilization of spent grains, with minimal pretreatment, in the cultivation ofT.reesei QM9414 for cellulase synthesis and for future incorporation into animal feed.  相似文献   

8.
Sugar cane bagasse was subjected to a mixed culture, solid substrate fermentation with Trichoderma reesei QM9414 and Aspergillus terreus SUK-1 to produce cellulase and reducing sugars. The highest cellulase activity and reducing sugar amount were obtained in mixed culture. The percentage of substrate degradation achieved employing mixed culture was 26% compared to 50% using separate cultures of the two molds. This suggests that the synergism of enzymes in mixed culture solid substrate fermentation have lower synergism than in pure culture.  相似文献   

9.
Abstract

The biotransformation of lignocellulosic materials into biofuels and chemicals requires the simultaneous action of multiple enzymes. Since the cost of producing an efficient enzyme system maybe high, mixed cultures of microorganisms maybe an alternative to increase enzymatic production and consequently reduce costs. This study investigated the effects of different inoculum ratios and inoculation delays on the biosynthesis of cellulases and xylanases during co-cultivation of Aspergillus niger and Trichoderma reesei under solid-state fermentation (SSF). While the monoculture of T. reesei was more efficient for CMCase production than the co-cultivation of A. niger and T. reesei, a significant increase in β-glucosidase and xylanase production was achieved by co-cultivation of both species. The maximum CMCase activity of 153.91 IU/g was obtained with T. reesei after 48 h of cultivation, while the highest β-glucosidase activity of 119.71 IU/g (after 120 h) was obtained by co-cultivation of A. niger and T. reesei with a 3:1 inoculum ratio (A. niger: T. reesei). The greatest xylanase activity observed was 589.39 IU/g after 72 h of mixed culturing of A. niger and T. Reesei with a 1:1 inoculum ratio. This is the first study where the effects of inoculum ratio and inoculation delay in mixed culture of T. reesei and A. niger under SSF have been systematically assessed, and it indicates co-cultivation as a feasible alternative to increase enzymatic production.  相似文献   

10.
Liu HQ  Feng Y  Zhao DQ  Jiang JX 《Biodegradation》2012,23(3):465-472
Four fungal strains—Trichoderma viride, Aspergillus niger, Trichoderma koningii, and Trichoderma reesei—were selected for cellulase production using furfural residues and microcrystalline cellulose (MCC) as the substrates. The filter paper activity (FPA) of the supernatant from each fungus was measured, and the performance of the enzymes from different fungal strains was compared. Moreover, the individual activities of the three components of the cellulase system, i.e., β-glucosidase, endoglucanase, and exoglucanase were evaluated. T. koningii showed the highest activity (27.81 FPU/ml) on furfural residues, while T. viride showed an activity of 21.61 FPU/ml on MCC. The FPA of the crude enzyme supernatant from T. koningii was 30% higher on furfural residues than on MCC. T. koningii and T. viride exhibited high stability and productivity and were chosen for cellulases production. The crystallinity index (CrI) of the furfural residues varied after digested by the fungi. The results indicated differences in the functioning of the cellulase system from each fungus. In the case of T. koningii, T. reesei and T. viride, furfural residues supported a better environment for cellulase production than MCC. Moreover, the CrI of the furfural residues decreased, indicating that this material was largely digested by the fungi. Thus, our results suggest that it may be possible to use the cellulases produced from these fungi for the simultaneous saccharification and fermentation of lignocellulosic materials in ethanol production.  相似文献   

11.
A cellulase system possessing high hydrolytic and -glucosidase activity was obtained by co-culturingTrichoderma reesei andAspergillus niger by a new approach using semi-solid fermentation of lignocellulosic materials. Various types of pretreatments were used for making the cellulose easily accessible to enzymatic attack. The optimal water content for maximum activity of the mixed fermentation was investigated. A more concentrated enzyme preparation could be obtained by semi-solid state fermentation than by conventional submerged fermentation.  相似文献   

12.
Summary Cellulase production in Trichoderma reesei mutants was induced by l-sorbose, known to be an inhibitor of -1,3-glucan synthesis. In the experiments the washed mycelia were used as resting cells. For CMCase induction over 24 h using T. reesei PC-3-7, the most effective pH, temperature and l-sorbose concentration were 2.8, 28° C and 0.3 mg/ml, respectively. Comparison with other cellulase inducers showed that the inductive level of CMCase by l-sorbose was similar to that by sophorose, known to be the most potent inducer of cellulases. Since the induction of CMCase was inhibited completely by 10 g of cycloheximide per ml, the induction process was considered to involve de novo synthesis. Although l-sorbose had the effective inducibility of CMCase, the assimilation rate of l-sorbose was very low in T. reesei PC-3-7.Production of Ethanol from Biomasses. Part III.Production of Ethanol from Biomasses. Part III.  相似文献   

13.
To investigate whether enzyme production can be enhanced in the Trichoderma reesei industrial hyperproducer strain RUT C30 by manipulation of cellulase regulation, the positive regulator Xyr1 was constitutively expressed under the control of the strong T. reesei pdc promoter, resulting in significantly enhanced cellulase activity in the transformant during growth on cellulose. In addition, constitutive expression of xyr1 combined with downregulation of the negative regulator encoding gene ace1 further increased cellulase and xylanase activities. Compared with RUT C30, the resulting transformant exhibited 103, 114, and 134 % greater total secreted protein levels, filter paper activity, and CMCase activity, respectively. Surprisingly, strong increases in xyr1 basal expression levels resulted in very high levels of CMCase activity during growth on glucose. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression, and suggest an attractive new single-step approach for increasing total cellulase productivity in T. reesei.  相似文献   

14.
Summary Characterization of lignocellulosic wastes from three paper mills in New York State indicated that a kraft mill sludge contained substantial quantities of utilizable cellulose and hemicellulose. This residue was tested as a carbon source for seven cellulolytic fungi.Trichoderma reesei DAOM 167654 accumulated a product of over 22% crude protein, and caused a conversion of sludge to protein of almost 15% in 3 days growth in shake flasks.T. reesei also produced the highest levels of cellulase, whileT. longibrachiatum produced more xylanase (35 units/ml) than other fungi examined.  相似文献   

15.
The production of cellulase was investigated in semi-solid state culture using the immobilized mycelium of Trichoderma reesei mutants on polyurethane foam impregnated with lactose medium. An extremely high value of about 2.6 FPU/ml was reached after the cultivation of T. reesei D-78085 on a 0.5% lactose medium in continuous culture at a pH medium of 4.0 when a bioreactor with vertical polyurethane foam plates was used. The enzyme yield on lactose was 520 FPU/g of lactose metabolized in comparison with 160 FPU/g using a stirred tank bioreactor.  相似文献   

16.
17.
【目的】构建多靶向siRNA表达载体对里氏木霉碳阻遏抑制因子CRE1、CRE2、CRE3和CRE4进行同时多靶向siRNA干扰,以研究其对里氏木霉纤维素酶基因表达的调控作用。【方法】根据此前研究筛选出沉默cre1、cre2、cre3和cre4基因的4个最佳siRNA序列,设计并构建了A多靶向表达载体,另根据cre1、cre2、cre3和cre4基因中所含有的5个共有序列设计并构建了B多靶向表达载体,将两者转化至里氏木霉QM9414。经筛选后分别在48 h和120 h对各转化子进行纤维素酶酶活力测试(CMC活力测试和滤纸酶酶活力测试)及利用qPCR检测相关基因的表达。【结果】通过RT-qPCR测定结果表明,两种表达载体均可同时抑制里氏木霉的分解代谢物阻遏基因cre1、cre2、cre3和cre4的表达,纤维素酶活力比出发菌株明显升高,多靶向抑制菌株的CMC酶活和滤纸酶活比出发菌株平均提高了1.95倍和2.66倍。纤维素酶基因cbh1和egl1的表达水平比出发菌株也有明显提升,平均提高了3.83倍和3.95倍。纤维素酶相关基因xyr1的表达水平与出发菌株相比也明显上升,平均提高了2.78倍。【结论】多靶向沉默里氏木霉的碳代谢阻遏蛋白有利于解除葡萄糖效应,提高非还原糖的利用,从而提高纤维素酶的产量,使纤维素酶的表达得到更大的提升,为里氏木霉表达纤维素酶在分解代谢物阻遏基因调控方面提供了实验依据和新的技术思路。  相似文献   

18.
The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.  相似文献   

19.
The putative xyn11A structural gene (BH0899) encoding a family-11 xylanase from alkaliphilic Bacillus halodurans strain C-125 was heterologously expressed in the yeast Kluyveromyces lactis CBS 1065 and secreted to a level of 156 μg/ml under selective culture conditions in shake flasks. The Xyn11A production level in shake flask cultures of K. lactis CBS 1065 was higher than that reported for other xylanase genes placed under the control of the regulated LAC4 promoter on a plasmid containing an entire sequence of pKD1 from Kluyveromyces drosophilarium. Recombinant Xyn11A was highly active over pH range from 3 to 10, with maximal activity around pH 7. The enzyme showed a specific activity of 628 U/mg-protein on birchwood xylan as substrate, but no cellulase or β-xylosidase activity.  相似文献   

20.
Various used paper materials have been exposed to the action of cellulases from Penicillium funiculosum, Trichoderma reesei, Trichoderma viride and Aspergillus niger. A 2 h incubation period showed cellulase from T. viride the most active except for office paper that was maximally degraded by A. niger cellulase. Cellulase mixtures increased saccharification while sequential treatment with cellulases from T. reesei and P. funiculosum increased biodegradation at values between 15% and 190%. The maximum increase of saccharification (190%) was obtained when T. reesei cellulase initiated the sequential treatment of newspaper relative to the sole action of P. funiculosum cellulase on this non-pretreated and pretreated material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号