首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene encoding a cowpea trypsin inhibitor (CpTI), which confers insect resistance in trangenic tobacco, was introduced into rice. Expression of the CpTi gene driven by the constitutively active promoter of the rice actin 1 gene (Act1) leads to high-level accumulation of the CpTI protein in transgenic rice plants. Protein extracts from transgenic rice plants exhibit a strong inhibitory activity against bovine trypsin, suggesting that the proteinase inhibitor produced in transgenic rice is functionally active. Small-scale field tests showed that the transgenic rice plants expressing the CpTi gene had significantly increased resistance to two species of rice stem borers, which are major rice insect pests. Our results suggest that the cowpea trypsin inhibitor may be useful for the control of rice insect pests.  相似文献   

2.
抗虫植物基因工程研究进展   总被引:40,自引:0,他引:40  
虫害是造成农业减产的主要原因之一。据不完全统计,全世界每年因虫害引起的作物减产达总产量的15%,损失高达数千亿美元。在我国,因虫害水稻减产在lO%以上;小麦减产近20%;棉花减产在  相似文献   

3.
Testing transgenes for insect resistance using Arabidopsis   总被引:5,自引:0,他引:5  
One possible strategy to delay the selection of resistant insect populations is the pyramiding of multiple resistance genes into a single cultivar. However, the transformation of most major crops remains prohibitively expensive if a large number of transgene combinations are to be evaluated. Arabidopsis thaliana is a potentially good plant for such preliminary evaluations. We determined that four major agricultural pests, Spodoptera exigua, Helicoverpa zea, Pseudoplusia includens, and Heliothis virescens grew as well when feeding on Landsberg Erecta Arabidopsis as they did on plants of Cobb soybean. Landsberg Erecta was then transformed with either a synthetic Bacillus thuringiensis cryIA(c) gene, or the cowpea trypsin inhibitor gene. Transformed plants were crossed to produce plants transgenic for both genes. Following quantification of transgene expression, the four caterpillar species were allowed to feed on wild-type plants, plants expressing either cryIA(c) or the cowpea trypsin inhibitor gene, or plants expressing both. Both genes reduced growth of the species tested, but cryIA(c) was more effective in controlling caterpillar growth than the cowpea trypsin inhibitor gene. The resistance of plants with both transgenes was lower than that of plants expressing the cryIA(c) gene alone, but higher than that of plants expressing the only the CpTI gene. This could be due to a lower concentration of Cry protein in the hemizygous F1 plants. Thus, if the cowpea trypsin inhibitor had any potentiation effect on cryIA(c), this effect was less than the cryIA(c) copy number effect. Alternatively, expression of the trypsin inhibitor gene could be antagonistic to the function of the cryIA(c) gene. Either way, these results suggest that the combined use of these two genes may not be effective.  相似文献   

4.
The protein and gene sequences of the cowpea Bowman-Birk type trypsin inhibitor which confers enhanced insect resistance to transgenic tobacco plants, and of cowpea trypsin/chymotrypsin inhibitors are presented. There are regions of high conservation and high divergence within the 5 leader, mature protein and 3 non-coding regions of the Bowman-Birk inhibitors and in the genes which encode them in different members of this family within the Leguminosae. The practical implications of this finding for studies on the evolution of plants and the utilization of these genes for enhancing insect resistance is discussed.  相似文献   

5.
Plant protease inhibitors have been implicated in defense against insect pests. Podborer and pod fly are major pests of developing seeds of pigeonpea ( Cajanus cajan L. Millsp.). Therefore, we studied the presence of protease inhibitors in seeds of pigeonpea and its wild relatives. Seed extracts were analyzed for protease inhibitor activities by caseinolytic assay, and the number of protease inhibitors determined by polyacrylamide gel electrophoresis. Besides trypsin and chymotrypsin inhibitors, seed extracts contained weak papain inhibitor(s) but no bromelain inhibitor. Treatment of seed extract with bromelain generated new active forms of trypsin inhibitors. The relative amounts of different trypsin inhibitors and the total trypsin inhibitor activity varied with different extraction media. Trypsin inhibitors were not detectable in pigeonpea leaves. The profiles of trypsin and chymotrypsin inhibitors in almost all the cultivars of pigeonpea analyzed were similar; however, those in wild relatives were quite variable.  相似文献   

6.
Targeting multiple digestive proteases may be more effective in insect pest control than inhibition of a single enzyme class. We therefore explored possible interactions of three antimetabolic protease inhibitors fed to cowpea bruchids in artificial diets, using a recombinant soybean cysteine protease inhibitor scN, an aspartic protease inhibitor pepstatin A, and soybean Kunitz trypsin inhibitor KI. scN and pepstatin, inhibiting major digestive cysteine and aspartic proteases, respectively, significantly prolonged the developmental time of cowpea bruchids individually. When combined, the anti-insect effect was synergistic, i.e., the toxicity of the mixture was markedly greater than that of scN or pepstatin alone. KI alone did not impact insect development even at relatively high concentrations, but its anti-insect properties became apparent when acting jointly with scN or scN plus pepstatin. Incubating KI with bruchid midgut extract showed that it was partially degraded. This instability may explain its lack of anti-insect activity. However, this proteolytic degradation was inhibited by scN and/or pepstatin. Protection of KI from proteolysis in the insect digestive tract thus could be the basis for the synergistic effect. These observations support the concept that cowpea bruchid gut proteases play a dual role; digesting protein for nutrient needs and protecting insects by inactivating dietary proteins that may otherwise be toxic. Our results also suggest that transgenic resistance strategies that involve multigene products are likely to have enhanced efficacy and durability.  相似文献   

7.
Seeds of Amaranthus hypochondriacus L. are known to accumulate a trypsin-inhibitor (ATI) member of the potato-I inhibitor family and an α -amylase inhibitor (AAI), possessing a knottin-like fold. They are believed to have a defensive role due to their inhibition of trypsin-like enzymes and α -amylases of insect pests. In this work, both inhibitory activities were found in leaves of young A. hypochondriacus plants. High constitutive levels of foliar inhibitory activity against bovine trypsin and insect α -amylases were detected in in vitro assays. Trypsin inhibitory activity was further increased by exposure to diverse treatments, particularly water stress. Salt stress, insect herbivory and treatment with exogenous methyl jasmonate (MeJA) or abscisic acid (ABA) also induced trypsin inhibitor activity accumulation, although to a lesser degree. In gel and immunoblot analyses showed that foliar trypsin inhibitor activity was constituted by at least three different inhibitors of approximately 29, 8 (including ATI) and 3 kDa, respectively. These inhibitors showed differing patterns of accumulation in response to diverse treatments. On the other hand, significant increases in α -amylase inhibitor activity and AAI levels were detected in leaves of insect-damaged, MeJA- and ABA-treated A. hypochodriacus plantlets, but not in those subjected to water- or salt-stress. A differential induction of trypsin inhibitor activity and α -amylase inhibitor accumulation in response to insect herbivory by two related species of lepidopterous larvae was observed, whereas mechanical wounding failed to induce either inhibitor. The overall results suggest that trypsin and α -amylase inhibitors could protect A. hypochondriacus against multiple types of stress.  相似文献   

8.
Serine protease inhibitors (PIs) have been described in many plant species and are universal throughout the plant kingdom, where trypsin inhibitors is the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of 13 selected cultivars/accessions of cowpea. Two cowpea cultivars, Cream7 and Buff, were found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested cultivars for which they have been selected for further purification studies using ammonium sulfate fractionation and DEAE‐Sephadex A‐25 column. Cream7‐purified proteins showed two bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) corresponding to molecular mass of 17.10 and 14.90 kDa, while the purified protein from Buff cultivar showed a single band corresponding mass of 16.50 kDa. The purified inhibitors were stable at temperature below 60°C and were active at wide range of pH from 2 to 12. The kinetic analysis revealed noncompetitive type of inhibition for both inhibitors against both enzymes. The inhibitor constant (Ki) values suggested high affinity between inhibitors and enzymes. Purified inhibitors were found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis, where Buff PI was more effective than Cream7 PI. It may be concluded that cowpea PI gene(s) could be potential insect control protein for future studies in developing insect‐resistant transgenic plants.  相似文献   

9.
Plant cystatins show great potential as tools to genetically engineer resistance of crop plants against pests. Two important potential targets are the bean weevils Acanthoscelides obtectus and Zabrotes subfasciatus, which display major activities of digestive cysteine proteinases in midguts. In this study a cowpea cystatin, a cysteine proteinase inhibitor found in cowpea (Vigna unguiculata) seeds, was expressed in Escherichia coli and purified with a Ni-NTA agarose column. It strongly inhibited papain and proteinases from midguts of both A. obtectus and Z. subfasciatus bruchids, as seen by in vitro assays. When the protein was incorporated into artificial seeds at concentrations as low as 0.025%, and seeds were consumed by the bruchids larva, dramatic reductions in larval weight, and increases in insect mortality were observed. Molecular modeling studies of cowpea cystatin in complex with papain revealed that five N-terminal residues responsible for a large proportion of the hydrophobic interactions involved in the stabilization of the enzyme-inhibitor complex are absent in the partial N-terminal amino acid sequencing of soybean cystatin. We suggest that this structural difference could be the reason for the much higher effectiveness of cowpea cystatin when compared to that previously tested phytocystatin. The application of this knowledge in plant protein mutation programs aiming at enhancement of plant defenses to pests is discussed.  相似文献   

10.
Bruchid larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil, are pests that damage stored seeds. Plants synthesize a variety of molecules, including proteinaceous proteinase inhibitors, to defend themselves against attack by insects. In this work, a trypsin inhibitor (DMTI-II) isolated from Dimorphandra mollis seeds was tested for anti-insect activity against Callosobruchus maculatus larvae. The inhibitor produced ca. 67% mortality to this bruchid when incorporated into an artificial diet at a level of 1%. The doses necessary to cause 50% mortality (LD50) and to reduce weight by 50% (ED50) for DMTI-II were ca. 0.50% and 0.60%, respectively. The action of DMTI-II on C. maculatus larvae may involve the inhibition of trypsin-like activity of larval midgut extracts, the absence of digestion by midgut preparations or with a mixture of pepsin and papain, and its association with a chitin column and chitinous structure in the midgut of this insect.  相似文献   

11.
Insect pests are major constraint to cowpea production in northern Nigeria causing yield losses up to 70%. Several cowpea varieties have been developed and delivered to farmers by IITA over the past four decades. These varieties have varying degrees of resistance to insect pest attacks. A field study was established in northern Nigeria to determine the response to insecticide spraying of old cowpea varieties developed in the late 1970s and new varieties developed in the 2000s in order to determine whether new varieties have lesser requirement for spraying with insecticides than the old ones. The result revealed that the new cowpea varieties developed in the 2000s require more spraying than the old varieties developed in the 1970s. Infestations by the insect pests, maruca (Maruca virata Fabricius) and flower thrips (Megalurothrips sjostedti Trybom) were significantly less at zero and 1 spray for old varieties than for the new varieties. Old varieties also produced significant higher grain yield at zero and 1 spray compared with new varieties. Newer varieties require more spray to maximise yield gain.  相似文献   

12.
In lines of transgenic tobacco plants containing cowpea trypsin inhibitor gene constructs, the cost to various phenotypic characteristics has been measured in plants which express the gene at a high level and in plants which possess, but do not express, the cowpea sequences. Small, but in some cases significant, differences between transgenic and untransformed control plants were found in various parameters. There was no additional difference between transgenic plants which expressed cowpea trypsin inhibitor and those which did not. Thus, although the processes of transformation/regeneration may have some small effects on non-targeted phenotypic characteristics, the expression at high levels of this ‘foreign’ protein imposed no additional yield penalty on the plants.  相似文献   

13.
Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by the observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Better understanding of this specificity depends on modelling studies based on ample structural and biochemical information. A new member of the alpha-amylase inhibitor family of cereal endosperm has been purified from rye using two ionic exchange chromatography steps. It has been characterised by mass spectrometry, inhibition assays and N-terminal protein sequencing. The results show that the inhibitor has a monomer molecular mass of 13,756 Da, is capable of dimerisation and is probably glycosylated. The inhibitor has high homology with the bifunctional alpha-amylase/trypsin inhibitors from barley and wheat, but much poorer homology with other known inhibitors from rye. Despite the homology with bifunctional inhibitors, this inhibitor does not show activity against mammalian or insect trypsin, although activity against porcine pancreatic, human salivary, Acanthoscelides obtectus and Zabrotes subfasciatus alpha-amylases was observed. The inhibitor is more effective against insect alpha-amylases than against mammalian enzymes. It is concluded that rye contains a homologue of the bifunctional alpha-amylase/trypsin inhibitor family without activity against trypsins. The necessity of exercising caution in assigning function based on sequence comparison is emphasised.  相似文献   

14.
Digestive endoprotease activities of the coconut palm weevil, Homalinotus coriaceus (Coleoptera: Curculionidae), were characterized based on the ability of gut extracts to hydrolyze specific synthetic substrates, optimal pH, and hydrolysis sensitivity to protease inhibitors. Trypsin-like proteinases were major enzymes for H. coriaceus, with minor activity by chymotrypsin proteinases. More importantly, gut proteinases of H. coriaceus were inhibited by trypsin inhibitor from Inga laurina seeds. In addition, a serine proteinase inhibitor from I. laurina seeds demonstrated significant reduction of growth of H. coriaceus larvae after feeding on inhibitor incorporated artificial diets. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. Dietary utilization experiments show that 0.05% I. laurina trypsin inhibitor, incorporated into an artificial diet, decreases the consumption rate and fecal production of H. coriaceus larvae. We have constructed a three-dimensional model of the trypsin inhibitor complexed with trypsin. The model was built based on its comparative homology with soybean trypsin inhibitor. Trypsin inhibitor of I. laurina shows structural features characteristic of the Kunitz type trypsin inhibitor. In summary, these findings contribute to the development of biotechnological tools such as transgenic plants with enhanced resistance to insect pests.  相似文献   

15.
豇豆胰蛋白酶抑制剂基因转化芥菜及抗虫鉴定   总被引:3,自引:0,他引:3  
用农杆菌介导将豇豆胰蛋白酶抑制剂 (CpTI)基因导入芥菜 ,获得了Kan抗性植株 .经PCR扩增、PCR Southern印迹和Northern印迹分析 ,转化再生植株大部分呈阳性 ,而非转化的再生植株均为阴性 ,证明CpTI基因已存在于芥菜基因组中 .在室内进行了喂虫试验 ,结果表明转基因芥菜抗虫性明显高于对照 ,转基因植株之间存在抗虫性差异  相似文献   

16.
The seeds of 36 pigeonpea [Cajanus cajan (L) Millsp.] cultivars, resistant and susceptible to pests and pathogens and 17 of its wild relatives were analysed for inhibitors of trypsin, chymotrypsin, and insect gut proteinases to identify potential inhibitors of insect (Helicoverpa armigera) gut enzymes. Proteinase inhibitors (PIs) of pigeonpea cultivars showed total inhibition of trypsin and chymotrypsin, and moderate inhibition potential towards H. armigera proteinases (HGP). PIs of wild relatives exhibited stronger inhibition of HGP, which was up to 87% by Rhynchosia PIs. Electrophoretic detection of HGPI proteins and inhibition of HGP isoforms by few pigeonpea wild relative PIs supported our enzyme inhibitor assay results. Present results indicate that PIs exhibit wide range of genetic diversity in the wild relatives of pigeonpea whereas pigeonpea cultivars (resistant as well as susceptible to pests and pathogens) are homogeneous. The potent HGPIs identified in this study need further exploration for their use in strengthening pigeonpea defence against H. armigera.  相似文献   

17.
18.
Proteinase inhibitors have been proposed to function as plant defence agents against herbivorous pests. We have introduced the barley trypsin inhibitor CMe (BTI-CMe) into wheat (Triticum aestivum L.) by biolistic bombardment of cultured immature embryos. Of the 30 independent transgenic wheat lines selected, 16 expressed BTI-CMe. BTI-CMe was properly transcribed and translated as indicated by northern and western blot, with a level of expression in transgenic wheat seeds up to 1.1% of total extracted protein. No expression was detected in untransformed wheat seeds. Functional integrity of BTI-CMe was confirmed by trypsin inhibitor activity assay. The significant reduction of the survival rate of the Angoumois grain moth (Sitotroga cerealella, Lepidoptera: Gelechiidae), reared on transgenic wheat seeds expressing the trypsin inhibitor BTI-CMe, compared to the untransformed control confirmed the potential of BTI-CMe for the increase of insect resistance. However, only early-instar larvae were inhibited in transgenic seeds and expression of BTI-CMe protein in transgenic leaves did not have a significant protective effect against leaf-feeding insects.  相似文献   

19.
Cowpea (Vigna unguiculata (L.) Walp.) is an important food legume in the tropics. It belongs to the Phaseoleae (L.) tribe (Fabaceae family), it is diploid and its chromosome number is 22. Its gene pool includes the cultivated cowpea and its wild relatives, which are connected with Vigna subgenus, Catiang section. Cowpea has a great potential in increasing food legume production. The cowpea varieties, however, are susceptible to a number of insect pests, especially the pod borer Maruca testulalis and a pod sucking-bug complex (e.g.: Clavigralla tomentosicollis, Anoplocnemis curvipes and Riptortus dentipes), which cause severe damage. The crossing programme presented here exploits the variability existing in the wild African germplasm of V. unguiculata and cultivated cowpea. To incorporate the insect pest resistance into the cultivated cowpea economically, reciprocal crosses between wild forms and cowpea varieties were performed, using the stigmatic pollination methods at anthesis. Some barriers were found in these intraspecific crosses. In the majority of reciprocal crosses, the growth of the pollen tubes was arrested in the stigmatic tissue. Only 16.01% of the ovules were fertilised. In these ovules, embryo development was normal at about 20-25 days after pollination. The failure of the intraspecific crosses in about 80.7% of the cases is thus the result of the lack of fertilisation and the unfertilised ovules. There seems to exist considerable incompatibility within the primary cowpea gene pool. The breeding programme carried out under controlled conditions has proved to be less successful in developed cowpea intraspecific F1 hybrids. Further studies should concentrate on germplasm from Africa with documented resistance to major insect pests. In addition, the application of techniques for bypassing barriers to hybridisation of parent genotypes should enable these embryos to grow to plants.  相似文献   

20.
Cystatin CsC, a cysteine proteinase inhibitor from chestnut (Castanea sativa) seeds, has been purified and characterized. Its full-length cDNA clone was isolated from an immature chestnut cotyledon library. The inhibitor was expressed in Escherichia coli and purified from bacterial extracts. Identity of both seed and recombinant cystatin was confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis, two-dimensional electrophoresis and N-terminal sequencing. CsC has a molecular mass of 11275 Da and pI of 6.9. Its amino acid sequence includes all three motifs that are thought to be essential for inhibitory activity, and shows significant identity to other phytocystatins, especially that of cowpea (70%). Recombinant CsC inhibited papain (Ki 29 nM), ficin (Ki 65 nM), chymopapain (Ki 366 nM), and cathepsin B (Ki 473 nM). By contrast with most cystatins, it was also effective towards trypsin (Ki 3489 nM). CsC is active against digestive proteinases from the insect Tribolium castaneum and the mite Dermatophagoides farinae, two important agricultural pests. Its effects on the cysteine proteinase activity of two closely related mite species revealed the high specificity of the chestnut cystatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号