首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the identification of 17 box C/D fibrillarin-associated small nucleolar RNAs (snoRNAs) from the ancient eukaryote, Trypanosoma brucei. To systematically isolate and characterize these snoRNAs, the T. brucei cDNA for the box C/D snoRNA common protein, fibrillarin, was cloned and polyclonal antibodies to the recombinant fibrillarin protein were generated in rabbits. Immunoprecipitations from T. brucei extracts with the anti-fibrillarin antibodies indicated that this trypanosomatid has at least 30 fibrillarin-associated snoRNAs. We have sequenced seventeen of them and designated them TBR for T. brucei RNA 1-17. All of them bear conserved box C, D, C', and D' elements, a hallmark of fibrillarin-associated snoRNAs in eukaryotes. Fourteen of them are novel T. brucei snoRNAs. Fifteen bear potential guide regions to mature rRNAs suggesting that they are involved in 2'-O-ribose methylation. Indeed, eight ribose methylations have been mapped in the rRNA at sites predicted by the snoRNA sequences. Comparative genomics indicates that six of the seventeen are the first trypanosome homologs of known yeast and vertebrate methylation guide snoRNAs. Our results indicate that T. brucei has many fibrillarin-associated box C/D snoRNAs with roles in 2'-O-ribose methylation of rRNA and that the mechanism for targeting the nucleotide to be methylated at the fifth nucleotide upstream of box D or D' originated in early eukaryotes.  相似文献   

2.
Ribosomal RNAs contain numerous modifications at specific nucleotides. Despite their evolutionary conservation, the functional role of individual 2'-O-ribose methylations in rRNA is not known. A distinct family of small nucleolar RNAs, box C/D snoRNAs, guides the methylating complex to specific rRNA sites. Using a high-resolution phenotyping approach, we characterized 20 box C/D snoRNA gene deletions for altered growth dynamics under a wide array of environmental perturbations, encompassing intraribosomal antibiotics, inhibitors of specific cellular features, as well as general stressors. Ribosome-specific antibiotics generated phenotypes indicating different and long-ranging structural effects of rRNA methylations on the ribosome. For all studied box C/D snoRNA mutants we uncovered phenotypes to extraribosomal growth inhibitors, most frequently reflected in alteration in growth lag (adaptation time). A number of strains were highly pleiotropic and displayed a great number of sensitive phenotypes, e.g., deletion mutants of snR70 and snR71, which both have clear human homologues, and deletion mutants of snR65 and snR68. Our data indicate that individual rRNA ribose methylations can play either distinct or general roles in the workings of the ribosome.  相似文献   

3.
The high degree of rRNA pseudouridylation in Drosophila melanogaster provides a good model for studying the genomic organization, structural and functional diversity of box H/ACA small nucleolar RNAs (snoRNAs). Accounting for both conserved sequence motifs and secondary structures, we have developed a computer-assisted method for box H/ACA snoRNA searching. Ten snoRNA clusters containing 42 box H/ACA snoRNAs were identified from D.melanogaster. Strikingly, they are located in the introns of eight protein-coding genes. In contrast to the mode of one snoRNA per intron so far observed in all animals, our results demonstrate for the first time a novel polycistronic organization that implies a different expression strategy for a box H/ACA snoRNA gene when compared to box C/D snoRNAs in D.melanogaster. Mutiple isoforms of the box H/ACA snoRNAs, from which most clusters are made up, were observed in D.melanogaster. The degree of sequence similarity between the isoforms varies from 99% to 70%, implying duplication events in different periods and a trend of enlarging the intronic snoRNA clusters. The variation in the functional elements of the isoforms could lead to partial alternation of snoRNA's function in loss or gain of rRNA complementary sequences and probably contributes to the great diversity of rRNA pseudouridylation in D.melanogaster.  相似文献   

4.
5.
Jády BE  Kiss T 《The EMBO journal》2001,20(3):541-551
In eukaryotes, two distinct classes of small nucleolar RNAs (snoRNAs), namely the fibrillarin-associated box C/D snoRNAs and the Gar1p-associated box H/ACA snoRNAs, direct the site-specific 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. We have identified a novel evolutionarily conserved snoRNA, called U85, which possesses the box elements of both classes of snoRNAs and associates with both fibrillarin and Gar1p. In vitro and in vivo pseudouridylation and 2'-O-methylation experiments provide evidence that the U85 snoRNA directs 2'-O-methylation of the C45 and pseudouridylation of the U46 residues in the invariant loop 1 of the human U5 spliceosomal RNA. The U85 is the first example of a snoRNA that directs modification of an RNA polymerase II-transcribed spliceosomal RNA and that functions both in RNA pseudouridylation and 2'-O-methylation.  相似文献   

6.
Maturation of pre-ribosomal RNA (pre-rRNA) in eukaryotic cells takes place in the nucleolus and involves a large number of cleavage events, which frequently follow alternative pathways. In addition, rRNAs are extensively modified, with the methylation of the 2'-hydroxyl group of sugar residues and conversion of uridines to pseudouridines being the most frequent modifications. Both cleavage and modification reactions of pre-rRNAs are assisted by a variety of small nucleolar RNAs (snoRNAs), which function in the form of ribonucleoprotein particles (snoRNPs). The majority of snoRNAs acts as guides directing site-specific 2'-O-ribose methylation or pseudouridine formation. Over one hundred RNAs of this type have been identified to date in vertebrates and the yeast Saccharomyces cerevisiae. This number is readily explained by the findings that one snoRNA acts as a guide usually for one or at most two modifications, and human rRNAs contain 91 pseudouridines and 106 2'-O-methyl residues. In this article we review information about the biogenesis, structure and function of guide snoRNAs.  相似文献   

7.
Small nucleolar RNAs (snoRNAs) are a large group of noncoding RNAs that exist in eukaryotes and archaea and guide modifications such as 2'-O-ribose methylations and pseudouridylation on rRNAs and snRNAs. Recently, we described a genome-wide screening approach with Trypanosoma brucei that revealed over 90 guide RNAs. In this study, we extended this approach to analyze the repertoire of the closely related human pathogen Leishmania major. We describe 23 clusters that encode 62 C/Ds that can potentially guide 79 methylations and 37 H/ACA-like RNAs that can potentially guide 30 pseudouridylation reactions. Like T. brucei, Leishmania also contains many modifications and guide RNAs relative to its genome size. This study describes 10 H/ACAs and 14 C/Ds that were not found in T. brucei. Mapping of 2'-O-methylations in rRNA regions rich in modifications suggests the existence of trypanosomatid-specific modifications conserved in T. brucei and Leishmania. Structural features of C/D snoRNAs, such as copy number, conservation of boxes, K turns, and intragenic and extragenic base pairing, were examined to elucidate the great variation in snoRNA abundance. This study highlights the power of comparative genomics for determining conserved features of noncoding RNAs.  相似文献   

8.
Small nucleolar RNAs (snoRNAs) constitute newly discovered noncoding small RNAs, most of which function in guiding modifications such as 2'-O-ribose methylation and pseudouridylation on rRNAs and snRNAs. To investigate the genome organization of Trypanosoma brucei snoRNAs and the pattern of rRNA modifications, we used a whole-genome approach to identify the repertoire of these guide RNAs. Twenty-one clusters encoding for 57 C/D snoRNAs and 34 H/ACA-like RNAs, which have the potential to direct 84 methylations and 32 pseudouridines, respectively, were identified. The number of 2'-O-methyls (Nms) identified on rRNA represent 80% of the expected modifications. The modifications guided by these RNAs suggest that trypanosomes contain many modifications and guide RNAs relative to their genome size. Interestingly, approximately 40% of the Nms are species-specific modifications that do not exist in yeast, humans, or plants, and 40% of the species-specific predicted modifications are located in unique positions outside the highly conserved domains. Although most of the guide RNAs were found in reiterated clusters, a few single-copy genes were identified. The large repertoire of modifications and guide RNAs in trypanosomes suggests that these modifications possibly play a central role in these parasites.  相似文献   

9.
10.
11.
This report presents a valuable new bioinformatics package for research on rRNA nucleotide modifications in the ribosome, especially those created by small nucleolar RNA:protein complexes (snoRNPs). The interactive service, which is not available elsewhere, enables a user to visualize the positions of pseudouridines, 2'-O-methylations, and base methylations in three-dimensional space in the ribosome and also in linear and secondary structure formats of ribosomal RNA. Our tools provide additional perspective on where the modifications occur relative to functional regions within the rRNA and relative to other nearby modifications. This package of new tools is presented as a major enhancement of an existing but significantly upgraded yeast snoRNA database available publicly at http://people.biochem.umass.edu/sfournier/fournierlab/snornadb/. The other key features of the enhanced database include details of the base pairing of snoRNAs with target RNAs, genomic organization of the yeast snoRNA genes, and information on corresponding snoRNAs and modifications in other model organisms.  相似文献   

12.
Li W  Jiang G  Huang B  Jin Y 《IUBMB life》2005,57(3):173-179
Small nucleolar RNAs (snoRNAs) are a kind of noncoding RNAs, and the vast majority of snoRNAs are involved in site-specific modifications of rRNAs. A novel box C/D snoRNA called snoR124 was found inOryza sativa, and it can direct 2'-O-ribose methylation of spliceosomal small nuclear RNAs (snRNAs). The snoRNA has two antisense elements, and the results of primer extensions at different dNTP concentrations provide evidence that snoR124 guide 2'-O-methylations of the C76 residue in the U4 snRNA and the T91 residue in the U5 snRNA. In addition, this snoRNA is located in a snoRNA gene cluster with another 7 snoRNAs which are identified to direct ribose methylations in rRNAs. This is consistent with the opinion that the snoRNA gene organization in plant is mainly gene cluster. The snoR124 is the first example of a snoRNA that directs modifications of RNAs other than rRNAs in plant; it will avail to get more insights into the function of snoRNAs in plant.  相似文献   

13.
In mouse brain cDNA libraries generated from small RNA molecules we have identified a total of 201 different expressed RNA sequences potentially encoding novel small non-messenger RNA species (snmRNAs). Based on sequence and structural motifs, 113 of these RNAs can be assigned to the C/D box or H/ACA box subclass of small nucleolar RNAs (snoRNAs), known as guide RNAs for rRNA. While 30 RNAs represent mouse homologues of previously identified human C/D or H/ACA snoRNAs, 83 correspond to entirely novel snoRNAS: Among these, for the first time, we identified four C/D box snoRNAs and four H/ACA box snoRNAs predicted to direct modifications within U2, U4 or U6 small nuclear RNAs (snRNAs). Furthermore, 25 snoRNAs from either class lacked antisense elements for rRNAs or snRNAS: Therefore, additional snoRNA targets have to be considered. Surprisingly, six C/D box snoRNAs and one H/ACA box snoRNA were expressed exclusively in brain. Of the 88 RNAs not belonging to either snoRNA subclass, at least 26 are probably derived from truncated heterogeneous nuclear RNAs (hnRNAs) or mRNAS: Short interspersed repetitive elements (SINEs) are located on five RNA sequences and may represent rare examples of transcribed SINES: The remaining RNA species could not as yet be assigned either to any snmRNA class or to a part of a larger hnRNA/mRNA. It is likely that at least some of the latter will represent novel, unclassified snmRNAS:  相似文献   

14.
Ribosomal RNA undergoes various modifications to optimize ribosomal structure and expand the topological potential of RNA. The most common nucleotide modifications in ribosomal RNA (rRNA) are pseudouridylations and 2′-O methylations (Nm), performed by H/ACA box snoRNAs and C/D box snoRNAs, respectively. Furthermore, rRNAs of both ribosomal subunits also contain various base modifications, which are catalysed by specific enzymes. These modifications cluster in highly conserved areas of the ribosome. Although most enzymes catalysing 18S rRNA base modifications have been identified, little is known about the 25S rRNA base modifications. The m1A modification at position 645 in Helix 25.1 is highly conserved in eukaryotes. Helix formation in this region of the 25S rRNA might be a prerequisite for a correct topological framework for 5.8S rRNA to interact with 25S rRNA. Surprisingly, we have identified ribosomal RNA processing protein 8 (Rrp8), a nucleolar Rossman-fold like methyltransferase, to carry out the m1A base modification at position 645, although Rrp8 was previously shown to be involved in A2 cleavage and 40S biogenesis. In addition, we were able to identify specific point mutations in Rrp8, which show that a reduced S-adenosyl-methionine binding influences the quality of the 60S subunit. This highlights the dual functionality of Rrp8 in the biogenesis of both subunits.  相似文献   

15.
Conversion of uridines into pseudouridines (Psis) is the most frequent base modification in ribosomal RNAs (rRNAs). In eukaryotes, the pseudouridylation sites are specified by base-pairing with specific target sequences within H/ACA small nucleolar RNAs (snoRNAs). The yeast rRNAs harbor 44 Psis, but, when this work began, 15 Psis had completely unknown guide snoRNAs. This suggested that many snoRNAs remained to be discovered. To address this problem and further complete the snoRNA assignment to Psi sites, we identified the complete set of RNAs associated with the H/ACA snoRNP specific proteins Gar1p and Nhp2p by coupling TAP-tag purifications with genomic DNA microarrays experiments. Surprisingly, while we identified all the previously known H/ACA snoRNAs, we selected only three new snoRNAs. This suggested that most of the missing Psi guides were present in previously known snoRNAs but had been overlooked. We confirmed this hypothesis by systematically investigating the role of previously known, as well as of the newly identified snoRNAs, in specifying rRNA Psi sites and found all but one missing guide RNAs. During the completion of this work, another study, based on bioinformatic predictions, also reported the identification of most missing guide RNAs. Altogether, all Psi guides are now identified and we can tell that, in budding yeast, the 44 Psis are guided by 28 snoRNAs. Finally, aside from snR30, an atypical small RNA of heterogeneous length and at least one mRNA, all Gar1p and Nhp2p associated RNAs characterized by our work turned out to be snoRNAs involved in rRNA Psi specification.  相似文献   

16.
17.
Fibrillarin is a key nucleolar protein in eukaryotes which associates with box C/D small nucleolar RNAs (snoRNAs) directing 2'-O-ribose methylation of the rRNA. In this study we describe two genes in Arabidopsis thaliana, AtFib1 and AtFib2, encoding nearly identical proteins conserved with eukaryotic fibrillarins. We demonstrate that AtFib1 and AtFib2 proteins are functional homologs of the yeast Nop1p (fibrillarin) and can rescue a yeast NOP1-null mutant strain. Surprisingly, for the first time in plants, we identified two isoforms of a novel box C/D snoRNA, U60.1f and U60.2f, nested in the fifth intron of AtFib1 and AtFib2. Interestingly after gene duplication the host intronic sequences completely diverged, but the snoRNA was conserved, even in other crucifer fibrillarin genes. We show that the U60f snoRNAs accumulate in seedlings and that their targeted residue on the 25 S rRNA is methylated. Our data reveal that the three modes of expression of snoRNAs, single, polycistronic, and intronic, exist in plants and suggest that the mechanisms directing rRNA methylation, dependent on fibrillarin and box C/D snoRNAs, are evolutionarily conserved in plants.  相似文献   

18.
The 2,2,7-trimethylguanosine caps of eukaryal snRNAs and snoRNA are formed by the enzyme Tgs1, which catalyzes sequential guanine-N2 methylations of m(7)G caps. Atypically, in the divergent unicellular eukaryote Trichomonas vaginalis, spliceosomal snRNAs lack a guanosine cap and the recombinant T. vaginalis trimethylguanosine synthase (TvTgs) produces only m(2,7)G in vitro. Here, we show by direct metabolic labeling that endogenous T. vaginalis RNAs contain m(7)G, m(2,7)G, and m(2,2,7)G caps. Immunodepletion of TvTgs from cell extracts and TvTgs add-back experiments demonstrate that TvTgs produces m(2,7)G and m(2,2,7)G caps. Expression of TvTgs in yeast tgs1Δ cells leads to the formation of m(2,7)G and m(2,2,7)G caps and complementation of the lethality of a tgs1Δ mud2Δ strain. Whereas TvTgs is present in the nucleus and cytosol of T. vaginalis cells, TMG-containing RNAs are localized primarily in the nucleolus. Molecular cloning of anti-TMG affinity-purified T. vaginalis RNAs identified 16 box H/ACA snoRNAs, which are implicated in guiding RNA pseudouridylation. The ensemble of new T. vaginalis H/ACA snoRNAs allowed us to predict and partially validate an extensive map of pseudouridines in T. vaginalis rRNA.  相似文献   

19.
20.
Multiple snoRNA gene clusters from Arabidopsis   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号